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Abstract: Colon carcinoma is one of the leading causes of cancer-related death in both men and
women. Automatic colorectal polyp segmentation and detection in colonoscopy videos help endo-
scopists to identify colorectal disease more easily, making it a promising method to prevent colon
cancer. In this study, we developed a fully automated pixel-wise polyp segmentation model named
A-DenseUNet. The proposed architecture adapts different datasets, adjusting for the unknown depth
of the network by sharing multiscale encoding information to the different levels of the decoder
side. We also used multiple dilated convolutions with various atrous rates to observe a large field
of view without increasing the computational cost and prevent loss of spatial information, which
would cause dimensionality reduction. We utilized an attention mechanism to remove noise and
inappropriate information, leading to the comprehensive re-establishment of contextual features.
Our experiments demonstrated that the proposed architecture achieved significant segmentation
results on public datasets. A-DenseUNet achieved a 90% Dice coefficient score on the Kvasir-SEG
dataset and a 91% Dice coefficient score on the CVC-612 dataset, both of which were higher than the
scores of other deep learning models such as UNet++, ResUNet, U-Net, PraNet, and ResUNet++ for
segmenting polyps in colonoscopy images.

Keywords: semantic segmentation; convolutional neural networks; colonoscopy; polyp segmentation;
deep learning; attention; dilated convolution

1. Introduction

The third most common form of cancer worldwide for both men and women is
colorectal cancer, and its prevalence is increasing every year [1]. The primary cause of
colorectal cancer is the growth of glandular tissue in the colonic mucosa. Precise and earlier
determination of polyps from virtual colonoscopy screenings is of great significance for the
avoidance and timely treatment of colon cancer [2]. However, manual detection depends
on proficient endoscopists, and it takes a long time. Recent surveys have shown that more
than 25% of polyps in patients undergoing colonoscopy are not detected [3]. The late
diagnosis of missed polyps can lead to a low survival rate for colon cancer patients [4].
Computer-aided detection (CAD) systems are used to detect and segment polyps from
endoscopic images and video screenings, which allows endoscopists to focus their attention
on the polyps displayed on the screen and act as a second viewer. This can decrease the
likelihood of overlooked polyps [5].

Designing an accurate CAD system is challenging because of the high cost of labeled
medical datasets for training and testing. Polyps have a wide range of colors, sizes, shapes,
appearances, or combinations of these features. There are similar inter-classes and various
intra-classes for four different polyp classes: Adenoma, hyperplastic, serrated, and mixed.
In addition, background objects are very similar; for example, the background mucosa can
mix with a polyp or stool [6]. Even though these factors make the polyp segmentation
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task challenging, we surmise that there is still a great prospect to create such systems for
medical use.

In recent years, deep-learning-based techniques have achieved significant success in
the computer vision domain [7–9], and interest in applying deep learning to endoscopic
image segmentation has grown. In particular, encoder-decoder-based methods such as
U-Net [10], UNet++ [11], SegNet [12], and fully convolutional networks (FCNs) [13] have
been commonly used for semantic segmentation. These networks down-sample the image
several times to capture the required feature maps and up-sample once or multiple times to
enable effective localization [10,13,14]. Furthermore, skip connection strategies have been
successful in saving fine-grained information and improving the efficiency of the network,
even on complicated datasets.

Recent research has shown that the attention mechanism has been commonly used
to preserve the dependency of features in certain computer vision tasks such as object
detection [15], image classification [16,17], and image segmentation [18–21]. The attention
method enables the model to attend more closely to essential features without any external
supervision, and it can avoid identical feature maps at various scales to lead to better feature
representation. The attention mechanism improves network efficiency over traditional
methods with or without multiscale features.

In summary, this study makes the following contributions:

• We designed a new robust U-Net-based encoder-decoder network structure that uses
dense connections as a powerful encoder model and accomplishes an adaptable image
segmentation algorithm to integrate deep and superficial features, which can directly
combine multiscale features to boost segmentation performance.

• We utilized an attention mechanism that fuses derived information from various
modules and focuses on core information by removing noise and irrelevant regions.

• Our method uses dense blocks, residual blocks, transition blocks, and atrous convolu-
tion block capabilities, and it improves the outcome of the colorectal polyp segmen-
tation compared to other state-of-the-art methods. Our model obtained good results
with small datasets.

• We evaluated our model on the Kvasir-SEG and CVC-612 datasets, and the experi-
mental results show that it achieved the highest intersection over union (IoU) and
Dice coefficient.

The remainder of this paper is organized as follows. In Section 2, we review some
existing related studies. In Section 3, we present our proposed densely connected deep
learning architecture. We present the experimental settings and qualitative and quantitative
analysis of the semantic segmentation results in Section 4, and Section 5, respectively. In
Section 6, we discuss the experimental results. Finally, we conclude this paper in Section 7.

2. Related Work

Over the past two decades, the detection and classification of gastrointestinal (GI)
tract diseases and the creation of effective, robust methods to automatically detect polyps
in colonoscopy images and videos have been active scientific areas. The performance of
machine learning-based polyp detection and segmentation software has come close to that
of high-level endoscopists.

Some earlier studies used the texture and color details of polyps to create hand-
crafted descriptors [22–25]. For instance, Karkanis et al. [22] utilized a supplemented
sliding window scheme and color wavelet texture information as descriptors to designate
polyps from colonoscopy images and videos. Subsequently, researchers used spatio-
temporal, edge, intensity, and shape features to detect polyps automatically. For example,
Hwang et al. [26] used elliptical shape information to detect polyps automatically, whereas
Wang et al. [27,28] presented edge cross-section profiles. To improve the detection perfor-
mance, some methods combine two or more features [1,29]. Tajbakhsh et al. [29] integrated
local intensity variation patterns and global geometric constraints to detect polyps. Al-
though these methods achieved significant progress, they still suffer from inferior detection
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accuracy. The primary cause of the low accuracy level is the limited representation ability
of handcrafted features to deal with both the low-level inter-class variety between hard
mimics and polyps and the high-level intra-class variety of polyps.

Recent deep convolutional neural networks (CNNs) have shown noticeably better
results in many biomedical image analysis domains, including object detection [30–33],
classification [34–36], and semantic segmentation [10,21,32,37,38]. Some researchers have
attempted to use CNNs to manage the automated polyp detection domain. For instance,
Tajbakhsh et al. [39] suggested a CNN architecture for polyp detection that takes low-
level handcrafted information as input and utilizes a group of CNNs to learn the shape,
color, and temporal features of polyps. However, this model learned temporal and spatial
information using various networks that may limit the discrimination capability. Therefore,
most features from colonoscopy videos have not been fully explored.

The new generation of CNNs uses transposed convolution layers to generate a proba-
bility map in image segmentation tasks. Long et al. [13] proposed the fully convolutional
network (FCN) method, which achieved state-of-the-art semantic segmentation results.
FCN obtains the segmentation results without post-processing steps by using pixel-to-pixel
and end-to-end training. Ronneberger et al. added modifications and extensions to the FCN
to develop the U-Net [10] architecture. U-Net integrates high-resolution spatial feature
maps with high-level contextual information for medical image segmentation. Inspired by
these approaches, several researchers have proposed models to solve segmentation issues
in a wide variety of areas [14,21,40–42].

The majority of studies published in the sphere of polyp segmentation achieved
significant results only on special datasets, and test cases often utilized small validation
and training datasets [27,43]. Furthermore, some of the scientific work focuses only on a
particular type of polyps, and some of them employ non-public datasets, which makes it
difficult to compare and reproduce the results. Consequently, the ML models cannot yet
achieve similar or better results than endoscopists. There is an opportunity to enhance the
efficiency of CAD systems, making major improvements and producing more effective and
reliable architectures for polyp segmentation.

3. Proposed Method

The A-DenseUNet architecture is based on UNet++ [41] and densely connected convo-
lutional networks (DenseNets) [44], utilizing the strength of U-Net [10] and DenseNet [44].
The proposed A-DenseUNet architecture takes advantage of dense blocks, atrous convolu-
tion, residual blocks, attention blocks, and restrictive skip connections.

3.1. Overview

The proposed segmentation architecture utilizes the U-Net [10] concept which includes
an encoder block on the left and a decoder block on the right. Figure 1 depicts the entire
structure of the proposed method. As shown in Figure 1, we changed the original U-
Net’s encoder part with DenseNets which allows us to train a deeper network without
vanishing gradient. In addition, we added redesigned skip connections that can allow us
to make adaptive networks and transfer missed features to the decoder side. Attention
block determines which part of the network require more attention in neural network
and it also reduces the computational cost of encoding the information in each polyp
image into a vector of each dimension. These and other methods are presented below
the sections extensively.
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Figure 1. Block diagram of the proposed A-DenseUNet architecture: DenseNet is used as an encoder, Transposed convolu-
tion is performed for up-sampling between levels.

The proposed model takes a training dataset X that consists of N sample images x:
X = x1, x2, . . . , xN , with corresponding Y = y1, y2, . . . , yN . Then, each ground truth pixel
i of any given sample y is y ∈ [0, 1]. We feed our network with a 224 × 224 × 3 image
and obtain a 224 × 224 × 1 output segmentation mask. In the encoding path, an input
image passes through a dense block that includes a combination of atrous convolutional,
rectified linear unit (ReLU), and batch normalization layers. The dense block is followed
by a transition block that contains a pooling layer that reduces the size of the feature map
after each successive dense block. In the decoding path, transposed convolution is used
to increase the feature map size back to the original size. After a very deep encoder path,
there may be a loss of essential details. To handle such a problem, UNet++ [41] introduces
restrictive skip connections that combine the encoding part with the output of up-sampling
through channel concatenation.

We applied skip connections to unify various depths of U-Nets into one structure
and used an attention mechanism to filter irrelevant information from the features. The
depth of the network is s = 5, which means we used a down-sampling approach five times
and halved its feature map size each time. After five down-samples, we obtained the
final 7 × 7 spatial feature map. We used the attention mechanism to create a relationship
between the various model information at different depths. The attention blocks reduce
the noise and unnecessary features, and only important information can pass to the next
layer. The output of the attention block is up-sampled by transposed convolution and
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concatenated with the same depth output as the encoder part. After concatenation, the
feature map passes the residual block (dilated convolution followed by batch normalization
and ReLU activation), which allows features to converge more quickly. Other decoder
blocks at levels s = 2 to s = 5 use such blocks. Finally, feature maps from all U-Net depths
are agglomerated and then averaged, after that 1 × 1 convolution and sigmoid activation,
as shown in Equation (1), are used to obtain the final segmentation map. We trained our
network with the binary cross-entropy loss function based on the ground truth for the
training images. Equation (2) shows the formula of the loss function, where L is the loss for
a prediction yi consisting of N pixels at a specific output of the network:

y =
1

1 + e−x (1)

L = −
N

∑
i=1

yi(log yi − (1− yi) log(1− yi)) (2)

3.2. Dense Units

Training deeper neural networks can increase a model’s accuracy, but it can also
cause degradation problems and interrupt the training process [40,44]. To solve this
type of problem, Huang et al. [44] proposed densely connected convolutional networks
(DenseNets), which allow all subsequent layers to connect directly, as shown in Figure 2.

Figure 2. Five-layer dense block with grows rate n = 4. Each layer takes all previous information and includes batch
normalization, atrous convolution, and ReLU activation.

Accordingly, the lth layer takes the feature maps of all previous layers, x0, . . . xl−1,
as input:

xl = Hl([x0 , x1 , . . . , xl−1]) (3)

where [x0, x1, . . . , xl−1] refers to the concatenation of the feature maps produced in layers
0, . . . , l − 1. Dense encoder blocks have several advantages. For example, densely
connected layers have fewer output dimensions than other networks, which can help to
avoid learning excessive features and reduces the time required.

We used DenseNets [44] as the encoder part of our proposed method, densely con-
nected layers provide maximum gradient flow, and very deep neural networks alleviate
the vanishing gradient problem. An original DenseNets [44] implemented 121, 169, 201,
264 layer network with the growth rate of k = 32. We implemented various DenseNet
layers and growth rates. Finally, we achieved a better segmentation mask with 164 layer
DenseNets and a growth rate of k = 48. Table 1 presents the encoder layers of the proposed
architecture. The input layer takes 224 × 224 × 3-sized images; thus, all training data were
resized to fit the given size.
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Table 1. Densely connected encoder block of the proposed A-DenseUNet architecture. Note that “1
× 1, 192 conv” corresponds to 1 × 1 kernel size convolution with 192 features and a sequence of
BN-Conv-ReLU layers. “[] × n” indicates n iterations of the dense block.

Feature Size Encoder DenseNet-164 (k = 48)

input 224 × 224 × 3 -

convolution 1 112 × 112 7 × 7, 96, stride 2

pooling 56 × 56 3 × 3 max pool, stride 2

dense block 1 56 × 56
[

1 × 1, 192 conv
3 × 3, 48 conv

]
× 6

transition layer 1
56 × 56 1 × 1 conv

28 × 28 2 × 2 average pool, stride 2

dense block 2 28 × 28
[

1 × 1, 192 conv
3 × 3, 48 conv

]
× 12

transition layer 2
28 × 28 1 × 1 conv

14 × 14 2 × 2 average pool, stride 2

dense block 3 14 × 14
[

1 × 1, 192 conv
3 × 3, 48 conv

]
× 36

transition layer 3
14 × 14 1 × 1 conv

7 × 7 2 × 2 average pool, stride 2

dense block 4 7 × 7
[

1 × 1, 192 conv
3 × 3, 48 conv

]
× 24

In the first layer of the network, using 7 × 7 dilated convolution with 96 filters and
a stride of two, we obtained an output feature map of 112 × 112 × 96 after the first
convolution layer. Then, we used four dense blocks and three transition blocks to create
the remaining encoder layers, s = 2 to s = 5. Each dense block includes batch normalization,
dilated convolution, and ReLU non-linearity and is repeated several times, as shown in
Table 1, to create a deeper encoder path and obtain more robust feature maps. After each
dense block (except dense block 4) we put a transition block, which consists of 1 × 1
convolution and 2 × 2 average pooling with a stride of two. A 1 × 1 convolution is used
before the pooling layer to reduce the channels of the feature map. After dense block 4, a
robust 7 × 7 feature map is obtained, which is decoded to produce the final output.

3.3. Adaptive Network Structure

The original U-Net obtains the final segmentation result from a fixed number of
down-samples and a corresponding number of up-samples. In practice, some datasets
contain images of various sizes, and there is a significant difference between the amount of
information contained in various-sized images. One down-sampling and one up-sampling
might be sufficient to obtain satisfactory segmentation results from small, simple data.
Large, complicated datasets require multiple up- and down-samplings to obtain seman-
tic feature maps of various regions because it is difficult to obtain global information
from a small-scale network. Figure 3 represents the U-Net network with depths of one
and two. To overcome different depth problems, Zhou et al. [11] proposed redesign-
ing the skip connections to integrate the advantages of different depths of U-Net into
one architecture.
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Figure 3. Multi-depth U-Net models.

We redesigned the skip connections in our proposed method to connect different
depths in the U-Net structure. In addition, we added an efficient feature map transition
and aggregated different layer characteristics. As shown in Figure 1, we added horizontal
dense connections and connections between each depth. These connections allow us to
transfer missed features to the decoder side, and to build an adaptive network. Horizontal
densely connected layers are equipped with dilated convolution, batch normalization, and
residual blocks. Before transfer features from one level to another, we employ an attention
mechanism, which enhances the flow of the spatial feature map to the next level of the
decoder side. The final segmentation mask is achieved by averaging the output of each
U-Net depth and employing a 1 × 1 convolution and sigmoid classifier.

3.4. Attention Units

Over the last few years, the attention mechanism has become very popular in vari-
ous deep learning research areas, starting with natural language processing (NLP) [45].
Recently, it has been applied to computer vision tasks. The attention model has been
utilized as a pixel-wise prediction model in the semantic segmentation domain [46]. It
identifies the sections of the network that need more attention. Continuous use of an
attention mechanism at each level allows long-range spatial dependency of feature maps.
The attention block also decreases each image’s computing cost to a fixed dimensional
vector. Therefore, the fundamental value of an attention unit is that it is straightforward
and can be applied to every input scale to strengthen the consistency of the features that
emphasize the result.

Despite the tremendous success of the skip-connection approach in U-Net for handling
spatial information, there are still drawbacks that need to be fixed. After downsampling,
features are passed to the next stage, and the same features transferred to the decoder side
using a skip-connection approach. Therefore, there is a significant semantic gap between
the encoder and decoder side feature maps. Further, the noises and irrelevant features
are also easily transferred to the next side. As a result, the long-range object relationships
in the image cannot be captured, which may cause severe problems in preserving spatial
details, especially object boundary information in the network.

To solve this problem, we employed an attention block in the proposed method for
medical image segmentation. To better transfer the spatial information to the next stage
in the decoding side, we placed the attention block before the up-sampling layer at each
level of the U-Net decoder path. Specifically, the model encodes various semantic feature
maps at various stages. The attention mechanism is used to enhance the flow of the spatial
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feature map to the next level of the decoding side; to generate relevant feature maps,
up-sampling information is fused with the corresponding encoder-side information. Thus,
attention blocks at various stages allow the proposed network to encode low-level to
high-level information at different scales and provide only relevant regions to the next
layer. Further, the model generates astonishing results by formulating the attention block,
which suppresses undesirable features like an artifact, specular reflection, noises, and,
hence, preserving long-range contextual feature dependencies.

3.5. Dilated Convolution

The concept of dilated convolution comes from wavelet decomposition [47]. It is
also called “atrous convolution” and “algorithm à trous.” Dilated convolution enables the
model to arbitrarily expand the filter field of view at every DCNN (Deep Convolutional
Neural Network) layer. In order to hold both the calculation and the number of parame-
ters contained, CNNs usually use small convolutional kernels (typically 3 × 3). Dilated
convolution with a rate of r adds r-1 zeroes between the consequent filter values, as shown
in Figure 4. It thus provides an efficient field of view control mechanism and finds the
optimal trade-off between detailed localization (small field of view) and assimilation of
context (large field of view).

(F ∗ k)(p) = ∑
s+t=p

F(s)k(t) (4)

(F ∗l k)(p) = ∑
s+lt=p

F(s)k(t) (5)

Figure 4. Dilated convolutions with different dilation rates. A dilation rate of one is normal convolution.

We employed dilated convolution to systematically aggregate multi-scale contextual
information without losing resolution. Dilated convolutions allow the network to increase
the receptive field without adding computational complexity or increasing the network
information capability. Besides, dilated convolution allows us to detect fine-details by
processing inputs in higher resolutions, and it also broader view of the input to capture
more contextual information. We replace normal convolutions from Equation (4) by atrous
convolution in Equation (5) with a dilation rate of 2 for every layer of the network. F is a
discrete function and k is a discrete filter size. The discrete convolution operator * can be
defined as Equation (4). Dilated convolution ∗l can be defined as Equation (5) l is a dilation
factor, s + lt = p indicates that some points have been skipped during the convolution.

4. Experiments

We evaluated our proposed A-DenseUNet architecture on two public segmentation
datasets, Kvasir-SEG [48] and CVC-612 [49].

4.1. Datasets

Kvasir-SEG: We utilized the Kvasir-SEG dataset [48], which has 1000 polyp images
and their corresponding ground truth masks annotated by professional gastroenterologists
from Vestre Viken Health Trust in Norway, as shown in Figure 5. The images have sizes
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ranging from 332 × 487 to 1920 × 1072 pixels, but training and testing were performed
with an image resolution of 224 × 224 pixels. The images were randomly split into 80% for
training, 10% for validation, and 10% for testing.

Figure 5. Example of data from Kvasir-SEG dataset. The first row shows original images and the second row presents their
respective ground truth.

CVC-612: In addition, we used the CVC-612 [49] dataset, this database built in collab-
oration with the Hospital Clinic of Barcelona, Spain. CVC-612 has been generated from
23 different video studies from standard colonoscopy interventions with white light. CVC-
612 database comprises 612 polyp images of size 576 × 768 pixels from 31 colonoscopy
series. The images were split into training, validation, and testing sets in the ratio of 80:10:10.
All training, validation, and testing were performed with an image size of 224 × 224 pixels.
Figure 6 shows some example images and corresponding masks from the CVC-612 dataset.

Figure 6. Images and ground truth masks from the CVC-612 dataset.

4.2. Data Augmentation

The effectiveness of deep learning networks depends significantly on the size of the
training dataset. It is clear that in the case of polyp segmentation, the training dataset is
limited, at least with respect to typical training images employed in the context of deep
learning. Furthermore, certain polyp forms are not represented in the dataset, and for
other types only a few examples are available. Hence, it is important to extend the training
dataset by data augmentation. Data augmentation is conducted to provide additional polyp
images for training deep neural networks. Even though this approach cannot produce
new polyp forms, it can provide extra data samples based on various image acquisition
conditions, such as colon deformations, camera position, and illumination.

All training samples were resized to 224 × 224 pixels in a manner such that the
image aspect ratio was retained. This process included random cropping augmentation.
All images were augmented using four augmentation techniques: (1) Rotation, with the
angle of rotation randomly chosen from the range 0◦ to 90◦; (2) reflection, horizontally
and vertically; (3) elastic deformation with a fixed 10 × 10 grid; and (4) color adjustment
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by random gamma augmentation. After augmentation, the Kvasir-SEG training dataset
contained a total of 8000 images.

4.3. Evaluation Metrics

To evaluate the polyp segmentation, we used the following well-known segmentation
evaluation metrics: recall, precision, intersection over union (IoU), and Dice coefficient. We
calculated these metrics using well-known parameters, such as true positive (TP), false
positive (FP), and false negative (FN):

Recall =
T P

T P + F N
(6)

Precision =
T P

T P + F P
(7)

Intersection over Union: The IoU is a standard metric for evaluating segmentation
models. The equation presents the similarity between the predicted pixels (Y′) and the true
mask (Y):

IoU(Y′, Y) =

∣∣Y′ ∩ Y
∣∣∣∣Y′∣∣ + |Y|

=
T P

T P + F P + F N
(8)

Dice similarity coefficient: The Dice similarity coefficient is a standard metric for
comparing the pixel-wise results between the ground truth and predicted segmentation.
The formula of the Dice coefficient is defined as:

Dice coefficient(Y′, Y) =
2 ×

∣∣Y′ ∩ Y
∣∣∣∣Y′∣∣ + |Y|
=

2 × T P
2 × T P + F P + F N

(9)

where Y′ is the predicted set of pixels, and Y signifies the ground truth of the item.

4.4. Implementation Details

We trained all the methods in the Keras framework [50] with TensorFlow [51] as a
backend. We trained our model with 224 × 224-pixel images. We set the batch size to 10,
and we trained the model for 100 epochs. We used the Adam optimizer with reduced
learning rate callback; the learning rate starts from 0.01 and is divided by 10 when the
patience level exceeds 5. We used an early-stop mechanism on the validation set to avoid
overfitting. We chose ReLU as the non-linear activation and binary cross-entropy as the
loss function. To convert the predicted pixels to the background or foreground, we used a
threshold value of 0.5. All the models were implemented using two NVIDIA GTX 1080
GPUs, each with 8 GB of memory. It took five hours to complete the training of our
proposed model.

5. Results

We performed comprehensive experiments to assess the effectiveness of our proposed
A-DenseUNet architecture. Four state-of-the-art deep learning models, U-Net [10], wide U-
Net [11], ResUNet [40], UNet++ [11], PraNet and ResUNet++ were selected for comparative
analysis of the proposed method.

To show the effectiveness of each added block we removed one by one each of them.
Figure 7 presents the train and validation IoU score of A-DenseUNet and A-DeseUNet
without particular blocks, it shows that each block plays a crucial role to achieve better
segmentation results. A comparison between the model trained with and without attention
blocks shows that the model with an attention mechanism demonstrated strong attention
ability by emphasizing the discriminative region of interest rather than concentrating
on specular reflection and the normal area. Figure 8 depicts the qualitative difference
between them.
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Figure 7. (a) Train and (b) validation IoU score after one by one removing added blocks.

Figure 8. Effect of attention block in the network. By adding this, we were able to suppress the
irrelevant regions.

Kvasir-SEG dataset results: We improved our proposed A-DenseUNet architecture
with various sets of hyperparameters. During the model training, we manually tuned
the hyperparameters with various hyperparameter sets and evaluated the results. Table 2
presents the results of A-DenseUNet, ResUNet [40], UNet++ [11], wide U-Net, original
U-Net [10], PraNet [52] and ResUNet++ [6] on the Kvasir-SEG [48] dataset. The data
indicate that the proposed architecture outperformed all current methods.

Table 2. Kvasir-SEG evaluation results of all methods.

Method Params Dice IoU Recall Precision

A-DenseUNet 11.0 M 0.9085 0.8615 0.9448 0.9766
UNet++ [11] 9.0 M 0.8021 0.7215 0.7914 0.9321
ResUNet [40] 8.5 M 0.7864 0.5421 0.7861 0.8912

Wide U-Net [11] 9.1 M 0.7645 0.7112 0.7684 0.9231
U-Net [10] 7.8 M 0.7062 0.5628 0.7768 0.9022
PraNet [52] - 0.898 0.84 - -

ResUNet++ [6] - 0.8133 0.7927 0.7064 0.8774

CVC-612 dataset: After achieving good results on the Kvasir-SEG dataset, we tested
our method on the CVC-612 dataset. Table 3 presents the performance of all the models on
the CVC-612 dataset. The proposed method achieved the largest Dice coefficient, IoU, and
recall. U-Net obtained the highest precision score, but its other important metric scores for
segmentation were not competitive.



Sensors 2021, 21, 1441 12 of 16

Table 3. CVC-612 evaluation results of all methods.

Method Params Dice IoU Recall Precision

A-DenseUNet 11.0 M 0.8912 0.8553 0.9448 0.9266
UNet++ [11] 9.0 M 0.7815 0.7241 0.8064 0.9076
ResUNet [40] 8.5 M 0.7397 0.5597 0.7643 0.8627

Wide U-Net [11] 9.1 M 0.7754 0.7078 0.7831 0.9113
U-Net [10] 7.8 M 0.6943 0.5798 0.7648 0.9418
PraNet [52] - 0.89 0.849 - -

ResUNet++ [6] - 0.7955 0.7962 0.7022 0.8785

Figures 9 and 10 present the qualitative results for all deep learning methods.
Tables 2 and 3 and the qualitative results show the dominance of A-DenseUNet over the
baseline methods such as UNet++ [11], ResUNet [40], wide U-Net, original U-Net [10],
PraNet [52] and ResUNet++ [6]. On the Kvasir-SEG dataset, the proposed architecture
achieved mean improvements of 10.64%, 12.21%, 14.4%, 20.23%, 1.2%, and 9.2% as mea-
sured by the Dice coefficient, and 14.12%, 32.21%, 15.03%, 29.86%, 2.15% and 6.81% as
measured by the IoU score. The large margin of difference between the proposed architec-
ture and the existing methods could be interpreted as indicating that the combination of
dilated convolution, attention mechanism, and multiscale features plays a crucial role in
optimizing segmentation efficiency. The proposed model encodes multiscale semantic in-
formation at every stage, which allows the conservation of more fine-grained feature maps
at the decoder block, unlike U-Net and ResUNet, which use the same-scale feature map
concatenation. Furthermore, the attention mechanism enhances the network by focusing
on important information that boosts the segmentation efficiency.

Figure 9. Qualitative segmentation results of various models on the Kvasir-SEG dataset. Experimental results show that
A-DenseUNet produces better segmentation masks than other state-of-the-art networks.
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Figure 10. Qualitative segmentation results of various models on the CVC-612 dataset.

6. Discussion

The proposed A-DenseUNet model achieved adequate results on both the CVC-612
and Kvasir-SEG datasets. From the qualitative results, it is obvious that the proposed
model’s segmentation mask performed better than other methods to capture the shape of
information on the Kvasir-SEG dataset. The results show that the predicted segmentation
mask in A-DenseUNet is closer to the ground truth mask than that in other state-of-
the-art architectures. However, segmentation masks from UNet++ and wide U-Net are
also competitive.

During the training process, we used various loss functions to improve our results,
such as Jaccard loss, Dice loss, mean square loss, and binary cross-entropy loss. According
to our experiments, the method achieved a better Dice coefficient value with all loss
functions, whereas the IoU score was higher with a binary cross-entropy loss function.
We chose the binary cross-entropy loss function based on our analytical assessment. In
addition, we found that the number of kernels, batch size, optimizer, loss function, and
depth of the model may affect the result.

We speculate that the efficiency of the model could be further improved by enlarging
the dataset size, using various augmentations, and adding certain post-processing steps.
DenseNets model allows us to design a very deep neural network architecture to achieve
significant performance, also the attention mechanism helps to reduce undesirable features
like an artifact, specular reflection, and noises. Due to the dilated convolution, we can
accelerate run-time with fewer parameters and achieved better segmentation results. We
conclude that the A-DenseUNet should not only limited to biomedical image segmentation
but could also be expanded to natural image segmentation and other pixel-wise classifica-
tion tasks. We used all our experience and knowledge to optimize the model, but there
might be further optimizations, which could affect the performance of the method.

7. Conclusions

In this paper, we have presented an end-to-end biomedical image segmentation
architecture, A-DenseUNet, to achieve more accurate segmentation results. This method
aggregates multiscale semantic information to generate a global feature and encode such
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features to the decoder side alongside skip-connection features. This enables the model to
learn multi-scale semantic features at each level instead of learning same-scale feature maps.
While the attention mechanisms have been widely accepted and used in other computer
vision fields, a similar adoption is needed in the medical domain. Hence, we propose a
complex model with an attention mechanism that takes inputs from the global module,
encoding, and up-sampling features and filters noisy and ambiguous regions effectively
and able to capture long-range dependencies in the image. To evaluate the effectiveness
of our approach we conduct experiments on the CVC-612 and Kvasir-SEG datasets. The
results demonstrate that the proposed method outperforms the state-of-the-art UNet++,
ResUNet, and U-Net architectures in predicting accurate segmentation masks. Our model
achieved the best Dice coefficient and IoU score among the models. Future work could be
included to evaluate our model on other medical and natural image segmentation domains.
Also, we want to implement our model in real-time surgical robots as Aleks, et al. [21] and
Alessandro et al. [14] suggest in their work.
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