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Background:Gastric cancer (GC) is the second leading cause of cancer-related mortality
and the fifth most common cancer worldwide. However, the underlying mechanisms of
competitive endogenous RNAs (ceRNAs) in GC are unclear. This study aimed to construct
a ceRNA regulation network in correlation with prognosis and explore a prognostic model
associated with GC.

Methods: In this study, 1,040 cases of GC were obtained from TCGA and GEO datasets.
To identify potential prognostic signature associated with GC, Cox regression analysis and
the least absolute shrinkage and selection operator (LASSO) regression were employed.
The prognostic value of the signature was validated in the GEO84437 training set,
GEO84437 test set, GEO15459 set, and TCGA-STAD. Based on the public
databases, TargetScan and starBase, an mRNA-miRNA-lncRNA regulatory network
was constructed, and hub genes were identified using the CytoHubba plugin.
Furthermore, the clinical outcomes, immune cell infiltration, genetic variants,
methylation, and somatic copy number alteration (sCNA) associated with the ceRNA
network were derived using bioinformatics methods.

Results: A total of 234 prognostic genes were identified. GO and GSEA revealed that the
biological pathways and modules related to immune response and fibroblasts were
considerably enriched in GC. A nomogram was generated to provide accurate
prognostic outcomes and individualized risk estimates, which were validated in the
training, test dataset, and two independent validation datasets. Thereafter, an mRNA-
miRNA-lncRNA regulatory network containing 4 mRNAs, 22 miRNAs, 201 lncRNAs was
constructed. The KCNQ1OT1/hsa-miR-378a-3p/RBMS1 ceRNA network associated
with the prognosis was obtained by hub gene analysis and correlation analysis.
Importantly, we found that the KCNQ1OT1/miR-378a-3p/RBMS1 axis may play a vital
role in the diagnosis and prognosis of GC patients based on Cox regression analyses.
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Furthermore, our findings demonstrated that mutations and sCNA of the KCNQ1OT1/
miR-378a-3p/RBMS1 axis were associated with increased immune infiltration, while the
abnormal upregulation of the axis was primarily a result of hypomethylation.

Conclusion: Our findings suggest that the KCNQ1OT1/miR-378a-3p/RBMS1 axis may
be a potential prognostic biomarker and therapeutic target for GC. Moreover, such
findings provide insights into the molecular mechanisms of GC pathogenesis.

Keywords: ceRNA, immune microenvironment, SCNA, genetic variants, methylation

INTRODUCTION

Globally, the incidence of gastric cancer (GC) is increasing. In fact,
GC has the fifth highest incidence and second highest incidence for
cancer-related mortality (8.8% of cancer deaths). Accordingly, GC
remains a significant global health problem (McAuliffe et al., 2019).
As the disease is largely asymptomatic, the absence of clinical signs
delays diagnosis. Three quarters of patients have non-curable
advanced disease, leading to poor prognosis (Seidlitz et al., 2019).
The primary treatment for GC includes surgery, radiation,
chemotherapy, hormone therapy, immuno-therapy, and targeted
therapy (Rasool et al., 2013). However, owing to clinical
heterogeneity between patients, the treatment and prediction of
survival outcomes are challenging as patients with the same
diagnosis often have different responses to treatment. Many
studies with different biomarkers for predicting early detection,
treatment response, and overall survival (OS) have been
published (Brahmer et al., 2015; The International CLL-IPI
working group, 2016). Accordingly, new therapeutic targets and
prognostic biomarkers for this deadly disease are urgently needed.

Integrative bioinformatics analysis has been identified as a
useful tool for revealing prognostic biomarkers and selecting an
appropriate treatment approach. Large-scale genomic projects,
such as The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO), have provided new tools for identifying gene
drivers and therapeutic targets for cancer (Hu et al., 2019; Lang
et al., 2020). The widespread availability of high-throughput
sequencing plays a critical role in the development of novel
diagnostic and therapeutic strategies and the early diagnosis
and treatment of diseases (Liu et al., 2017).

Numerous studies have focused on single-gene predictions of
disease risk; however, it is uncertain to predict prognosis. Based
on recent studies, polygenic risk scores may result in a more
reliable and robust predicted response than single-gene
prediction (Purcell et al., 2009; Chatterjee et al., 2016; Shi
et al., 2016). For example, polygenic risk scores estimate that
the absolute risk increases in carriers of BRCA1 and BRCA2,
which might influence clinical decision making (Kuchenbaecker
et al., 2017). Furthermore, polygenic risk scores have shown
promise for the prediction of multiple common diseases,
including coronary artery disease, prostate cancer, breast
cancer, and type 2 diabetes (Lambert et al., 2019).

Long non-coding RNAs (lncRNAs) are non-protein coding
RNAs with a length of at least 200 nucleotides. As active
regulators of coding gene expression, lncRNAs are becoming
important players in cancer progression and invasion (Schmitt

and Chang, 2016; Arnes et al., 2019). MicroRNAs (miRNAs) are
small, noncoding RNAs that bind to target mRNAs in their 3’-
untranslated region (3’UTR). miRNAs inhibit the translation or
promote degradation of mRNA, which reduces protein
expression (Ouimet et al., 2016). Accordingly, miRNAs play a
critical role in the progression of cancers, including GC (Si et al.,
2018). LncRNAs have been shown to act as a “sponge” for
miRNAs, a process known as endogenous competing RNA
(ceRNA), which reduces the suppressive effect of miRNAs on
target mRNAs (Karagkouni et al., 2020). For example, lncRNA-
miRNA-mRNA ceRNA networks might participate in the
initiation and progression of cancers, and may be a target for
early diagnosis, prognosis evaluation, and treatment (Shih et al.,
2020; Wang et al., 2020; Zhang and Lou, 2020).

In this study, we constructed a ceRNA regulation network
related to prognosis and explored a signature prognostic model in
1,040 patients with GC. First, both differential expression genes
and potential prognostic genes were identified from two datasets.
Based on LASSO regression, a multigene prognostic signature
was developed and validated using three independent datasets.
Second, the mRNA-miRNA-lncRNA regulatory network
associated with prognosis was identified using public
databases. Through hub gene analysis, a key ceRNA network
was obtained. Third, the association between the ceRNA network
and clinical outcomes was assessed, which revealed that the
KCNQ1OT1/RBMS1 axis may be vital for the diagnosis and
prognosis of GC patients. Finally, the relationships between the
KCNQ1OT1/RBMS1 axis and immune cell infiltration, genetic
variants, methylation, and somatic copy number alteration
(sCNA) were evaluated to explore the possible biological
function of the KCNQ1OT1/RBMS1 axis in GC.

MATERIALS AND METHODS

Gastric Cancer Dataset Sources
The flowchart (Figure 1) shows the most important steps in the
analysis process. TCGA and GEO databases were searched
systematically to obtain public gene expression data and
complete clinical annotations. For further analysis, cohorts
that had the following characteristics were excluded: 1) less
than 200 patients, 2) lack of raw CEL files, 3) lack of basic
clinical information [sex, age, tumor-node-metastasis (TNM)
stage), or 4] lack of survival information. Three eligible GC
public datasets (GSE84437, GSE15459, and TCGA-STAD)
were then analyzed.
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GSE84437, measured using the Illumina HumanHT-12
V3.0 expression Beadchip, consisted of 433 GC samples
(Yoon et al., 2020). The GSE84437 cohort was treated as a
discovery set and randomly (in a 1:1 ratio) classified into two
subgroups: the training set and test set. The training set was used
to develop a prognostic model, and the test set was used for
internal validation of the prognostic model. GSE15459,

measured using the Affymetrix Human Genome U133 Plus
2.0 Array, contained 200 GC samples (Subhash et al., 2018).
The TCGA-STAD dataset included 375 GC samples and
32 normal samples. The GSE15459 and TCGA-STAD were
used as independent validation sets (external validation). The
validation sets were used to evaluate the predictive ability of
prognostic model.

FIGURE 1 | Flowchart of the study design, including data collection and analysis.
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Data Preprocessing
The raw CEL files for microarray data were downloaded from the
GEO database. The R packages, “affy” and “lumi,” were used to
calculate background-adjusted, quantile-normalized, and probe-
level data-summarized values for all probe sets (Irizarry et al.,
2003; Gautier et al., 2004; Du et al., 2008). The “ComBat”
algorithm in the “sva” package was used to correct batch
effects from nonbiological technical biases (Leek et al., 2012).

Level 3 RNAseq FPKM files for stomach adenocarcinoma
(STAD) cases were downloaded from TCGA (https://portal.gdc.
cancer.gov/). The RNAseq data were converted from FPKM to TPM
format and then log2 transformed, leading to data that are more
comparable to microarrays and enable comparison between
samples. Based on the GPL570 platform, gene symbols were
annotated to the Affymetrix probe ID from the microarray data.
Based on theGPL6947 platform, gene symbols were annotated to the
Illumina probe ID from the microarray data. The mean expression
value was considered for probes that mapped to a single gene.

Identification of Prognostic Genes
Genes associated with OS (Cox univariate p-value < 0.05) were
identified using the “survminer” and “survival” packages (Liu
et al., 2018). Differential expression analysis was performed on
the TCGA-STAD dataset using the “limma” package (Ritchie
et al., 2015). To evaluate as many genes as possible and enhance
statistical power, differentially expressed genes (DEGs) were
selected based on an adjusted p value < 0.05. Prognostic genes
were identified by the intersection of the two sets of genes after the
above screening process.

Enrichment Analysis of Functions and
Pathways
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
using the “clusterProfiler” package (Yu et al., 2012). Gene Set
Enrichment Analysis (GSEA) was also performed to identify
pathways enriched among DEGs. Using the “clusterProfiler”
and “org.Hs.eg.db” packages, we determined the molecular
pathways that differed significantly between GC tissues and
normal tissues. We analyzed the Reactome pathways with
GSEA and used the “clusterProfiler” package to identify each
functional cluster. The reference gene set was C2. all.v6.2.
symbols.gmt (Newman and Weiner, 2005). p-value < 0.01 and
a false discovery rate <0.1 were set as the cut-off criteria.

Construction and Verification of the
Prognostic Model
To identify the best prognostic genes to maximize predictive
ability, Lasso regression was performed using the “glmnet”
package with default settings to screen out final prognostic
genes (Lossos et al., 2004). A Cox regression multivariable
analysis was conducted based on final prognostic genes.
Prognostic signature was generated using the regression
coefficient of the model. Gene expression levels were weighted
by their respective coefficients of Cox regression to calculate the

signature’s risk score. Based on the following formula, the risk
score was calculated for the signature:

Risk Score � ∑
n

i�1
Coefi × Expi

Where n, Coefi, and Expi represent the number of selected gene,
coefficient, and the expression value of each selected gene,
respectively. A combined risk score was derived from this
multivariable model, and the median value of the risk score
was used to divide patients into high- and low-risk categories.
The Log-rank test and Kaplan-Meier method were used to
analyze survival rates.

To establish the prognostic model of GC, we included age,
gender, cancer stage, and prognostic-related risk score. For
further validation, the corresponding regression coefficients
were estimated from the training set and validated using the
test set and the other validation sets (TCGA and GEO15459). To
evaluate the prognostic performance of the model, the
“survivalROC” package was used to construct time-dependent
receiver operating characteristic (ROC) curves (Li et al., 2018).
Finally, to visualize and apply the model, we constructed a
nomogram that included age, gender, T stage, N stage, and the
multigene signature. Calibration curves and decision curve
analysis (DCA) were used to evaluate the clinical application
prospects of nomograms (Vickers and Elkin, 2006).

Correlation Analysis Between Prognostic
Genes and PPI Network
Physical and functional interactions of proteins can be predicted
based on the protein-protein interaction (PPI) information in the
STRING database (https://cn.string-db.org/) (Szklarczyk et al.,
2021). We selected the protein nodes with the strongest
connectivity in Cytoscape software (version 3.9.1, https://
cytoscape.org/) for visualization of molecular interaction
networks (Shannon et al., 2003). The Spearman’s correlation
test and “ggplot2” package were used to analyze the
correlation between prognostic genes. Furthermore, pairwise
correlations between prognostic genes were visualized as a
chord diagram using the “circlize” package.

Immunohistochemical Analysis
The Human Protein Atlas (HPA) database (version: 21.0, http://
www.proteinatlas.org/) is the most comprehensive database for
assessing protein distribution in human tissues (Uhlén et al., 2015).
Protein expression data of prognostic genes were gathered from the
HPA database. The protein expression of genes was analyzed using
immunohistochemical staining images in normal and GC tissues.

Construction of the mRNA-miRNA-lncRNA
Network
To develop the mRNA-miRNA-lncRNA regulatory network, the
starBase version 2.0 database (http://starbase.sysu.edu.cn) (Li
et al., 2014) and TargetScan (version 7.2, http://www.
targetscan.org/) (Agarwal et al., 2015) were used to identify
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potential miRNAs interacting with prognostic genes and their
downstream target lncRNAs. The criteria used to select these
miRNAs were results with a high stringency of CLIP data >2 and
results with a used predicting program >3. The generated
networks were visualized using Cytoscape (Shannon et al.,
2003). The Sankey diagram was visualized to further reveal the
relationship between the mRNA-miRNA-lncRNA regulatory
network using the “ggalluvial” package. A hub regulatory
network for the merged network was obtained through
CytoHubba plug-in (Chin et al., 2014). To perform a more
comprehensive analysis of the effects on the ceRNA network,
differential expression and survival analysis for hub genes were
carried out using the “ggplot2” and “survminer” packages.
Further, miRNA-target co-expression analysis was performed
to explore the correlation between all hub genes using the
“ggplot2” package. Finally, mRNA and lncRNA target sites
were predicted for pairing with miRNA using the TargetScan
and starBase databases.

Immune Infiltration, Genetic Variants,
Methylation, and sCNA
Tumor infiltrating lymphocytes (TILs) have been identified as a
reliable predictor of OS (Azimi et al., 2012). We examined the
relationships between the ceRNA network and infiltrating
immune cells in GC. We also obtained marker genes for the
immune cell types involved in ssGSEA from the studies of Bindea
et al. and Senbabaoglu et al. (Bindea et al., 2013). Using the “gsva”
package, the infiltration levels of different types of immune cells
were quantified (Hänzelmann et al., 2013). Total T-cell
Infiltration Score and Immune Infiltration Score were
calculated using the ssGSEA scores for each type of immune
cell. The relationships between the prognostic genes and
infiltrating immune cells in GC were analyzed using TIMER
2.0 (Li et al., 2020) and UCLCAN (Chandrashekar et al., 2017).
Moreover, the correlation between immune infiltration and
mutation profile, methylation, and sCNA data, which provided
insights into the potential mechanisms of prognostic genes in GC,
was determined.

Statistical Analysis
Statistical analysis was performed using the R software (version
3.6.3). Continuous data were analyzed using Mann-Whitney tests
and categorical data were analyzed using Fisher’s exact tests.
Pearson correlation coefficient was used to estimate the
correlation between continuous variables. The Kaplan-Meier
method was used for survival analysis. The Log-rank test was
used to determine the significance of differences. All statistical
analyses were considered significant if the p-values were less
than 0.05.

RESULTS

Identification of Prognostic Genes
This study included 1,040 patients with GC from three
independent datasets (GSE84437, GSE15459, and TCGA-

STAD). By standardizing and removing batch effects from the
microarray results, a total of 2,365 prognostic genes in
GSE84437 and 2,572 differentially expressed genes in TCGA-
STAD datasets were identified. The top 50 differentially expressed
genes were extracted and a heat map was generated according to
the log fold change (Figure 2A). The Venn diagram in Figure 2B
was constructed to show the intersection of the two datasets.
Volcano plots were used to visually represent the differential
analysis results (Figure 2C).

Functional Analysis of Prognostic Genes
We analyzed the GO and KEGG functional terms enriched
among DEGs using the “clusterProfiler” package. The DEGs
were enriched in Z disc, contractile fiber, and contractile fiber
part terms for cellular component (CC). For biological process
(BP), the DEGs were enriched in actomyosin structure
organization, muscle contraction, and muscle system process
terms. For molecular function (MF), the DEGs were enriched
in FAD binding, flavin adenine dinucleotide binding, and actin
binding terms. Three KEGG pathways were differentially
enriched, including biosynthesis of unsaturated fatty acids,
tight junction, and vascular smooth muscle contraction
(Figure 2D). Using the significantly enriched GO and KEGG
terms, potential biomarkers for GC may be identified.

GSEA of Prognostic Genes
We identified the differentially expressed signaling pathways in
GC patients and those without GC using GSEA. Patients with GC
showed significant changes in molecular pathways compared
with those without GC. These analyses revealed that pathways
related to GC primarily included muscle contraction pathways,
prostate cancer, mammary stem cells, medullary vs ductal breast
cancer, and vascular smooth muscle contraction (Figure 3A).

Patient Characteristics
The training set consisted of 213 GC patients, including 68
(31.92%) females and 145 (68.08%) males; the median age was
59.63 years (Supplementary Material S1). In the test set,
213 patients with GC were included; 67 (31.46%) were
females, and 146 (68.54%) were males; the median age was
60.28 years (Supplementary Material S1). Among the 182 GC
patients in the independent validation set, GSE15459, 66
(36.26%) were females, and 116 (63.74%) were males; the
median age was 66.45 years (Supplementary Material S2).
The independent validation set, TCGA-STAD, included
407 patients, of which 144 (35.38%) were females, and 263
(64.62%) were males; the median age of these patients was
66.04 years (Supplementary Material S3).

Identification of Prognostic Genes
To identify the best prognostic genes to maximize predictive
ability, we employed the Lasso Cox regression algorithm for the
234 candidate genes using the “glmnet” package with default
settings (Figures 3B,C). According to the results of the Lasso-
selected features, Calponin 1 (CNN1), Myosin Heavy Chain 11
(MYH11), RNA Binding Motif Single Stranded Interacting
Protein 1 (RBMS1), and Methionine Sulfoxide Reductase B3
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(MSRB3) were identified and added to the multigene signature
that predicts the survival of GC patients. The following formula
was used to estimate the risk scores for each patient in all three
datasets:

Risk score � 0.344 × CNN1 − 0.086 × MYH11

− 0.068 × RBMS1 − 0.254 × MSRB3

Patients in all three datasets (GSE84437, GSE15459, and
TCGA-STAD) were then grouped into high- and low-risk
groups using the median risk scores as the cutoff. The risk

scores for the four genes were visualized as heat maps in the
high-risk and low-risk groups (Figures 3D–G). A higher
mortality rate and worse prognosis were identified for the
high-risk-score groups than for the low-risk-score groups.
Kaplan-Meier survival curves indicated that patients with low-
risk scores had a significantly longer OS than patients with high-
risk scores (GSE84437 training set: Log-rank p < 0.0001;
GSE84437 validation set: Log-rank p = 0.00024;
GSE15459 validation set: Log-rank p = 0.00059; TCGA-STAD
validation set: Log-rank p = 0.00028) (Figures 4B–E).

FIGURE 2 | The results of differential expression analysis. (A) Heat map of the top 50 differentially expressed genes. (B) Venn diagram showing the intersection of
TCGA-STAD and GSE84437. (C) Volcano plot showing the results of differentially expressed genes. (D) GO and KEGG enrichment of differentially expressed genes.
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Clinical Application of the Multigene
Signature
Although these prognostic genes are independently
prognostic of OS, clinical characteristics, such as age and
TNM stage, may also play an independent prognostic role in
multivariable models. In the training and validation datasets,
Cox regression analysis was used to conduct univariate and
multivariate survival analyses. All significant variables in the

univariate Cox regression (p < 0.05) were further analyzed in
a multivariate Cox regression to identify independent
prognostic factors. Finally, the multigene signature was
integrated with these clinical variables to construct a
nomogram that predicted the 1-, 3-, and 5-years survival
probability of GC patients (Figure 4A).

Based on the ROC curve and AUC values, the accuracy of the
nomogram model’s predictions was determined. The time-

FIGURE 3 | Identification and analysis of prognostic genes. (A) GSEA of GC patients and non-GC patients. (B, C) LASSO regression analysis of 234 candidate
genes. (D) Heat map showing the risk scores of the high and low-risk groups for the four prognostic genes in all three datasets. (E) Risk scores for the high and low-risk
groups for four prognostic genes in the GSE84437 dataset. (F) Risk scores for the high and low-risk groups for four prognostic genes in the GSE15459 dataset. (G) Risk
scores for the high and low-risk groups for four prognostic genes in the TCGA dataset.
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FIGURE 4 | Identification and application of the multigene signature. (A) Nomogram predicting the probability of survival for GC patients at 1, 3 and 5 years (B–E)
Kaplan-Meier curves of the training and validation datasets on overall survival. (F–I) Time-dependent ROC curves of nomogram in the training and validation datasets. (J)
Calibration curve of predicted results compared to actual observation results. (K) DCA demonstrating the net benefit of nomogram, clinical features model, and
multigene signature.
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dependent ROC curve in Figures 4F–I suggested that across all
datasets, the nomogram was a good predictor of OS for GC
patients. Predictions and actual observations agreed well with
the calibration curve (Figure 4J). Moreover, DCA was
performed to compare the net benefit of the nomogram
model with that of the clinical features model and multigene
signature model (Figure 4K). Compared to the other two
models, the nomogram model had a greater clinical net
benefit. These findings were verified via internal validation
and two independent external validation datasets, suggesting
the reliability and efficiency of our nomogram as a prognostic
model.

Correlation Analysis Between Four
Prognostic Genes and PPI Network
As shown in Figure 5, a strong correlation among CNN1,
MYH11, and MSRB3, was observed, with r > 0.8 (Figures
5A–D). The moderate correlation between RBMS1 and the
other three genes was observed with 0.5 < r < 0.8 (Figures
5E,F). Pairwise correlations between four prognostic genes
were visualized as a chord diagram and a heatmap (Figures
5G,H). Further, a PPI network was constructed by analyzing the
interactions between four prognostic genes using the STRING
database. Visualization of the results was performed with
Cytoscape (Supplementary Material S4).

FIGURE 5 |Correlation analysis between four prognostic genes. (A–F) Scatter plots showing the correlation between four prognostic genes. (G,H) Chord diagram
and heatmap visualizing the correlation between four prognostic genes. (I) Immunohistochemical analysis of four prognostic genes.
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FIGURE 6 | Construction of the mRNA-miRNA-lncRNA regulatory network. (A) Construction of the ceRNA network associated with GC. (B) Sankey diagram for
ceRNA network visualization. (C) Identification of the hub network for further analysis. (D) Box plots showing the expression levels of miRNAs and lncRNAs in hub genes.
(E–L) Kaplan-Meier curves showing the overall survival based on the top hub genes.
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Immunohistochemical Analysis
Immunohistochemical analysis of the HPA database indicated
that the protein products of risk-associated genes were expressed
at higher levels in GC samples than in normal samples
(Figure 5I). Immunohistochemical images of RBMS1 were
obtained from a recent study (Liu et al., 2022).

Construction of the mRNA-miRNA-lncRNA
Regulatory Network
Using the starBase database (version 2.0), the network of
mRNA-miRNA-lncRNAs, as well as the downstream target
lncRNAs, was established based on potential miRNA
interactions with four prognostic genes (CNN1, MYH11,

FIGURE 7 | Identification of the KCNQ1OT1/miR-378a-3p/RBMS1 axis. (A–D) Scatter plots showing miRNA-target co-expression of hub genes associated with
prognosis. (E) Binding site prediction for the KCNQ1OT1/miR-378a-3p/RBMS1 axis. (F–H) Correlation analysis of the KCNQ1OT1/miR-378a-3p/RBMS1 axis with
infiltrating immune cells.
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MSRB3, and RBMS1). A total of 4 mRNAs, 22 miRNAs, and
201 lncRNAs were included to generate the ceRNA network
associated with GC (Figure 6A). Sankey diagram was employed
to further visualize the relationship between the mRNA-
miRNA-lncRNA regulatory network using the “ggalluvial”
package (Figure 6B). The hub network was obtained using
the CytoHubba plug-in (Figure 6C).

To more comprehensively determine the effects on the ceRNA
network, differential expression and survival analysis were
performed using the 10 hub genes. The expression level of
miRNAs and lncRNAs for the top 10 hub genes was depicted
using box plots (Figure 6D). Based on Kaplan-Meier analysis, the
OS rate was significantly lower in GC patients with high-risk
scores for mRNA and lncRNA, while the OS rate for miRNA was
significantly higher, as shown in Figures 6E–L. One lncRNA
(KCNQ1OT1), two miRNAs (miR-378a-3p and miR-7-5p), and
one mRNA (RBMS1) were identified to be associated with
prognosis.

The results of miRNA-target co-expression suggested that
weak-moderate negative correlations existed between miRNA
and its target in four hub genes based on Spearman
correlation, except for has-miR-7-5p (p > 0.05) (Figures
7A–D). These results suggest that KCNQ1OT1 might function
as a ceRNA regulating the expression of RBMS1 by sponging
miR-378a-3p. Finally, the KCNQ1OT1/miR-378a-3p/
RBMS1 axis was identified and the KCNQ1OT1 and
RBMS1 target sites were predicted to pair with miR-378a-3p
using the TargetScan and starBase databases (Figure 7E).

Clinical Relevance of the KCNQ1OT1/
miR-378a-3p/RBMS1 Axis in GC
We proceeded to determine the clinical significance of RBMS1,
KCNQ1OT1, and miR-378a-3p at GC diagnosis and whether
their expression levels were influenced by clinical characteristics.

The expression of RBMS1 was found to be positively correlated
with pathologic stage, N stage, and T stage, while
KCNQ1OT1 and miR-378a-3p had weak correlations with age
and TNM stage (Supplementary Material S5). Univariate and
multivariate Cox regression analyses were also performed to
determine the prognostic significance of RBMS1, KCNQ1OT1,
miR-378a-3p, and clinical features.

Importantly, a significant association was found between
RBMS1high expression, age, M stage, and T stage in TCGA-
STAD cohorts (Table 1). However, the expression of
KCNQ1OT1 and miR-378a-3p was not associated with a poor
prognosis (Table 2, 3). Overall, RBMS1 expression level
may serve as an independent prognostic factor for OS in GC
patients.

Immune Infiltration, Genetic Variants,
Methylation, and sCNA
The relationships between the KCNQ1OT1/miR-378a-3p/
RBMS1 axis and infiltrating immune cells in GC were
evaluated. The lollipop plot showed that RBMS1 was positively
associated with NK cells, Mast cells, Tem, Macrophages,
CD8 T cells, and B cell-related immune responses (Figure 7F).
The association between miR-378a-3p, KCNQ1OT1, and the
immune infiltrate in GC was also assessed. Interestingly, miR-
378a-3p showed the opposite expression of the immune cell
infiltration to that in RBMS1 (Figures 7G,H).

To better understand the possible mechanisms of the
KCNQ1OT1/RBMS1 axis in GC, we analyzed the relationship
between immune infiltration and genomic data, such as mutation
profile, methylations, and sCNA. The relationships between the
KCNQ1OT1/RBMS1 axis and infiltrating immune cells in GC
were evaluated using TIMER 2.0 (Li et al., 2020) and UCLCAN
(Chandrashekar et al., 2017). Figure 8 shows the results of the
analysis. These findings indicate that mutations and sCNA of

TABLE 1 | Univariate and multivariate Cox analysis of clinical variables and RBMS1.

Characteristics Total (N) Univariate Analysis Multivariate Analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

RBMS1 370
Low 182 References
High 188 1.418 (1.017–1.976) 0.039 1.430 (1.008–2.030) 0.045
Age 367
≤65 163 References
>65 204 1.620 (1.154–2.276) 0.005 1.973 (1.368–2.847) <0.001
Gender 370
Female 133 References
Male 237 1.267 (0.891–1.804) 0.188
M stage 352
M0 327 References
M1 25 2.254 (1.295–3.924) 0.004 2.857 (1.569–5.203) <0.001
T stage 362
T1 18 References
T2 78 6.725 (0.913–49.524) 0.061 5.466 (0.736–40.608) 0.097
T3 167 9.548 (1.326–68.748) 0.025 7.411 (1.023–53.676) 0.047
T4 99 9.634 (1.323–70.151) 0.025 6.718 (0.912–49.476) 0.062

The bold value indicates a statistically significant outcome.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 92875412

Yue et al. CeRNA and Immune-Infiltration in GC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


KCNQ1OT1 and RBMS1 are associated with increased immune
infiltration.

The correlation between genes and their methylation status
was determined using different methods. First, UALCAN analysis
showed that RBMS1 and KCNQ1OT1 had a tendency for higher
methylation levels in normal tissues than in GC tissues (p =
0.848 and p < 0.0001, Figures 9A–C). Second, the results were
virtually identical when the analysis was repeated with
DiseaseMeth version 2.0. KCNQ1OT1 and RBMS1 expression
levels were also found to be negatively associated with their
methylation sites (Figures 9D–L). Third, the heatmaps showed
differential methylation regions related to RBMS1
(Supplementary Material S6).

DISCUSSION

Despite advances in multimodality therapy, GC remains one of
the leading causes of cancer deaths worldwide due to its
aggressive nature and poor prognosis. Elucidating the
molecular mechanisms and processes involved in GC and
identifying potential biomarkers may provide clues to new
therapeutic targets and influence future therapeutic decisions.

In this study, we revealed the importance of the KCNQ1OT1/
miR-378a-3p/RBMS1 axis as a ceRNA regulation network for GC
prognosis by analyzing high-throughput sequencing datasets and
exploring a multigene prognostic model for tumor-related
mortality estimation in GC patients. Most importantly, our

TABLE 2 | Univariate and multivariate Cox analysis of clinical variables and KCNQ1OT1.

Characteristics Total (N) Univariate Analysis Multivariate Analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

KCNQ1OT1 370
Low 184 References
High 186 1.318 (0.947–1.834) 0.101
Age 367
≤65 163 References
>65 204 1.620 (1.154–2.276) 0.005 1.865 (1.297–2.682) <0.001
Gender 370
Female 133 References
Male 237 1.267 (0.891–1.804) 0.188
M stage 352
M0 327 References
M1 25 2.254 (1.295–3.924) 0.004 2.612 (1.441–4.735) 0.002
T stage 362
T1 18 References
T2 78 6.725 (0.913–49.524) 0.061 6.340 (0.858–46.829) 0.070
T3 167 9.548 (1.326–68.748) 0.025 8.514 (1.182–61.341) 0.034
T4 99 9.634 (1.323–70.151) 0.025 7.704 (1.051–56.446) 0.044

The bold value indicates a statistically significant outcome.

TABLE 3 | Univariate and multivariate Cox analysis of clinical variables and miR-378a-3p.

Characteristics Total (N) Univariate Analysis Multivariate Analysis

Hazard
ratio (95% CI)

p Value Hazard
ratio (95% CI)

p Value

hsa-miR-378a-3p 440 0.869 (0.751–1.005) 0.059 0.887 (0.755–1.042) 0.144
Age 437
≤65 198 References
>65 239 1.472 (1.080–2.005) 0.014 1.736 (1.249–2.413) 0.001
Gender 440
Female 155 References
Male 285 1.026 (0.747–1.409) 0.875
M stage 420
M0 390 References
M1 30 2.571 (1.553–4.258) <0.001 2.862 (1.676–4.886) <0.001
T stage 430
T1 22 References
T2 90 7.430 (1.012–54.570) 0.049 6.188 (0.831–46.055) 0.075
T3 197 11.221 (1.562–80.606) 0.016 9.090 (1.256–65.794) 0.029
T4 121 11.753 (1.623–85.129) 0.015 9.052 (1.237–66.258) 0.030

The bold value indicates a statistically significant outcome.
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exploratory analysis revealed a potential molecular mechanism by
which RBMS1 causes poor prognosis in GC, suggesting that
RBMS1 may serve as a potential therapeutic target for GC.

The ceRNA regulatory network is reported to play a crucial
role in the development and occurrence of many types of cancer.
However, only a few studies have focused on a comprehensive
ceRNA regulatory network for predicting the prognosis of GC
patients. Therefore, we attempted to comprehensively establish a
machine-learning model and a ceRNA network associated with
prognosis using multiple GEO and TCGA datasets. A total of
234 prognostic genes with differential expression were identified.
Further, GO and GSEA revealed that these enriched modules and
pathways are closely associated with fibroblasts and

immunological responses in GC. Thereafter, a multigene
prognostic signature was constructed using LASSO regression.
With the multigene signature, GC patients can be classified into
high- and low-risk groups. The multigene signature and clinical
features were used to generate the nomogram, which was
validated using the training and test sets, GEO15459 datasets,
and TCGA-STAD. The nomogram provided accurate prognostic
outcomes and individualized risk estimates for GC patients.

An mRNA-miRNA-lncRNA regulatory network containing
4 mRNAs, 22 miRNAs, and 201 lncRNAs was obtained using the
public databases, TargetScan and starBase. The key ceRNA
network, including 2 lncRNAs, 6 miRNAs, and 2 mRNAs, was
also obtained using hub gene analysis. Expression analysis and

FIGURE 8 | Association between immune cell infiltration and genomic data of the KCNQ1OT1/RBMS1 axis. (A–C) Association between immune cell infiltration and
RBMS1 mutation. (D–K) Relationship between immune cell infiltration and sCNA of RBMS1. (L) Relationship between immune cell infiltration and sCNA of KCNQ1OT1.
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survival analysis were performed using the key ceRNA network.
Finally, the clinical outcomes, PPI network, immune cell
infiltration, genetic variants, methylation, and sCNA associated
with the prognostic sign were identified. Overall, the
KCNQ1OT1/hsa-miR-378a-3p/RBMS1 axis was found to be
associated with GC prognosis.

Some studies have experimentally studied KCNQ1OT1, miR-
378a-3p, and RBMS1 in vivo and in vitro and verified their
expression levels in GC. Zhong et al. (2021) showed that
KCNQ1OT1 promotes GC progression via miR-145-5p/
ARF6 axis. Li et al. (2022) found that KCNQ1OT1/miR-556-
3p/CLIC1 axis may promote GC growth and metastasis. Liu et al.
(2022) found that ACTA2-AS1 (lncRNA) suppressed the
malignant phenotype of GC cells by targeting the miR-378a-
3p/PLCXD2 axis as ceRNA. Liu et al. (2022) revealed the
potential molecular mechanism of RBMS1 to promote GC
metastasis, suggesting that RBMS1 may be a potential
therapeutic target. In addition, Durr et al. (2022) suggested
that KCNQ1OT1 and miR-378a may regulate mt-ATP6
content through the ceRNA axis, which may provide a
pathway for the treatment of type 2 diabetic heart. These

studies validated the expression of KCNQ1OT1/miR-378a-3p/
RBMS1 axis in gastric cancer and are consistent with our results
in the present study. However, there are still no studies on how
the KCNQ1OT1, miR-378a-3p, and RBMS1 axis play a role in the
development and progression of gastric cancer.

An lncRNA that acts as an miRNA “sponge” is known as a
ceRNA (endogenous competing RNA), which reduces the
suppressive effect of miRNAs on target-mRNAs (Karagkouni
et al., 2020). Similarly, the results of our analysis suggest that the
lncRNA, KCNQ1OT1, acts as a competitive endogenous RNA
that competitively binds tumor-suppressive miR-378a-3p,
resulting in increased expression of RBMS1 within tumors via
the KCNQ1OT1/miR-378a-3p/RBMS1 axis.

Early studies revealed that immune infiltration within the
tumor is typically associated with prognosis and response to
immunotherapy in many cancers (Fridman et al., 2011; Keenan
et al., 2019). However, to date, no studies have evaluated the role
of RBMS1 regarding immune infiltrates in the development of
GC. In this study, several databases and R packages were used to
carry out a comprehensive analysis of the relationship between
immune infiltration and GC prognosis. RBMS1 was found to be

FIGURE 9 | Correlation between methylation and the KCNQ1OT1/RBMS1 axis. (A,B) Methylation levels and protein expression of RBMS1 in GC and normal
tissues. (C) Methylation levels of KCNQ1OT1 in GC and normal tissues. (D–L) Correlation between methylation sites and the KCNQ1OT1/RBMS1 axis.
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positively associated with NK cells, Mast cells, Central Memory
T cells, and Macrophage-related immune responses. Based on
recent evidence, molecularly targeted therapies increase NK cell-
mediated tumor cell killing (Shimasaki et al., 2020). Several types
of human cancers have been reported to contain mast cells,
including malignant melanoma, breast, and colorectal cancers,
which have a poor prognosis with mast cell infiltration (Komi and
Redegeld, 2020). Persistence and antitumor immunity of memory
T cells, including effector memory T cells (Tem) and central
memory T cells (Tcm), have been demonstrated in several studies
and may be used as a biomarker of immune responses against
some cancers (Liu et al., 2020).

To better understand the possible mechanisms of
KCNQ1OT1/hsa-miR-378a-3p/RBMS1, we examined the
association between miR-378a-3p and the immune infiltrate in
GC. Interestingly, miR-378a-3p showed the opposite results to
RBMS1 during immune cell infiltration. Specifically, miR-378a-
3p had a negative correlation with NK cells, Mast cells, Central
Memory T cells, and Macrophage-related immune response.
KCNQ1OT1 was also found to be negatively associated with
NKCD56dim cells, neutrophils, Th1 cells, DC, andMacrophages.
Previous studies have shown that CD56dim NK cells gradually
decreased with disease progression in GC. Namely, GC severity is
negatively correlated with the rate of CD56dim NK cells (Izawa
et al., 2011).

Mutations, which are the cause of genetic variation, influence
evolution. In addition to genetic mutations, changes in DNA
methylation and sCNA play important roles in the transcriptional
regulation of gene expression. However, no studies have
comprehensively analyzed the associations between
RBMS1 mutation, methylation, sCNA, and immune
infiltration in GC. Our study revealed that RBMS1 has a
higher mutation rate in GC than most cancers. Further, CD4+

T cell infiltration was found to be higher in GC patients with
mutated RBMS1, while macrophage infiltration was lower in
mutated RBMS1. Previous studies specifically revealed the
importance of sCNA in tumorigenesis and tumor progression
(Klijn et al., 2010). Moreover, high sCNA was associated with
significantly increased ratios of anti-inflammatory cells, and
lower ratios of CD8+ T cell compared with low sCNA level in
GC. This correlation might be due to the progression of GC;
increased levels were found in some immune cells that exhibit
anti-inflammatory roles, such as macrophage/monocytes and
neutrophils, while CD8+ T cell decreases gradually due to
irreversible cell exhaustion. These findings suggest that a high
mutation rate and high sCNA level of RBMS1 may promote
immune infiltration and an immunosuppressive
microenvironment and impact the prognosis of patients with GC.

This study had some limitations. First, an integrated analysis
of the GC tissues is required to comprehensively verify how
KCNQ1OT1/miR-378a-3p/RBMS1 is involved in the
development of GC, which was not performed in the current
study. Second, to align with the reported standards of prognostic
models, further validation with larger patient datasets is needed to
better estimate the accuracy of this model’s predictions in diverse
patient populations. Finally, we expect to further validate the role

of KCNQ1OT1/miR-378a-3p/RBMS1 axis in gastric cancer in the
next study owing to the current experimental constraints.

These data highlight the contribution of multiple molecular
pathways and biomarkers to GC, which is consistent with our
current understanding of the disease’s pathophysiology. The
results of this study provide new insights into the underlying
molecular mechanisms of GC and reveal the KCNQ1OT1/miR-
378a-3p/RBMS1 axis as a significant prognostic factor and
therapeutic target for GC.

CONCLUSION

In conclusion, this study aimed to identify the biological
functions and pathways associated with the progression of GC
through a comprehensive bioinformatics analysis and explore the
molecular mechanisms underlying its progression.

Herein, a multigene prognostic model was constructed and the
KCNQ1OT1/miR-378a-3p/RBMS1 axis was identified as an
important prognostic factor and therapeutic target for GC,
which may provide more insights into the correlation between
lncRNA-miRNA-mRNA expression levels. However, the results
of the current study should be validated through further
molecular experiments.
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