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ABSTRACT Genetic association studies have explained only a small proportion of the estimated heritability of complex traits, leaving
the remaining heritability “missing.” Genetic interactions have been proposed as an explanation for this, because they lead to
overestimates of the heritability and are hard to detect. Whether this explanation is true depends on the proportion of variance
attributable to genetic interactions, which is difficult to measure in outbred populations. Founder populations exhibit a greater range of
kinship than outbred populations, which helps in fitting the epistatic variance. We extend classic theory to founder populations, giving
the covariance between individuals due to epistasis of any order. We recover the classic theory as a limit, and we derive a recently
proposed estimator of the narrow sense heritability as a corollary. We extend the variance decomposition to include dominance. We
show in simulations that it would be possible to estimate the variance from pairwise interactions with samples of a few thousand from
strongly bottlenecked human founder populations, and we provide an analytical approximation of the standard error. Applying these
methods to 46 traits measured in a yeast (Saccharomyces cerevisiae) cross, we estimate that pairwise interactions explain 10% of the
phenotypic variance on average and that third- and higher-order interactions explain 14% of the phenotypic variance on average. We
search for third-order interactions, discovering an interaction that is shared between two traits. Our methods will be relevant to future
studies of epistatic variance in founder populations and crosses.

GENOME-WIDE association studies (GWAS) have re-
newed interest in methods for estimating the narrow

sense heritability, which is the maximum proportion of the
phenotypic variance that the additive effects found by GWAS
could explain. The variance explained by the known associ-
ations for a trait is typically only a fraction of the estimated
narrow sense heritability, with the remaining heritability often
labeled “missing” (Eichler et al. 2010; Visscher et al. 2012).

Most estimates of narrow sense heritability come from
twin and family studies (Boomsma et al. 2002), which can
be upwardly biased in the presence of genetic interactions
(Zuk et al. 2012). Genetic interactions introduce this bias by
introducing convex nonlinearity to the relationship between
phenotypic correlation and kinship (see Figure 1). Both the

most common twin-studies estimator, the additive-common-
environment (ACE) estimator, and a method that exploits
the variation in kinship between siblings (Visscher et al.
2006) assume a linear relationship between phenotypic cor-
relation and kinship. The gradient at the mean level of kin-
ship in the population is the true narrow sense heritability
(Zuk et al. 2012), with the gradient increasing as kinship
increases above the mean due to the influence of genetic
interactions. The degree to which this has biased twin-
and family-study estimates depends on the amount of epi-
static variance, which is not known for most complex traits.

How much variance there is from interaction effects
reflects the genetic architecture of a trait and the statistical
complexity of the relationship between genotype and
phenotype- it is therefore of interest beyond the debate about
“missing heritability.” If we knew in advance which traits
exhibited considerable variance from interactions, it would help
focus resources on searching for interactions in those traits.

Some of the first evidence that common variants interact
to influence human traits was found by Strange et al.
(2010), Brown et al. (2014), and Hemani et al. (2014).
However, the interactions they found explained only a small
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amount of the phenotypic variance. By analogy with the
problem of missing heritability for additive effects, it is un-
likely that we will have the power to detect all of the inter-
actions influencing a trait, so the only way to assess the
statistical importance of interaction effects will be by meth-
ods that measure the variance they contribute in aggregate.

The evolutionary model of a phenotype depends on the
partition of its genetic variance into additive and non-
additive components. Mackay (2014) argues that natural
populations have evolved suppressing epistatic interactions
as “canalizing” mechanisms, which is a possible explanation
for why we do not observe many common, large marginal-
effect alleles. Hemani et al. (2013) suggest that epistasis
explains why there is more genetic variation than expected
for traits under selection, a phenomenon called “stasis.”
Vukcevic et al. (2011) and Hemani et al. (2013) suggest that
some of the associations found by GWAS look additive only
because of incomplete linkage disequilibrium between geno-
typed variants and interacting causal variants. These hy-
potheses could be tested by accurately estimating the
variance from pairwise interactions.

Classical quantitative genetic theory generally assumes
an infinite, outbred, random-mating population—see Gallais
(1974) for a list of typical assumptions. Fisher (1918) showed
how pairwise genetic interactions influence the covariance
between relatives under these population assumptions. Cock-
erham (1954) and Kempthorne (1954, 1955) independently
generalized Fisher’s result to include all orders of genetic
interaction.

It has proved very difficult to estimate the variance from
pairwise interactions in the outbred populations for which
the theory was derived. This is because there is almost no
contribution from interaction effects to the covariance between
pairs of unrelated individuals in outbred populations. Samples
of unrelated individuals therefore contain very little informa-
tion about the contribution of interaction effects to phenotypic
variation. Samples of closely related individuals do, but the
information is often confounded with shared environmental
and dominance effects.

The difficulty of estimating the variance from pairwise
interactions can be likened to the difficulty of fitting the
quadratic curve shown for the epistatic trait in Figure 1.
Fitting a quadratic requires information about a wider range
of points than fitting a line. Therefore, estimating the variance
from interactions requires information about phenotypic corre-
lation over a wider range of kinship than estimating the nar-
row sense heritability does. Bottlenecked populations are
characterized by increased kinship variation and mean kinship
compared to outbred populations (Abney et al. 2000; Carmi
et al. 2013). A sample from a founder population therefore
contains more information about the nonlinear change in phe-
notypic correlation with kinship, thereby bringing the variance
from genetic interactions into statistical reach.

Theoretical work in founder populations was previously
restricted to the contribution of the variance from pairwise
interactions to the covariance between half and full siblings
(Cockerham and Tachida 1988; Tachida and Cockerham
1989). Tachida and Cockerham (1989) adjust the covari-
ance between siblings for the background relatedness intro-
duced by the population bottleneck. We instead adjust the
kinship for recent finite population size and use this expres-
sion to derive the covariance between relatives in a founder
population as a function of their kinship, the mean kinship in
the population, and the variance from genetic interactions of
different order. We thereby give the estimator proposed by
Zuk et al. (2012) (see Figure 1) as a simple corollary.

The theory we develop applies to certain laboratory
crosses as well as to natural founder populations. Laboratory
crosses often start with a small number of founding individ-
uals, such as the “outbred” rat and mouse populations (Baud
et al. 2013). The small number of founders gives a larger
range of kinship than occurs in natural human founder pop-
ulations, giving more power to estimate interaction variance.
We exploit this greater power to perform the first estimates of
the variance from third- and higher-order interactions in a yeast
cross. We search for third-order interactions in those traits
exhibiting evidence for variance from third- and higher-order

Figure 1 Epistatic trait with heritability estimators. Phenotypic correlation as
a function of genotypic correlation is plotted for an epistatic trait (solid black
curve) with narrow sense heritability h2 = 0.4 and broad sense heritability
H2 = 0.8 and for an additive trait (dotted black line) with narrow sense
heritability h2 = 0.8. The genotypic correlation is a function of the kinship
coefficient, K. The genotypic correlation for dizygotic twins (DZ) and mono-
zygotic twins (MZ) is indicated on the x-axis. K0 is the mean kinship coefficient
in the population, where phenotypic correlation is zero. The ACE estimator is
twice the difference between the monozygotic and dizygotic phenotypic
correlation, the gradient of the blue line, which is 1 here. The estimator used
by Visscher et al. (2006) is the gradient of the orange line (0.8), which is the
rate of change of phenotypic correlation around the mean genotypic corre-
lation for siblings. The estimator proposed by Zuk et al. (2012) is the gradient
of the red line, which is equal to the narrow sense heritability, 0.4.
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interactions, and we find a third-order interaction shared
between two traits that explains the majority of their
covariance.

Theory

The theory is derived for a population recently founded by
a finite number of ancestors carrying a total of A haplotypes,
with random mating after founding.

Genotypic covariance

We consider an allele at a locus i on haplotypes t and u. We
calculate the covariance of the allelic states of the haplo-
types by conditioning on whether the alleles were inherited
from the same founder: whether the alleles are identical-by-
descent (IBD). The allelic state is coded as a binary variable:
gti for haplotype t and gui for haplotype u.

If there were A ancestral haplotypes at the time of the
bottleneck, and ci of these haplotypes carried the allele, then
the probability that the two haplotypes carry the allele given
that they are IBD at the locus is

ℙ
�
gui ¼ gti ¼ 1jIBDi

u;t

�
¼ ci

A
; (1)

where IBDi
u;t indicates that haplotypes u and t are IBD at

locus i.
Conversely, given that the two haplotypes are not IBD at

the locus, then the probability they both carry the allele is

ℙ
�
gui ¼ gti ¼ 1j:IBDi

u;t

�
¼ ciðci2 1Þ

AðA2 1Þ: (2)

This is because, given the alleles are not IBD, if one
haplotype inherits the allele from one of the ci ancestral
haplotypes carrying the allele, the other haplotype can in-
herit the allele only from one of the (ci 2 1) other ancestral
haplotypes carrying the allele—sampling from the ancestral
haplotypes without replacement.

The probability that a pair of haplotypes sampled without
replacement is IBD at a locus is the mean kinship coefficient,
defined to be K0, which is A21 for a random mating popu-
lation. If we define the expected allele frequency to be fi =
ci/A, (2) can therefore be expressed as

ℙ
�
gui ¼ gti ¼ 1j:IBDi

u;t

�
¼ fið fi 2K0Þ

12K0
: (3)

Note that because fi $ K0 $ 0,
f 2i $ ℙðgui ¼ gti ¼ 1j:IBDi

u;tÞ$ 0: Therefore, if kt,u is the
probability that haplotypes t and u are IBD at locus i, the
probability that both haplotypes carry the allele is

ℙðgti ¼ gui ¼ 1Þ ¼ kt;ufi þ
�
12 kt;u

� fiðfi 2K0Þ
12K0

: (4)

Because E½gui� ¼ E½gti� ¼ fi; the covariance between gti and
gui is therefore

Covðgti; guiÞ ¼ E½gtigui�2E½gui�E½gti� (5)

¼ ℙðgti ¼ gui ¼ 1Þ2 f2i (6)

¼ fið12 fiÞ kt;u2K0

12K0
: (7)

K0 parameterizes the adjustment of the genotypic covari-
ance for finite population history. When K0 = 0, as in an
infinite, random-mating population, alleles are independent
when not shared IBD.

Covariance between relatives

We derive the result first for the simple case of two
interacting biallelic loci in linkage equilibrium, with the
generalization following the same logic.

The phenotype of a diploid individual t is modeled as

Yt ¼ mþ b1xt1 þ b2xt2 þ b1;2xt1xt2 þ et: (8)

The xti variables represent t’s deviation in minor allele copy
number from the mean at locus i:

xti ¼ gmti þ gpti2 2fi; (9)

where gmti and gpti are indicator variables for whether the
maternal and paternal haplotypes of individual t carry
the minor allele at locus i. The frequency of the minor allele
at locus i is fi, and therefore E½xti� ¼ 0: The phenotypic mean
is m, and et is the residual error, with mean zero and vari-
ance s2

e , which includes both environmental influences and
random noise.

Expressing the genetic contribution to the phenotypic value
in this way gives an orthogonal partition of the phenotypic
variance. Because of linkage equilibrium, Cov(xt1, xt2) = 0.
Cov(xt1, xt1xt2) also equals zero because

Covðxt1; xt1xt2Þ ¼ E
�
x2t1xt2

� ¼ E
�
x2t1
�
E½xt2� ¼ 0; (10)

where we have again relied on the fact that the loci are in
linkage equilibrium. This implies that b1 is the regression
coefficient of the genotype at locus 1 on the phenotype.
b1,2xt1xt2 is the residual effect of the interaction between loci
1 and 2 after accounting for the marginal effects of the loci.

The covariance between the phenotypes of two individ-
uals t and u relies upon the covariance of their genotypes,
which is a function of the IBD sharing between their
haplotypes,

Covðxt1; xu1Þ ¼
X
i¼m;p

X
j¼m;p

Cov
�
git1; g

j
u1

�

¼ f1ð12 f1Þ
X
i¼m;p

X
j¼m;p

k
i;j
t;u2K0

12K0
;

(11)

by (7), and where k
m;p
t;u is the proportion of the maternal

haplotype of individual t that is IBD with the paternal
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haplotype of individual u. This can be expressed in terms of
the kinship coefficient between t and u, defined to be Kt,u.
This is the probability that an allele drawn at random from
each individual is IBD. Therefore,

Kt;u ¼ 1
4

X
i¼m;p

X
j¼m;p

k
i;j
t;u: (12)

The covariance can thereby be expressed as

Covðxt1; xu1Þ ¼ 2
Kt;u 2K0

12K0
Varðx1Þ; (13)

where K0 is the mean kinship coefficient in the population.
The covariance between the interaction effects is

b2
1;2E½xt1xt2xu1xu2� ¼ b2

1;2E½xt1xu1�E½xt2xu2� (14)

by linkage equilibrium; by (13), this is equivalent to

4
�
Kt;u2K0

12K0

	2

b2
1;2 Varðx1ÞVarðx2Þ: (15)

Therefore, the phenotypic covariance is

CovðYt; YuÞ ¼ 2
�
Kt;u 2K0

12K0

	
v1

þ 4
�
Kt;u2K0

12K0

	2

v2 þ Covðet; euÞ;
(16)

where v1 ¼ ðb2
1Varðx1Þ þ b2

2Varðx2ÞÞ is the additive variance,
and v2 ¼ b2

1;2Varðx1ÞVarðx2Þ is the pairwise interaction variance.
The phenotypic variance of individual t is a function of t’s

inbreeding coefficient, Ft. Setting t = u in (16) and using the
fact that Kt,t = (1 + Ft)/2,

VarðYtÞ ¼
�
1þ Ft 2K0

12K0

	
v1 þ

�
1þ Ft2K0

12K0

	2

v2 þ s2
e : (17)

In Supporting Information, File S1, we extend the two-locus
model to include dominance effects at the loci. In a founder
population, inbreeding induces a correlation between the ad-
ditive and dominance effects at a locus. The change in the
mean due to inbreeding—inbreeding depression—introduces
a further variance component. The individual-level variance is

VarðYtÞ ¼
X2
t¼1

�
1þ Ft2K0

12K0

	t

vt þ ð12 FtÞvd

þ 4
Ft 2K0

12K0
Ca;d þ Ftvh þ

Ftð12 FtÞ
ð12K0Þ2

SSmh
þ s2

e ;

(18)

where vd is approximately equal to the dominance variance
as defined in an outbred population; Ca,d is the covariance

between additive and dominance effects; vh is the domi-
nance variance in a homozygous population; and SSmh

is
the sum of the squared inbreeding depressions at the loci,
which is approximately equal to vd when K0 is small. The
components, apart from vd, are as defined in Abney et al.
(2000); however, their coefficients are different.

The variance of the phenotype in the population is found
by applying the law of total variance, VarðYÞ ¼ Et½VarðYtÞ�þ
VartðE½Yt�Þ, to Equation 18. Because the mean inbreeding
coefficient is equal to the mean kinship coefficient in
a random-mating population,

VarðYÞ ¼ v1 þ
 
1þ VarðFÞ

ð12K0Þ2
!
v2 þ ð12K0Þvd þ K0vh

þ K0

ð12K0Þ SSmh
þ VarðFÞ
ð12K0Þ2

�
m2
h 2 SSmh

�þ s2
e :

(19)

The narrow sense heritability in the population is h2 = v1/Var
(Y). For an outbred population, the variance in inbreeding co-
efficient, Var(F), is zero, so the proportion of phenotypic var-
iance explained by the interaction is v2/Var(Y). However, for
strongly bottlenecked populations, variation in inbreeding co-
efficient increases the contribution of the interaction to Var(Y).
The dominance variance components arising from inbreeding,
vh, SSmh

; and m2
h; do not contribute much to population varia-

tion except in the most strongly bottlenecked populations.
We now give the generalization of (16) to arbitrary

epistasis between a set of causal loci each with any number
of alternative alleles—for the detailed derivation, see File
S1. The phenotypic covariance, for a set of causal loci N, is

CovðYt; YuÞ ¼
XjNj
t¼1

2t
�
Kt;u2K0

12K0

	t

vt þ Covðet; euÞ; (20)

where vt is the variance from interactions involving t loci.
If we take the limit of (20) as K0 / 0, we get

CovðYt; YuÞ ¼
XjNj
t¼1

�
2Kt;u

�tvt þ Covðet; euÞ; (21)

which is equivalent to the result of Kempthorne (1954)
without dominance effects.

Under more restrictive assumptions, Zuk et al. (2012) de-
rived that, for haploids, the gradient of the phenotypic correla-
tion at the mean IBD sharing is the narrow sense heritability—
see Figure 1 for a visualization of this. The diploid version of the
Zuk et al. (2012) theorem is a corollary of (20) given by

v1 ¼ ð12K0Þ
2

@ CovðYt; YuÞ
@Kt;u






Kt;u¼K0

: (22)

This shows that (20) unifies the estimator proposed by Zuk
et al. (2012) with the classic result of Kempthorne (1954).
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The regression method proposed by Zuk et al. (2012) to
estimate v1 does not take into account the dependencies
between pairs of phenotype observations. It is therefore
preferable to fit variance components by maximum likeli-
hood or restricted maximum likelihood, as in Abney et al.
(2000), Browning and Browning (2013), and Zaitlen et al.
(2013). The off-diagonal elements of the phenotypic covari-
ance matrix are given by (20), with the diagonal elements
given by

VarðYtÞ ¼
XjNj
t¼1

�
1þ Ft2K0

12K0

	t

vt þ s2
e : (23)

Haploid case

The theory simplifies in the haploid case due to absence of
inbreeding or dominance effects. The kinship between two
haploids i and j, Ki,j, is simply the proportion of the genome
shared IBD, and the phenotypic covariance matrix is

CovðYÞ ¼
Xn
t¼1

vtKt þ CovðEÞ; (24)

where Kt is a symmetric matrix with 1’s on the diagonal and
off-diagonal elements

½Kt�ij ¼
�
Ki;j2K0

12K0

	t

; (25)

and Cov(E) is the covariance matrix of the environmental
effects.

Materials and Methods

Simulations for variance component inference

Pairwise interaction variance: To investigate the precision
with which the variance from pairwise interactions could be
estimated in different populations, we simulated founder
populations with different mean kinship by varying the
number of founding haplotypes. The R code used for the
simulations is in File S2.

The allele frequencies of the variants in the ancestral
population were generated by randomly sampling from
a distribution with density proportional to 1/f, where f is
the allele frequency. We simulated 100 variants in this way.

Each chromosome in the sample was made as a mosaic of
independently inherited segments: the length of each seg-
ment was drawn from an exponential distribution with
a mean of 10, and the genotypes in the segment were copied
from a random ancestral haplotype. The expected number of
independently inherited segments for each haplotype in the
sample was therefore 10. The ancestor from whom each
segment was inherited was recorded.

To calculate the diploid kinship coefficient for a pair of
individuals, the total number of variants descending from
the same ancestor for each of the four maternal/paternal–

maternal/paternal haplotype pairs, one from each individ-
ual, was calculated; the sum total sharing across the four
haplotype pairs divided by four times the number of var-
iants gives the diploid kinship coefficient between the two
individuals. The mean kinship coefficient, K0, was taken
to be the inverse of the number of ancestral haplotypes,
which is its expectation. There will be negligible deviation
of the sample K0, calculated over all pairs, from its
expectation.

Following the theoretical results, we calculated the compo-
nent of the covariance matrix due to additive effects, defined to
be R1, by calculating element s, t of R1 as 2(Ks,t2 K0)/(12 K0),
where Ks,t is the diploid kinship coefficient of the pair of indi-
viduals s and t. The component of the covariance matrix due to
pairwise interaction effects, R2, was calculated as the Hadamard
square of R1.

The kinship coefficients were calculated using all 100
variants, corresponding to calculating kinship from genome-
wide IBD sharing. However, only a small proportion of the
genome is likely to affect a particular trait. To simulate the
sparsity of causal variants, the traits were simulated by
randomly choosing 10 variants to be causal.

The variants were independently chosen for each simu-
lated trait, covering a range of different frequency distribu-
tions of causal variants. Each variant was given an additive
effect, and each pair of variants was given an interaction
effect. Effects were drawn from normal distributions scaled
so that v1 = 0.4 and v2 = 0.2; Gaussian error was added
with variance 0.4. The variance components were inferred
by fitting the covariance matrix as

v1R1 þ v2R2 þ s2
e I: (26)

Variance components were estimated by restricted maxi-
mum likelihood, using the average information algorithm in
GCTA (Yang et al. 2011).

We simulated four populations with mean kinship
ranging from 1/240 to 1/30, covering a broad range of
human founder populations. We simulated 500 phenotypes
with the same variance components for each population.

To investigate how epistasis might bias inference of
additive variance, we fitted the covariance matrix as
v1R1 þ s2

e I; ignoring any epistasis, across the four simulated
populations for the phenotypes with v1 = 0.4 and v2 = 0.2.
To measure the effect of the amount of epistasis on the bias,
we simulated further phenotypes, varying v2 from 0.1 to 0.4
for the population with mean kinship 1/240.

Third-order interaction variance: To investigate the limits
of our ability to fit epistatic variance components, for each of
the four populations we simulated 200 additional pheno-
types with v1 = 0.4, v2 = 0.2, and v3 = 0.2; Gaussian error
was added with variance 0.2. The phenotypes were simu-
lated as above except every combination of three causal
variants was given a third-order interaction effect, scaled
so that the total variance from third-order interactions was

Epistasis in Founder Populations 1409

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.170795/-/DC1/genetics.114.170795-7.txt


0.2. The variance components were inferred by fitting the
covariance matrix as

v1R1 þ v2R2 þ v3R3 þ s2
e I; (27)

where R3 is the Hadamard cube of R1.

Yeast cross

Bloom et al. (2013) presented data from a cross of a labora-
tory strain and a wine strain of yeast. They sequenced the
founder strains and 1008 genetically distinct haploid descend-
ants (segregants) of the cross of the two strains. This allowed
Bloom et al. (2013) to infer from which founder each allele
had been inherited. We inferred IBD sharing proportions for
each pair of haploid segregants by calculating the probability
that a randomly chosen variant was inherited from the same
founder. The phenotype data are final colony size for each
segregant on 46 different growth media. Bloom et al. (2013)
estimated the broad sense heritability H2 by analyzing biolog-
ical replicates.

Inference of heritability components: We fitted the follow-
ing model to each phenotype Y,

Y � N
�
m; v1K1 þ v2K2 þ s2I

�
; (28)

where K1 and K2 are as defined in Equation 25 and are
calculated from IBD sharing between segregants. We used
the average information algorithm (Gilmour et al. 1995) as
implemented in GCTA (Yang et al. 2011) to find the re-
stricted maximum-likelihood estimates of the narrow sense
heritability, h2 = v1/Var(Y), and the proportion of pheno-
typic variance from pairwise interactions, h22 ¼ v2=VarðYÞ:
Bloom et al. (2013) estimate the broad sense heritability,
H2, from analyzing biological replicates, allowing us to take
advantage of the fact that

Xn
t¼3

vt
VarðYÞ ¼ H2 2

�
h2 þ h22

�
(29)

to estimate
Pn

t¼3vt=VarðYÞ; which we define to be h2. : This
is the component of the broad sense heritability that origi-
nates exclusively in interactions involving three or more loci.

The standard error of the estimate of h2. is estimated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE
� bh2�2 þ SE

� bh22�2 þ SE
�cH2

�2r
; where bh2 and bh22 are our

maximum-likelihood estimates, and cH2 is from Bloom et al.
(2013).

Simulation of epistatic traits from yeast data: To test
inference of h2; h22; and h2. ; we simulated 500 phenotypes
from the genotypes. The R code used to simulate the phe-
notypes is in File S3. For each phenotype, 50 causal var-
iants were sampled independently and at random from
across the genome. All 50 causal variants were given addi-
tive effects, and all pairs were given interaction effects; 10
of the 50 causal variants were chosen at random to have

third-order interactions with each other; and 8 of these
were chosen at random to have fourth-order interactions
with each other. The effects were drawn from normal dis-
tributions scaled so that h2 = 0.4, h22 ¼ 0:3; and h2. ¼ 0:2;
with the higher-order variance equally divided between
third- and fourth-order interactions. Gaussian error was
added so that H2 = 0.9.

Search for third-order interactions: To restrict ourselves to
traits that were likely to harbor third-order interactions, we
searched for interactions only in those traits whose esti-
mated variance from third-order interactions was more than
twice the estimated standard error. The R code used to do
this is in File S4.

Phenotypic variance differs conditional on the genotype
at a locus involved in an interaction. This has been
exploited to reduce the multiple-testing burden when
searching for pairwise interactions (Nelson et al. 2013),
a burden that is an order of magnitude worse when search-
ing for third-order interactions. To find candidate loci for
third-order interactions, we performed a genome-wide scan
for variance-controlling loci for each trait, using the
Brown–Forsythe test to assess evidence for an effect of
the locus on phenotypic variance. To reduce correlation
between tests, we selected the locus with the smallest
P-value in a sliding window of 300 SNPs. We adjusted
these P-values for multiple comparisons, using the Benjamini–
Hochberg method, selecting those loci with an adjusted
P-value ,0.05.

We added the variance-controlling loci to the loci found
to have significant marginal effects by Bloom et al. (2013). If
a pair of loci from this list had a correlation of .0.7, we re-
moved one of the pair. We performed regressions on each com-
bination of three loci from this list, where we fitted the full
model including all interaction effects. P-values for each effect
were calculated by ANOVA. We selected only those third-order
interactions with a Bonferroni-corrected P-value ,0.05.

Results

Simulations

Pairwise interaction variance: We simulated 5000 individ-
uals from founder populations with varying degrees of
kinship as described in Materials and Methods. We simulated
500 phenotypes for each population, where each phenotype
had the same variance components: additive variance v1 =
0.4 and pairwise interaction variance v2 = 0.2. Gaussian
error was added with variance 0.4. These variance compo-
nents were chosen to test inference for a relatively small
amount of epistatic variance and a relatively large amount
of noise.

Figure 2A shows that the mean estimate is close to the
true value for each population; the mean estimate across the
four populations was 0.204, indicating the estimation was
unbiased. Figure 2B shows that the standard deviations of
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the simulation estimates scale in proportion to 1/K0—. It
may therefore be preferable to use a smaller sample from
a more strongly bottlenecked population than a larger sam-
ple from a less strongly bottlenecked population.

Third-order interaction variance: To explore our ability to
fit higher-order epistatic variance components, 200 addi-
tional phenotypes were simulated for each population,
including third-order as well as pairwise interactions (v1 =
0.4, v2 = 0.2, v3 = 0.2). The estimation of the variance from
third-order interactions was unbiased, with a mean estimate
of 0.204 across the populations with K0 = 1/120, 1/60, and
1/30. There was not enough information to fit the model in
the population with K0 = 1/240.

The standard deviation for the third-order interaction
variance was at least twice as large as the standard deviation
for the pairwise interaction variance across the populations
(Figure 3). Even for the most strongly bottlenecked popula-
tion, the standard error for the third-order interaction vari-
ance is nearly 15% of the phenotypic variance, comparable
to the size of the variance component.

Ignoring epistasis biases additive variance estimates: To
investigate any possible bias in the estimation of narrow
sense heritability that may arise from ignoring epistasis, we
fitted models with only additive variance components to the
simulation data used in Figure 2. We found that the bias did
not depend on the mean kinship of the population (Table
S3).

We simulated additional phenotypes with varying
amounts of epistasis (v2 = 0.1, 0.2, 0.3, 0.4) for the popu-
lation with K0 = 1/240. The amount of bias was propor-
tional to the amount of epistatic variance; the additive
variance estimates were inflated by �6% of v2 (Table S4).

Ignoring epistasis resulted in inaccurate standard error
estimates. Figure 4 shows that even when only 10% of the
phenotypic variance is epistatic, the standard error of the

additive variance estimated from simulations is.15% larger
than the standard error estimated by GCTA.

Approximate analytic standard error

The amount of information a sample contains about the
epistatic variance of a trait depends on the distribution of
kinship in that sample. To better understand how the
standard error of the estimator of v2 depends on the
moments of the kinship distribution, we extend the analogy
of fitting a quadratic from Figure 1 to derive an approximate
analytic expression for the standard error.

If we define Rs,t = 2(Ks,t 2 K0)/(12 K0), then the process
of fitting the covariance matrix implied by (20) can be lik-
ened to fitting a polynomial in R. Fitting the additive vari-
ance, v1, and the variance from pairwise interactions, v2, is
similar to fitting to all pairs s, t the regression model

Ss;t � N
�
v1Rs;t þ v2R2s;t;s

2
�
; (30)

where Ss;t ¼ ðYs 2E½Y �ÞðYt 2E½Y �Þ is the observed similarity
between s and t. If s and t are independent and Y has var-
iance 1, then s2 = 1.

In File S1, we derive the asymptotic variance of themaximum-
likelihood estimator of v2 in this model. If mc is the cth
central moment of the distribution of R, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð bv2Þq

$h2ð1=2Þ
�
m42

m2
3

VarðRÞ
	2ð1=2Þ

; (31)

where h is the number of pairs, and where we take s to be 1.
Testing this using the simulation results, we find the

standard deviation of the simulation estimates for K0 = 1/
30, 1/60 to be very close to (31) calculated from the sample
kinship statistics, with the error increasing above (31) for
smaller K0—see Figure S1.

The information about the epistatic variance in a sample
increases with the fourth central moment of the kinship

Figure 2 Simulation results for
the estimation of the variance
from pairwise interactions. Phe-
notypes were simulated 500
times for four simulated popula-
tions with different mean kin-
ship, each composed of 5000
individuals. (A) Boxplots of the
simulation estimates of the vari-
ance from pairwise interactions
for the four populations. The
dashed red line indicates the true
variance from pairwise interac-
tions, 0.2. (B) The standard devi-
ation of the simulation estimates
of the variance from pairwise
interactions plotted against the
mean kinship of the sample.
The points marked on the x-axis

correspond to estimates of the mean kinship in Saguenay (QC, Canada) (Gauvin et al. 2013), the Amish (Khoury et al. 1987), and the Hutterites (Abney
et al. 2000). The curve drawn is proportional to 1/K0.
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distribution, which is the unnormalized kurtosis. The
samples with heavy tails in their kinship distributions are
therefore likely to have the largest kurtosis and the most
information about epistatic variance.

Yeast cross

We analyzed data, further described in Materials and Methods,
from a cross of a laboratory strain (BY) and a wine strain (RM)
of yeast (Bloom et al. 2013). The data included 46 growth
phenotypes measured for 1008 haploids dissected from tetrads
produced by crossing the two founder strains.

Variance components: To establish that our methods worked
for these data, we first simulated epistatic traits from the genetic
data, as detailed in Materials and Methods. The variance com-
ponent estimates from the simulated traits were unbiased and
the standard error estimates were accurate (Table S2).

Next we applied our approach to partition the phenotypic
variance of the 46 growth phenotypes into additive, pair-
wise, and higher-order genetic components, plus a residual.
Figure 5 visualizes this partitioning. The numerical results of
the analysis are in Table S1 and File S5. Five phenotypes
had estimates of the variance from higher-order interactions
.3 standard errors from zero. The mean proportions of
phenotypic variance explained by pairwise interactions ðh22Þ
and higher-order interactions ðh2. Þ were 0.10 and 0.14,
respectively.

Third-order interactions: To further explore the contribu-
tions of higher-order interactions, we searched directly for

third-order interactions as described inMaterials and Methods.
Table 1 shows the only two third-order interactions found
to be significant at the 0.05 level after Bonferroni correc-
tion. For each marker in the interaction for the formamide
phenotype, there is a corresponding marker in near perfect
linkage in the interaction for the indoleacetic acid pheno-
type. This suggests that the interaction is shared between
the two phenotypes, and it may explain some of their co-
variance. To estimate how much of the covariance this
shared third-order interaction explains, we calculated the
fitted values for the full interaction models, including the
additive and pairwise effects, for each trait separately, and
the covariance of these fitted values. The covariance of the
fitted values explains 59% of the covariance between the
phenotypes.

Discussion

Theory

We used an approach based on allelic indicator variables to
calculate the covariance between individuals in a founder
population as a function of their kinship, the mean kinship in
the population, and the variance components of the pheno-
type. This extends the classic result for outbred populations
(Kempthorne 1954) to founder populations. Equations 20
and 23 together determine the phenotypic covariance ma-
trix, the parameters of which can be estimated by (re-
stricted) maximum likelihood by assuming the phenotype
follows a particular distribution. These parameters, along
with the central moments of the inbreeding distribution,
determine the proportion of population variance explained

Figure 4 The effect of ignoring epistasis on standard error estimates. Additive-
only models were fitted to phenotypes with v1 = 0.4 and v2 ranging from 0.1
to 0.4. The standard deviations of the estimates of the additive variance,
denoted simulation error, were calculated. Ratios of these to the standard error
estimates given by GCTA are plotted on the y-axis.

Figure 3 Standard deviations for variance component estimates in a sim-
ulation that includes third-order interactions, plotted as in Figure 2B. The
standard deviations of the estimate for the third-order component are at
least twice those of the estimate for the pairwise component.
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by different orders of genetic interaction in a founder pop-
ulation. The relationship between (20) and Figure 1 can be
seen by writing the phenotypic covariance as a polynomial
function of R = 2(K 2 K0)/(1 2 K0), the x-axis of Figure 1.

The correlation for the epistatic trait in Figure 1 as a function
of R is

v1Rþ v2R2; (32)

where v1 is the additive variance in the population and is
0.4.

The model applies exactly only to populations that have
been randomly mating since being founded; however, the
allelic indicator variable approach could be extended to non-
random-mating populations by considering models for non-
random inheritance of alleles.

Extending the method to include linkage disequilibrium
would be possible but would rely on knowing the linkage
disequilibrium between unknown causal alleles. We note that
identity-by-descent-based methods such as this are biased only
by linkage disequilibrium between causal alleles, whereas
identity-by-state (IBS)-based methods, such as in Yang et al.
(2010), are also biased by varying linkage disequilibrium be-
tween marker alleles and causal alleles (Speed et al. 2012).

We have derived the individual- and population-level
variance decomposition for two interacting loci with dom-
inance in a founder population (see File S1 for details).
Finite population history induces dependence between alle-
lic states, both within and between individuals. This prohib-
its a simple and exact expression for the covariance between
relatives for the additional variance components introduced
by dominance. However, except for the most strongly bot-
tlenecked populations, using the identity states imple-
mented by Abney et al. (2000) will probably give a good
approximation.

We note that an alternative theoretical approach would
be to extend the frequency-weighted IBS estimator employed
by Yang et al. (2010) to epistatic variance components. The
IBS-based method of estimating the additive variance was
compared to an IBD-based approach by Zaitlen et al. (2013),
using Icelandic data. They found the IBS-based approach
underestimated the additive variance relative to the IBD-based
approach by a considerable amount. The same underestima-
tion would be expected to apply to an IBS-based epistatic
variance estimator, because it originates from incomplete link-
age disequilibrium between markers and causal variants. The
underestimation could be even more severe for epistatic vari-
ance components because, for the variance from an interaction
to be properly detected, all of the loci involved in the interac-
tion would have to be in strong linkage with the markers. We
therefore argue for the IBD-based approach, which takes ad-
vantage of the long shared segments present in a founder pop-
ulation to reduce the bias in the estimates.

Simulations and sampling

The simulations (Figure 2) suggest that with a sample of
5000 Hutterites, it would be possible to estimate the vari-
ance from pairwise interactions with a standard error of
,5% of the phenotypic variance. The standard error scales
in proportion to the inverse of the mean kinship. This

Figure 5 Variance components inferred for 46 different growth traits in the
yeast cross. The lengths of the bars give the estimated proportions of phe-
notypic variance explained by the components: additive (black), pairwise
interactions (yellow), and interactions of order higher than pairwise (blue).
Z2 gives the estimate of the variance from pairwise interactions divided by the
estimated standard error for the trait. Z. gives the estimate of the variance
from third-order interactions divided by the estimated standard error.
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explains why one cannot simply use a very large, random
sample from an outbred population to fit the epistatic vari-
ance, as the standard error tends to infinity as K0 tends to
zero.

More recently founded populations that have expanded
rapidly should be preferred to older populations, due to the
reduced amount of recombination since the founding, which
results in more kinship variation.

Including close relatives would increase the precision of
the estimator. However, the similarity between close rela-
tives could be due to shared environment as well as shared
genetics. The confounding with shared environment could
be ameliorated by fitting additional variance components for
different relative classes. However, if shared environmental
effects extend beyond first-degree relatives, the model may
become excessively complex. Dominance could also cause
similarity between siblings above what is expected by
additive effects, leading to overestimation of the epistatic
variance. For traits that are known to have little dominance
variance or shared environmental effects, including close
relatives would increase precision without causing bias.
Otherwise, very large samples of close relatives would be
required to disentangle epistasis, dominance, and shared
environment.

Power calculations can be aided by the approximate
analytic formula for the standard error of the variance from
pairwise interactions. This acts like a lower bound for the
standard error in the simulated data—see Figure S1. The
moments of the kinship distribution can be calculated from
a small sample, and, from these, an estimate of the standard
error can be calculated for different sample sizes. If this is
too high to give a useful estimate, then the sample is prob-
ably not appropriate for estimating the variance from pair-
wise interactions.

Direct estimation of the variance from third-order inter-
actions may be beyond the limits of possibility for current
human samples. Even with 5000 Hutterites, the standard
error is likely to be at least 15% of the phenotypic variance
(Figure 3). Unless this component is a large part of the
phenotypic variance, it is unlikely that any current samples
of human founder populations would provide the power to
detect that the component is nonzero.

Founder populations have recently been used to estimate
the narrow sense heritability (Browning and Browning
2013; Zaitlen et al. 2013). We found in simulations that ig-
noring epistasis leads to a slight overestimation of the addi-
tive variance in proportion to the amount of epistatic variance
(Table S3 and Table S4), as well as underestimation of the

standard error (Figure 4). This could cause improper calibra-
tion of statistical tests. It is possible that these problems could
be reduced by restricting to a smaller range of relatedness,
but this would increase the standard error.

Yeast cross

Bloom et al. (2013) found evidence for epistatic variance in
the difference between H2 and h2. In the yeast cross analysis
(Figure 5 and Table S1) we have gone further by partitioning
the epistatic variance into components arising from pairwise
interactions and from third- and higher-order interactions.
While the individual estimates of the higher-order compo-
nents are not very precise, we provide strong evidence that
the variance from pairwise interactions does not in general
explain all of the difference between H2 and h2. It is im-
possible to draw precise conclusions about the relative
size of h22 and h2. for individual traits, because the method
of estimation results in a negative correlation between the
estimates. A larger sample from a similarly designed ex-
periment could overcome some of these difficulties and
enable direct estimation of the variance from third-order
interactions.

The relatively small amount of variance explained by the
only third-order interaction found (Table 1) suggests that
there are many more third- and higher-order interactions,
each explaining a small amount of the variance. While
a small number of third-order and higher-order interac-
tions have previously been identified (Pettersson et al.
2011; Taylor and Ehrenreich 2014), this is the first such
pleiotropic interaction to be discovered, as far as we are
aware.

The statistical importance of pairwise and higher-order
interactions in the yeast cross cannot be readily generalized
to natural populations. For some interaction models, the
proportion of the variance that is epistatic rather than
additive is greatest for interacting alleles at intermediate
frequencies (Hill et al. 2008; Mackay 2014). Therefore, if
interactions occur between rarer alleles in natural popula-
tions, the proportion of the variance that is epistatic could be
reduced.

The large amount of epistatic variance in the cross could
be explained by the breakdown of coadapted variant
combinations. The cross is between a laboratory strain and
a wine strain of yeast, which have diverged under different
selection pressures (Liti et al. 2009). Given that hybrid incom-
patibilities were observed between experimentally evolved
strains (Anderson et al. 2010), it is plausible that these strains
have accumulated them.

Table 1 Third-order interactions

Trait H2 exp (%) h2
> exp (%) Marker-1 pos (Chr) Marker-2 pos (Chr) Marker-3 pos (Chr) P-value Bonferroni P-value

Formamide 2.2 11 997,621 (4) 101,490 (8) 487,251 (14) 1.6e-7 0.0012
Indoleacetic acid 1.4 5 974,039 (4) 101,016 (8) 470,846 (14) 5.9e-6 0.043

Two third-order interactions were found to be significant at the 0.05 level after Bonferroni correction. The interactions are for different traits but are between the same
linkage blocks. Exp, explained; pos, position; Chr, chromosome.
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The large amount of epistatic variance arising from third-
and higher-order interactions in particular could be explained
by the buildup of hybrid incompatibilities. Incompatibilities
between three or more loci are theoretically expected to be
more common than incompatibilities between two loci,
because a greater proportion of evolutionary paths to higher-
order incompatibilities do not pass through a less fit in-
termediary (Orr 1995). Figure 6 shows that the fitness profile
of the discovered third-order interaction is consistent with the
interaction being the result of an evolved Dobzhansky–Muller-
like incompatibility. Only one of the eight possible three-
locus genotypes results in a sizeable reduction in fitness.
Two-thirds of the evolutionary paths from a common an-
cestor to the two yeast strains would have avoided this less
fit intermediary and would therefore have been allowed by
selection (Orr 1995).

Conclusion

These methods can be used to investigate the role of pairwise
and higher-order epistasis in model organisms by applying them
to appropriate crosses. In particular, by measuring the variance
that higher-order interactions contribute to crosses between
diverged populations, thesemethods could be used to investigate
the role of higher-order interactions in hybrid incompatibilities.

We anticipate that it will soon be possible to apply these
methods to precisely estimate the variance from pairwise
interactions in human founder populations. These estimates,
combined with estimates of the additive and dominant
components of the variance, will help in answering where
the missing heritability is, in searching for causal loci, in
building prediction models, and in testing evolutionary
models of traits.
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File S1

Detailed Theory

Covariance Between Individuals in a Founder PopulaƟon due to Arbirary Epistasis

We model each diploid individual t's phenotype as Yt = Gt + ϵt, where Gt is the effect of the genotype of

individual t, and ϵt is the residual error arising from noise and the environment, with E[ϵt] = 0 ∀t. We do not

model genotype-by-environment interacƟons here, so Cov(Gt, ϵt) = 0 ∀t.

We modelGt to accommodate any possible interacƟon effects between loci and to give an orthogonal parƟ-

Ɵoning of the geneƟc variance. The model allows every subset of the causal loci L to interact in an arbitrary way

to produce an effect, XtL, on the phenotype of individual t. Within each subset L, each possible sequence of

alleles across the loci, s ∈ SL, can have a different effect on the phenotype, βLs. Therefore, the model is general

for any genotype-phenotype map without dominance effects.

For a set of causal lociN , which we assume are in linkage equilibrium,

Gt =
∑
L⊆N

XtL; XtL =
∑
s∈SL

βLs

∏
l∈L

xtls[l]; (1)

whereX∅ is the phenotypic mean; SL = {A, T,G,C}|L| is the set of possible sequences of alleles across the loci

in L; s[l] is the allelic state of the locus l in the sequence s; and

xtlA = gptlA + gmtlA − 2flA, (2)

where gptlA is an indicator variable for the presence of alleleA at locus l on the paternally inherited chromosome

of individual t, gmtlA indicates the equivalent on the maternally inherited chromosome, and flA is the frequency

of the A allele at locus l.
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Because E[xtlk] = 0 ∀t, l, k and the loci are in linkage equilibrium, Cov(XtL, XtL′) = 0 for L ̸= L′. Proof:

without loss of generality, ∃ d ∈ L\L′, implying

Cov(XtL, XtL′) =
∑
s∈SL

∑
s′∈SL′

βLsβL′s′ (3)

E

 ∏
l∈L\{d}

xtls[l]

∏
l′∈L′

xtl′s′[l′]

E[xtds[d]]

= 0, as E[xtds[d]] = 0. (4)

The covariance between arbitrary relaƟves t and u with kinship coefficientKt,u is therefore

Cov(Gt, Gu) =
∑
L⊆N

Cov(XtL, XuL); (5)

=
∑
s∈SL

∑
s′∈SL

βLsβLs′

∏
l∈L

E[xtls[l]xuls′[l]], (6)

due to linkage equilibrium between the loci.

E[xtls[l]xuls′[l]] =
∑

i=m,p

∑
j=m,p

Cov(gitls[l], g
j
uls′[l]). (7)

Cov(gitls[l], g
j
uls′[l]) = E[gitls[l]g

j
uls′[l]]− fls[l]fls′[l]; (8)

=

(
Ki,j

t,u −K0

1−K0

)
fls[l](1− fls[l]), (9)

when s[l] = s′[l], from the genotypic covariance in a founder populaƟon, which is derived in the main text - see

(7) and (11).

When s[l] ̸= s′[l], assuming no mutaƟon, E[gitls[l]g
j
uls′[l]] is only non-zero when the haplotypes are not IBD,

because the alleles are different. Given that the haplotypes are not IBD, E[gitls[l]g
j
uls′[l]] is the probability that t

inherits allele s[l] from one of the A ancestral haplotypes and u inherits allele s′[l] from one of the other A − 1

ancestral haplotypes. Therefore, if cls′[l] is the number of ancestral haplotypes carrying the s′[l] allele,

E[gitls[l]g
j
uls′[l]] = (1−Ki,j

t,u)fls[l]
cls′[l]

A− 1
=

(1−Ki,j
t,u)

1−K0
fls[l]fls′[l]. (10)

A.I. Young and R. Durbin
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Therefore,

Cov(gitls[l], g
j
uls′[l]) = −fls[l]fls′[l]

(
Ki,j

t,u −K0

1−K0

)
. (11)

Therefore,

E[xtls[l]xuls′[l]] = 2

(
Kt,u −K0

1−K0

)
ξl:s[l],s′[l], (12)

where ξl:s[l],s′[l] = −2fls[l]fls′[l] is the covariance between xtls[l] and xtls′[l] for the disƟnct alleles s[l] and s′[l] in

an outbred populaƟonwith the same allele frequencies. ξl:s[l],s[l] = 2fls[l](1−fls[l]) is the variance of xtls[l] in an

outbred populaƟon. The outbred allele count variances and covariances are equivalent to those for a mulƟnomial

distribuƟon with two trials and with event probabiliƟes equal to the allele frequencies at the locus.

Therefore,

Cov(XtL, XtL′) = 2|L|
(
Kt,u −K0

1−K0

)|L|

ξL, (13)

where ξL is the variance ofXL in an outbred populaƟon, and is equal to

∑
s∈SL

∑
s′∈SL

βLsβLs′

∏
l∈L

ξl:s[l],s′[l]. (14)

Therefore,

Cov(Gt, Gu) =

|N |∑
τ=1

2τ
(
Kt,u −K0

1−K0

)τ

vτ , (15)

where vτ is the variance from geneƟc interacƟons between τ loci in an outbred populaƟon, and is the sum of ξL

over all subsets L of size τ .

Using the fact thatKtt = (1 + Ft)/2, where Ft is the inbreeding coefficient of individual t, and seƫng t = u

gives

Var(Gt) =

|N |∑
τ=1

(
1 +

Ft −K0

1−K0

)τ

vτ . (16)

The populaƟon variance is derived by the law of total variance,

V ar(G) = Et[Var(Gt)] + Vart(E[Gt]). (17)

Because there is no dominance, the phenotypic mean does not change with inbreeding. In a random-maƟng
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populaƟon, the mean inbreeding coefficient is equal to the mean kinship coefficient: Et(Ft) = K0. Therefore,

Var(G) = Et[Var(Gt)] = v1 +

(
1 +

Var(Ft)

(1−K0)2

)
v2+ (18)

|N |∑
τ=3

(
1 +

(
τ

2

)
Var(Ft)

(1−K0)2
+

τ∑
i=3

(
τ

i

)
E[(Ft −K0)

i]

(1−K0)i

)
vτ .

Dominance Variance in a Founder PopulaƟon

We consider a phenotype whose geneƟc contribuƟon is determined by two bi-allelic loci in linkage equilibrium

that have non-zero dominance deviaƟons as well as an interacƟon between their addiƟve effects. The phenotype

of an individual s, Ys, is the sum of the addiƟve contribuƟons of the loci, as, the interacƟon between the addiƟve

effects, (a× a)s, and the sum of the dominance deviaƟons of the loci ds, giving

Ys = as + (a× a)s + ds + ϵs; where ds = δ1γs1mγs1p + δ2γs2mγs2p, (19)

and γsim = gmsi −fi is the mean normalised indicator variable for the presence of the minor allele at locus i, with

frequency fi, on the maternal chromosome, and γsip = gpsi − fi is the corresponding variable for the paternal

chromosome.

The addiƟve and addiƟve-by-addiƟve components are orthogonal, as shown in the main text. The addiƟve-

by-addiƟve and the dominance components are orthogonal, because the dominance deviaƟon of each locus is

uncorrelated with the addiƟve effect of the other locus. Inbreeding, however, induces a correlaƟon between the

addiƟve effect and dominance deviaƟon at a locus, implying that

Var(Ys) = Var(as) + Var((a× a)s) + Var(ds) + Cov(as, ds). (20)

The addiƟve and addiƟve-by-addiƟve variance components are as derived in the main text and supplement.

Var(ds) is derived by applying the lawof total variance to dsi = δiγsimγsip, the contribuƟon of locus i ∈ {1, 2}

to ds.

Var(dsi) = EIsi [Var(dsi|Isi)] + VarIsi(E[dsi|Isi]), (21)

where Isi is the indicator variable for whether individual s is inbred or not at locus i. The condiƟonal expectaƟon
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of dsi depends on

E[γsimγsip|Isi] = Isi(fi(1− fi)− E[γsimγsip|Isi = 0]) + E[γsimγsip|Isi = 0]. (22)

Using the expression for the genotypic covariance in a founder populaƟon derived in the main text,

E[γsimγsip|Isi = 0] =
−K0

1−K0
fi(1− fi), (23)

whereK0 is the mean inbreeding (and kinship) coefficient. Therefore,

fi(1− fi)− E[γsimγsip|Isi = 0] =
fi(1− fi)

1−K0
, (24)

and therefore

V arIsi(E[dsi|Isi]) =
Fs(1− Fs)

(1−K0)2
µ2
hi, (25)

where µhi = δifi(1− fi) is the inbreeding depression at locus i.

We now calculate EIsi [Var(dsi|Isi)]. First, in the inbred case,

V ar(dsi|Isi = 1) = δ2i fi(1− fi)(1− 2fi)
2 = vhi, (26)

which is the dominance variance at locus i in the homozygous populaƟon. When there is no inbreeding at locus i,

V ar(dsi|Isi = 0) = δ2i (E[γ2
simγ2

sip|Isi = 0]− E[γsimγsip|Isi = 0]2) (27)

By expanding the squares in γ2
simγ2

sip and using the result for the genotypic covariance when there is no IBD

sharing, it can be shown that

E[γ2
simγ2

sip|Isi = 0] = f2
i (1− fi)

2 − K0

1−K0
(1− 2fi)

2fi(1− fi). (28)

Using the result for genotypic covariance when there is no IBD again gives

E[γsimγsip|Isi = 0]2 =
K2

0

(1−K0)2
f2
i (1− f)2. (29)

A.I. Young and R. Durbin
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Therefore,

V ar(dsi|Isi = 0) = µ2
hi

(
1− K2

0

(1−K0)2
− K0

1−K0

(1− 2fi)
2

fi(1− fi)

)
= vδi , (30)

which we have defined to be vδi.

Combining the results gives

V ar(dsi) = (1− Fs)vδi + Fsvhi +
Fs(1− Fs)

(1−K0)2
µ2
hi, (31)

where Fs is the inbreeding coefficient of individual s. Summing across the loci gives

V ar(ds) = (1− Fs)vδ + Fsvh +
Fs(1− Fs)

(1−K0)2
SSµh

, (32)

where vδ = vδ1 + vδ2, vh = vh1 + vh2, and SSµh
= µ2

h1 +µ2
h2 is the sum of the squared inbreeding depressions

at the loci.

In a founder populaƟon, the maternal and paternal alleles are not independent, which implies that

Cov(γs1m, γs1mγs1p) = E[γ2
s1mγs1p] ̸= 0. (33)

This implies that there is covariance between an individual's addiƟve effect and dominance deviaƟon, depend-

ing on their inbreeding coefficient. The above expectaƟon can be evaluated by condiƟoning on whether or not

individual s is inbred or not, giving

Cov(γs1m, γs1mγs1p) = f1(1− f1)(1− 2f1)
Fs −K0

1−K0
. (34)

Summing the contribuƟons of the four possible covariances within the locus and summing across loci gives

Cov(as, ds) = 4
Fs −K0

1−K0
Ca,d, (35)

where Ca,d =
∑2

i=1 βiδifi(1− fi)(1− 2fi) parameterises the strength of the covariance between addiƟve and

dominance effects.

A.I. Young and R. Durbin



8SI

Combining these results with those from the main text:

Var(Ys) =
2∑

τ=1

(
1 +

Ft −K0

1−K0

)τ

vτ + (1− Fs)vδ+ (36)

4
Fs −K0

1−K0
Ca,d + Fsvh +

Fs(1− Fs)

(1−K0)2
SSµh

+ σ2
ϵ ; (37)

where v1 and v2 are as defined in the main text. vδ is the covariance between two individuals' dominance devi-

aƟons condiƟonal on both alleles of one individual being IBD to disƟnct alleles of the other individual, implying

that neither individual is inbred. vδ differs slightly from the dominance variance in an infinite, outbred popula-

Ɵon, where vδ1 = µ2
h1. Similarly, vδ ≈ SSµh

. These difference will be very small apart from for populaƟons

descending from a very small number of founders (largeK0), such as in certain cross designs.

The variance in the populaƟon is, by the Law of Total Variance,

Var(Y ) = Es[Var(Ys)] + Vars(E[Ys]). (38)

Because the mean inbreeding coefficient isK0 in an outbred populaƟon,

Es[Var(Ys)] = v1 +

(
1 +

Var(F )

(1−K0)2

)
v2 + (1−K0)vδ +K0vh +

K0(1−K0)− Var(F )

(1−K0)2
SSµh

+ σ2
ϵ . (39)

The expectaƟon of Ys depends only on the expectaƟon of ds, the others being zero.

E[ds1] =
Fs

1−K0
µh1 + C, (40)

where C is a constant that does not depend on s. Therefore,

E[ds] =
Fs

1−K0
µh + 2C, (41)

where µh = µh1 + µh2 is the inbreeding depression of the phenotype. Therefore

Vars(E[Ys]) =
Var(F )

(1−K0)2
µ2
h (42)
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Therefore,

Var(Y ) = v1 +

(
1 +

Var(F )

(1−K0)2

)
v2 + (1−K0)vδ +K0vh +

K0

(1−K0)
SSµh

+
Var(F )

(1−K0)2
(
µ2
h − SSµh

)
+ σ2

ϵ .

(43)

AsymptoƟc Variance of Fiƫng a QuadraƟc

We extend the analogy of fiƫng a quadraƟc to derive an analyƟc approximaƟon of the standard error of the esƟ-

mator of the variance from pairwise interacƟons. We imagine fiƫng the off diagonal elements of the covariance

matrix as a quadraƟc funcƟon of Rs,t = 2(Ks,t −K0)/(1−K0), with normal error:

Σst ∼ N(v1Rst + v2R
2
st, σ

2), (44)

for all η = N(N − 1)/2 pairs st. This assumes that the off diagonal elements of the covariance matrix are

independent, which may be problemaƟc for samples which contain large sets of closely related individuals. The

homoscedasƟcity assumpƟon could also be problemaƟc when there are many levels of relatedness present in the

sample.

We invert the informaƟon matrix to obtain the asymptoƟc error of the maximum likelihood esƟmator of v2.

We note that number of pairs, η, scales quadraƟcally with the sample size, jusƟfying the use of the asymptoƟc

error for even moderate sample sizes.

The log likelihood is

l =
η

2
log

(
σ2

2π

)
−

η∑
i=1

(Σi − v1Ri − v2R
2
i )

2

σ2
(45)

If we define ei = Σi − v1Ri − v2R
2
i to be the ith residual, then the matrix of the second derivaƟves of the

log-likelihood is

H = −σ−2


SR2 SR3 σ−2

∑η
i=1 eiRi

SR3 SR4 σ−2
∑η

i=1 eiR
2
i

σ−2
∑η

i=1 eiRi σ−2
∑η

i=1 eiR
2
i −2σ−4

∑η
i=1 e

2
i

 , (46)

where SRc =
∑η

i=1 R
c
i .

We now take the negaƟve expectaƟon of H to obtain the Fisher informaƟon matrix. Because Ri = 2(Ki −

K0)/(1−K0), E[R] = 0. Therefore E[SRc ] = ηµc, where µc is the cth central moment of the distribuƟon ofR.
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Therefore, the informaƟon matrix is

I = ησ−2


Var(R) µ3 0

µ3 µ4 0

0 0 σ−2

 . (47)

Using eliminaƟon to invert the matrix gives

I−1 =
σ2

η


1

Var(R) +
µ2
3

µ4−µ3/Var(R)
−µ3

Var(R)µ4−µ2
3

0

−µ3

Var(R)µ4−µ2
3

(
µ4 − µ2

3

Var(R)

)−1

0

0 0 σ2

 (48)

This implies that the asymptoƟc standard error of the esƟmate of the variance from pairwise interacƟons is

σ√
η(µ4 − µ2

3/Var(R))
(49)

If the phenotype has been normalised to have variance one, then σ should be approximately 1.
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File S2

Founder PopulaƟon SimulaƟon Script

File S2 is available for download as an R script at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.170795/-/DC1
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File S3

Yeast SimulaƟons Script

File S3 is available for download as an R script at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.170795/-/DC1
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File S4

Third Order InteracƟon Search Script

File S4 is available for download as an R script at

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.170795/-/DC1
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File S5

Numerical Results of Yeast Heritability Component Inference

File S5 is available for download as .csv file at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.170795/-/DC1
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Figure S1 For the four simulated populaƟons, the approximate analyƟc standard error of the variance from
pairwise interacƟons is compared to the simulaƟon error, the standard deviaƟon of the esƟmates across
simulaƟons. The red line is the line of equality. The simulaƟon error approaches the analyƟc approximaƟon as
the mean kinship,K0, increases.
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Table S1: Numerical results of the yeast cross analysis

Trait h2 s.e. h2
2 s.e. Z2 h2

> s.e. Z> H2

Cadmium Chloride 0.83 0.03 0.00 0.04 0.00 0.50 0.05 2.81 0.96
Maltose 0.72 0.03 0.02 0.04 0.45 0.34 0.05 3.85 0.94

Tunicamycin 0.73 0.03 0.09 0.04 2.15 0.01 0.05 1.75 0.91
Zeocin 0.54 0.04 0.04 0.07 0.59 0.26 0.08 4.14 0.90

4-Hydroxybenzaldehyde 0.52 0.04 0.08 0.07 1.07 0.11 0.08 3.55 0.89
Lactose 0.62 0.04 0.09 0.06 1.57 0.04 0.07 2.69 0.89
YPD:4C 0.51 0.05 0.19 0.09 2.16 0.01 0.10 1.77 0.88

Lithium Chloride 0.77 0.03 0.11 0.04 2.74 0.00 0.05 0.00 0.87
Manganese Sulfate 0.42 0.04 0.32 0.08 4.08 0.00 0.09 1.48 0.87

4NQO 0.75 0.03 0.05 0.04 1.39 0.07 0.05 1.13 0.86
Neomycin 0.69 0.03 0.02 0.05 0.46 0.32 0.06 2.59 0.86

Cobalt Chloride 0.55 0.04 0.07 0.07 1.13 0.11 0.08 2.95 0.85
YPD:15C 0.47 0.04 0.06 0.07 0.79 0.22 0.08 3.78 0.84
Lactate 0.60 0.04 0.10 0.06 1.67 0.04 0.07 1.95 0.84

YPD:37C 0.63 0.04 0.09 0.06 1.64 0.04 0.07 1.64 0.83
SDS 0.52 0.05 0.10 0.08 1.31 0.09 0.10 1.98 0.81

IndoleaceƟc Acid 0.41 0.04 0.13 0.08 1.62 0.04 0.09 2.91 0.81
YNB 0.58 0.04 0.09 0.06 1.41 0.06 0.07 1.80 0.80

Paraquat 0.58 0.04 0.03 0.06 0.58 0.28 0.07 2.53 0.79
5-Fluorouracil 0.67 0.03 0.12 0.05 2.14 0.01 0.07 0.00 0.78

YNB:ph8 0.47 0.04 0.14 0.08 1.76 0.03 0.09 1.80 0.78
Copper 0.38 0.04 0.23 0.08 2.66 0.00 0.10 1.81 0.78

Trehalose 0.54 0.04 0.16 0.07 2.40 0.00 0.08 0.81 0.77
E6 Berbamine 0.53 0.04 0.16 0.07 2.36 0.00 0.08 0.90 0.77

YPD 0.60 0.04 0.08 0.06 1.38 0.07 0.07 1.07 0.76
Xylose 0.49 0.04 0.17 0.08 2.25 0.01 0.09 1.15 0.76

Formamide 0.38 0.05 0.18 0.08 2.20 0.01 0.10 2.14 0.76
Ethanol 0.49 0.04 0.17 0.08 2.26 0.01 0.09 0.93 0.75

Hydroxyurea 0.48 0.05 0.27 0.08 3.29 0.00 0.10 0.00 0.74
Cycloheximide 0.59 0.04 0.07 0.06 1.20 0.10 0.07 0.80 0.72

Congo red 0.61 0.04 0.03 0.06 0.47 0.32 0.07 1.03 0.71
Sorbitol 0.45 0.05 0.19 0.13 1.46 0.06 0.15 0.38 0.70

5-Fluorocytosine 0.54 0.04 0.10 0.07 1.44 0.06 0.09 0.67 0.70
Diamide 0.51 0.04 0.00 0.07 0.00 0.48 0.08 2.35 0.70

Menadione 0.43 0.04 0.10 0.08 1.34 0.07 0.09 1.34 0.65
Hydrogen Peroxide 0.51 0.05 0.12 0.09 1.29 0.09 0.11 0.00 0.63

Raffinose 0.47 0.05 0.04 0.11 0.40 0.35 0.13 0.91 0.63
Galactose 0.28 0.04 0.15 0.10 1.57 0.05 0.11 1.74 0.63
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Trait h2 s.e. h2
2 s.e. Z2 h2

> s.e. Z> H2

Hydroquinone 0.24 0.04 0.00 0.10 0.00 0.50 0.11 3.31 0.60
Magnesium Chloride 0.29 0.04 0.01 0.09 0.11 0.47 0.10 2.55 0.57

6-Azauracil 0.35 0.04 0.00 0.08 0.00 0.48 0.09 2.22 0.56
CisplaƟn 0.33 0.04 0.03 0.09 0.35 0.34 0.10 1.25 0.49

Calcium Chloride 0.32 0.04 0.13 0.09 1.39 0.07 0.11 0.20 0.47
Caffeine 0.25 0.04 0.18 0.10 1.91 0.01 0.11 0.11 0.44
Mannose 0.24 0.04 0.07 0.10 0.70 0.24 0.12 0.94 0.42
YNB:ph3 0.18 0.04 0.00 0.10 0.00 0.49 0.11 1.95 0.40

The table gives the esƟmates of the heritability components followed by their standard errors in the right
adjacent column. Z2 is the esƟmate of h2

2 divided by its esƟmated standard error; Z> is the esƟmate of h2
>

divided by its esƟmated standard error.

A.I. Young and R. Durbin
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Table S2: Results of inference on simulated phenotypes from the yeast geneƟc data

Mean (SD) EsƟmates Mean ŜE

h2 0.40 (0.05) 0.06
h2
2 0.30 (0.07) 0.07

h2
> 0.20 (0.09) 0.10

The columns are, from leŌ to right, the sample mean (standard deviaƟon) of the esƟmates, as well as the mean
of the standard error esƟmates, from 500 simulated phenotypes. True values are h2 = 0.4, h2

2 = 0.3, h2
> = 0.2,

with the variance from higher order interacƟons divided equally between third and forth order interacƟons.

A.I. Young and R. Durbin
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Table S3: Bias from epistasis when fiƫng an addiƟve model does not depend on mean kinship of sample

K0 1/240 1/120 1/60 1/30

v̂1 0.41 0.41 0.41 0.41

The mean esƟmates of the addiƟve variance, v1, for populaƟons with different mean kinship,K0. The true value
of v1 is 0.4. The variance from pairwise interacƟons, v2, is 0.2, leading to a slight upward bias in the esƟmates of
v1. The bias does not depend on the mean kinship for these populaƟons.

A.I. Young and R. Durbin



20SI

Table S4: Bias from epistasis when fiƫng an addiƟve model is proporƟonal to the amount of epistaƟc variance

v2 0.1 0.2 0.3 0.4

100(v̂1 − v1)/v2 6.2 5.9 5.3 5.8

The bias in the addiƟve variance esƟmate, v̂1, when fiƫng an addiƟve only model, as a percentage of the
pairwise epistaƟc variance, v2. The proporƟon of the epistaƟc variance which is detected as addiƟve variance is
approximately constant over a range of epistaƟc variance, indicaƟng a linear increase in bias with epistaƟc
variance.

A.I. Young and R. Durbin


