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ABSTRACT: Unique examples of aza-Heck-based C(sp3)−H functionalization cascades are described. Under Pd(0)-catalyzed
conditions, the aza-Heck-type cyclization of N-(pentafluorobenzoyloxy)carbamates generates alkyl−Pd(II) intermediates that effect
C(sp3)−H palladation en route to cyclopropanes. Key factors that control the site selectivity of the cyclopropanation process have
been elucidated such that selective access to a wide range of ring- or spiro-fused systems can be achieved.

Cyclopropanes are routinely employed in pharmaceutical
design to moderate compound lipophilicity or N-

centered basicity.1 Reflecting their relative ease of synthesis,
peripheral cyclopropane units are featured in many marketed
drugs, whereas core cyclopropane units are encountered less
often (Scheme 1A).2 An example of the latter is the DPP-4
inhibitor saxagliptin, which possesses a cyclopropane-fused
pyrrolidine.3a This subunit is derived from pyroglutamic acid
via a lengthy Simmons−Smith-based route, making access to

more complex derivatives challenging.3b Accordingly, direct
and flexible methods that can address these issues are likely to
be of interest. A powerful but underdeveloped option involves
the intramolecular aza-palladation of an alkene (step a) in
advance of C−H palladation-initiated cyclopropanation (step
b) (Scheme 1B). Yang and co-workers have demonstrated
such processes under oxidative conditions (Scheme 1C).4

Although conceptually important, specific constraints hamper
both steps; for example, step a requires a conformationally
biasing and acidifying anilide unit and is not well suited to six-
ring cyclizations, whereas step b suffers from limited scope and
selectivity.

We and others have demonstrated that the efficiency of
alkene aza-palladation-based processes can be enhanced
substantially by replacing an external oxidant (e.g., O2 in
Scheme 1C) with a N−O bond.5 In this approach, N−O
oxidative addition unites the key processes of substrate binding
and catalyst oxidation, so the catalysis is often more robust.
The non-oxidative conditions also mean that highly tunable P-
based ligands can be used to moderate the properties of the Pd
center. Indeed, aza-Heck-based approaches of this type now
allow an expanding range of nonconformationally biased
cyclizations and cascades involving sterically and electronically
diverse alkenes.5a−f,i,j This includes asymmetric aza-Heck
cyclizations5a,d and cascade reactions involving aryl C(sp2)−
H palladation.5a,j In the present study, we outline aza-Heck-
triggered cyclopropanation processes that involve a more
challenging C(sp3)−H palladation step (Scheme 1D). To the
best of our knowledge, these are the first examples of C(sp3)−
H functionalization cascades that use newer classes of N−O
units (i.e., nonoxime ester-based).5l,m,6 Compared to Scheme
1C, notable features of these new processes include (a) the
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efficient participation of sterically encumbered alkenes, (b)
efficient 5-exo cyclizations in the absence of a conformationally
biasing and acidifying anilide unit, (c) efficient 6-exo
cyclizations, and (d) no requirement for the benzylic activation
of the target C(sp3)−H bond. We also demonstrate that either
steric or electronic control can be used to enforce the
regioselectivity of the cyclopropanation event, thereby
providing selective access to ring- or spiro-fused systems. In
broader terms, these studies offer rare examples of C(sp3)−H
cyclopropanation processes that are triggered by alkene
heteropalladation, a sequence that is likely challenging because
of the reversibility of the migratory insertion step (vide
infra).4,7,8

A mechanistic analysis of the processes developed here is
outlined in Scheme 2A. The N−O oxidative addition of 1 is
expected to provide the aza-Pd(II) intermediate Int-I. Prior
work has indicated that efficient alkene aza-palladation requires
the dissociation of pentafluorobenzoate from Int-I to give Int-
I′.5b Int-I′ undergoes cyclization and carboxylate association to

give the alkyl−Pd(II) intermediate Int-II, which can provide
palladacyclobutane Int-III via concerted metalation deproto-
nation-type metalation. Reductive elimination from Int-III
then releases the cyclopropane product 2. Depending on the
nature of R (vide infra), alternative palladacyclobutanes may
be accessible. The carboxylic acid released during the
cyclpropanation sequence is expected to undergo deprotona-
tion by triethylamine, and the resulting triethylammonium salt
will triger the facile protodecarboxylation of pentafluoroben-
zoate to release C6F5H.9 Previous studies indicated that alkene
aza-palladation is reversible under cationic conditions (vide
infra),5j,10 so the success of the process is likely to dependent
on the efficiency of the carboxylate-mediated C(sp3)−H
metalation step (Int-II to Int-III). Here, external carboxylate
additives (R′CO2M) are likely required because the penta-
fluorobenzoate released during N−O oxidative addition is
highly dissociative and a relatively weak base. Note that the
optimal mechanistic scenario requires a cationic species for
aza-palladation (Int-I′) and a neutral intermediate for C(sp3)−
H metalation (Int-II). As such, optimal conditions require an
appropriate trade-off because the complete partitioning of
pathways at each stage is likely unattainable.

Proof-of-concept studies focused initially on the cyclization
of the O-pentafluorobenzoyl system 1a to target 2a (Scheme
2B). Under the indicated conditions and in the absence of a
carboxylate additive, target 2a was generated in only a 13%
yield (entry 1). The addition of 100 mol% CsOPiv markedly
increased the efficiency such that 2a was formed in a 56% yield
(entry 2). During these initial studies, other optimal
parameters were established. Most significantly, from a screen
of P ligands commonly employed in aza-Heck processes, it was
found that L1 (CgPPh) was by far the most efficient.5b Note
that P ligands were specifically noted as being incompatible
with the method in Scheme 1C.4 To optimize the process
further, a library of approximately 15 derivatives was prepared
from CgPH (Scheme 2C and the SI).11 Selected evaluation
results are shown in entries 3−6, with the key finding being
that the benzofuryl system L3 could provide 2a in an 80% yield
over 6 h. At this stage we evaluated the choice of the O-based
leaving group (entries 7 and 8), which confirmed that the
−OFBz system (1a) was superior to both −OTs and −OPiv
variants 1a′ and 1a″, respectively. The latter result is consistent
with the idea that a cationic aza-palladium intermediate offers
an optimal aza-palladation efficiency (Int-I′ to Int-II).

The optimized conditions were proven to be applicable to
the synthesis of a wide range of cyclopropane-fused
pyrrolidines (Table 1A). For example, a variety of alkyl
substituents were tolerated at R1, as evidenced by the efficient
formation of 2b−f. Note that the bulky secondary alkyl
substituents of 2b and 2f did not significantly diminish the
reaction efficiency relative to, for example, that of 2c. The
electronically distinct styrenyl system 1g also participated to
provide adduct 2g, albeit with a more modest efficiency.
Substituents can be introduced at C4 and C5 of the targets, as
demonstrated by the formation of 2h and 2i, respectively. For
the former, minimal diastereoselectivity was observed, whereas
the latter was generated as a single diastereomer. The
hydrogenolytic N−Cbz deprotection of 2i allowed access to
the N−DNs derivative 2i′. 2i′ was characterized by single-
crystal X-ray diffraction, which revealed a syn-relationship
between the methyl and ethyl substituents.12 This outcome is
consistent with the alkene aza-palladation step being reversible
because the productive palladacyclobutane Int-2i is formed via

Scheme 2. Mechanistic Analysis and Optimization of the
Cascade Process

aIsolated yield. bFurther optimization results, including the evaluation
of other ligands, are given in the SI.
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the disfavored cyclization mode (TS-2i) (Table 1B).13 For
system 1j, where R1 = Me, the expected product 2j was formed
in a 55% yield alongside smaller quantities of spiro-fused

cyclopropane iso-2j (14% yield) (Table 1C). The formation of
the latter is presumably facilitated by the C(sp3)−H metalation
of the more sterically accessible (versus Table 1A) methyl
group of Int-II′.14 To enforce this selectivity, systems
possessing a substitution at the internal allylic position (C3)
were investigated (Table 1D). In the reaction, the cyclization
of the ethyl-substituted system 1k provided iso-2k in a 73%
yield, and the corresponding ring-fused cyclopropane was not
observed. This process required an increased reaction
temperature (160 °C) and an alternate carboxylate additive
(KOAc). These modified conditions were also effective for the
selective formation of iso-2l and the intriguing vicinally
dispirofused adduct iso-2m.15

Applying the reaction conditions to, for example, the
homologue of 1a did not provide the corresponding cyclo-
propane-fused piperidine (see the SI), presumably because 6-
exo aza-palladation is relatively demanding. This limitation can
be circumvented by instead using systems that possess a degree
of conformational bias (Table 2). Indeed, the cascade

cyclization of 1n, which possesses an aromatic linker, was
efficient, delivering the cyclopropane-fused tetrahydroisoqui-
noline 2n in a 76% yield. As mentioned earlier, the process is
relatively insensitive to the steric demands of the alkene
substituent (R1), so the bulky isopropyl group of 2p was well-
tolerated. The protocol offers a useful scope with respect to the
aromatic component, with both electron-rich (2q, 2r, and 2t)
and electron-poor (2s) units participating. Diastereoselective
processes are achievable for systems where R2 ≠ H; this was
demonstrated by the highly stereocontrolled cyclization of 1u
to 2u, which favored the syn-diastereomer (>15:1 dr). For
these processes, spiro-fused cyclopropanes (cf. iso-2j) were not
observed, which likely reflects the inherent preference for
C(sp3)−H palladation at the benzylic position. For many of
the examples in Table 2, the use of Pd2(dba)3 as the precatalyst
resulted in purification problems because dba coeluted with

Table 1. Cyclopropane-Fused Pyrrolidines

aL3 (50 mol %) was used. bDNs = 2,4-dinitrophenylsulfonyl. cL3 (30
mol %) was used, and the reaction time was 24 h.

Table 2. Cyclopropane-Fused Tetrahydroisoquinolines

aPd2(dba)3 (5 mol %) was used as the precatalyst. bL3 (50 mol %)
was used.
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the product during chromatography. This issue was alleviated
by instead using Pd2(p-MeO-dba)3.16,17

We have established that the cascade cyclopropanation
procedure can be used to generate reactive donor−acceptor
cyclopropanes. A preliminary example process involves the
conversion 3a to piperidine 4a via initial (nonconformationally
biased) 5-exo aza-palladation (Table 3A). This generates Int-

II″ in which there is a choice of three different C(sp3)−H
bonds for metalation, leading to either four- or six-membered
palladacycles (not depicted).18 The productive pathway
involves metalation at the C3 position en route to donor−
acceptor cyclopropane Int-IV. This is primed for thermally
promoted ring opening to provide piperidine 4a.19,20

Accordingly, the rearrangement process transfers the methyl-
idene CH2 unit of the starting material (3a) to C3 of the
target. The metalation selectivity at the stage of Int-II″
contrasts with the processes in Table 1D; this is presumably
due to the electronic activation provided by the ketone
substituent, which also allows the process to operate at a lower
temperature (110 °C versus 140−160 °C). To improve the

efficiency, optimization studies were undertaken, resulting in
the conditions shown in Table 3B. The protocol was applicable
to a range of systems 3a−g with different substituents at R1, R2,
or R3. In general, the processes were efficient, and a mixture of
alkene regioisomers was obtained in each case. Based on the
mechanistic analysis in Table 3A, the C3−C4 regioisomers of
4a−g result from the isomerization of the initially generated
C2−C3 regioisomer under the reaction conditions. Attempts
to intercept the donor−acceptor cyclopropane intermediates
(Int-IV) in cycloaddition processes using either internal (4d)
or external π-unsaturates (e.g., activated ketones) have so far
been unsuccessful.20

In summary, we demonstrate the first examples of aza-Heck-
triggered C(sp3)−H functionalization cascades that lead to
ring- or spiro-fused cyclopropanes. To enable these processes,
a library of largely novel P ligands was designed and evaluated,
from which L3 emerged as the optimal ligand. The resulting
methodology provides an attractive approach to the synthesis
of diverse heterocycles containing core cyclopropanes. These
are medicinally valuable scaffolds that are challenging to access
by other means. From a reactivity viewpoint, our observations
have elucidated how steric or electronic control can be used to
govern the C(sp3)−H metalation selectivity. In broader terms,
the processes described here are unusual because they exploit
alkene heteropalladation to trigger C(sp3)−H cyclopropana-
tion.
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