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Abstract: The mevalonate pathway produces cholesterol and other compounds crucial for numerous
cellular processes. It is well known that age and sex modulate this pathway in the liver. Recently, similar
effects were also noted in different brain areas, suggesting that alterations of the mevalonate pathway
are at the root of marked sex-specific disparities in some neurodevelopmental disorders related to
disturbed cholesterol homeostasis. Here, we show how the mevalonate pathway is modulated in
a sex-, age- and region-specific manner, and how maternal exposure to exogenous compounds can
disturb the regulation of this pathway in the brain, possibly inducing functional alterations.
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1. Introduction

The mevalonate (MVA) pathway produces cholesterol, one of the most important molecules
for cellular, tissue, and organism physiology given its crucial structural and metabolic functions.
Besides cholesterol, isopentenyl tRNAs, dolichol phosphate, farnesyls, geranylgeranyls, and ubiquinone
are also produced by the MVA pathway, and these components are crucial for numerous cellular
processes such as transcription, protein N-glycosylation, protein prenylation, and mitochondrial
electron transport (Figure 1) [1].

Cholesterol is one of the main components of the plasma membrane determining its chemical-
physical properties, such as fluidity and stability. Notably, cholesterol is not uniformly distributed in cell
membranes, rather it is concentrated in specialized sphingolipid-rich domains called rafts and caveolae,
which are involved in signaling across membranes and thus, are important for cellular functions [2,3].
In the adult brain, about 70–80% of cholesterol is present in myelin sheaths made by oligodendrocytes
to insulate axons allowing saltatory electrical signal conduction. Moreover, cholesterol is a precursor
for steroid hormones and bile acids [4]. Consequently, imbalanced cholesterol metabolism very often
causes pathological changes. For instance, it is well-known that cholesterol accumulation at the artery
wall is determinant for the pathogenesis of atherosclerosis and cardiovascular diseases (CVDs). On the
other hand, inadequate cholesterol production can likewise be fatal. The suppression of cholesterol
biosynthesis in neuronal precursor cells during development results in a reduction of brain size and
perinatal lethality in rodents [5].
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Figure 1. Schematic representation of the mevalonate (MVA) pathway and its end-product 

functions. 
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obtained by food intake. Although cholesterol synthesis occurs in all tissues, the liver represents the 
center of cholesterol homeostasis: it contributes a large fraction to the bodily cholesterol pool, and it 
helps to eliminate cholesterol by uptake of lipoproteins, storage of esterified cholesterol and its 
release after conversion into bile acids. Cholesterol synthesis is a complex process that starts with the 
conversion of acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Then, HMG-CoA is 
converted to mevalonic acid (MVA) by the 3-hydroxy-3-methylglutaryl Coenzyme A reductase 
(HMGCR), which represents the rate-limiting enzyme in cholesterol biosynthesis. Subsequently, a 
series of enzymatic reactions leads to the production of 3-isopenenyl pyrophosphate, farnesyl 
pyrophosphate, squalene, and lanosterol. Finally, a long 19-step process is needed to obtain 
cholesterol [6]. The cellular level of cholesterol is regulated by an efficient feedback mechanism 
balancing biosynthesis, import and excretion based on a family of transcription factors known as 
sterol regulatory element-binding proteins (SREBPs). In sterol-deprived cells, SREBPs precursors are 
proteolytically cleaved to originate the N-terminal active fragment (n-SREBP), which translocates 
into the nucleus and activates the transcription of genes required for cholesterol synthesis and uptake 
[7]. In addition to long-term regulation, HMGCR also undergoes 
phosphorylation/dephosphorylation, which affect its enzyme activity at a shorter time scale [6]. A 
plethora of experimental findings demonstrate that peripheral cholesterol homeostasis is sex- and 
age-dependent, and this peculiarity may be related to the sex-related incidence of cholesterol-
dependent pathologies, e.g., CVD [8]. 

The blood–brain barrier (BBB) separates brain cholesterol from the rest of the body; thus, the 
homeostatic control of this compound in the central nervous system is independent from the 
periphery, but probably governed by the same regulatory circuits. Our research group, and other 
laboratories, recently highlighted that sex and aging can severely influence cholesterol metabolism 
also in the brain [9–15]. 
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To maintain proper cholesterol levels, the body employs a large protein network operating in
cellular and blood compartments. Cholesterol in human body can both be synthesized by cells and
obtained by food intake. Although cholesterol synthesis occurs in all tissues, the liver represents the
center of cholesterol homeostasis: it contributes a large fraction to the bodily cholesterol pool, and it
helps to eliminate cholesterol by uptake of lipoproteins, storage of esterified cholesterol and its release
after conversion into bile acids. Cholesterol synthesis is a complex process that starts with the conversion
of acetyl-CoA to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). Then, HMG-CoA is converted to
mevalonic acid (MVA) by the 3-hydroxy-3-methylglutaryl Coenzyme A reductase (HMGCR), which
represents the rate-limiting enzyme in cholesterol biosynthesis. Subsequently, a series of enzymatic
reactions leads to the production of 3-isopenenyl pyrophosphate, farnesyl pyrophosphate, squalene,
and lanosterol. Finally, a long 19-step process is needed to obtain cholesterol [6]. The cellular level of
cholesterol is regulated by an efficient feedback mechanism balancing biosynthesis, import and excretion
based on a family of transcription factors known as sterol regulatory element-binding proteins (SREBPs).
In sterol-deprived cells, SREBPs precursors are proteolytically cleaved to originate the N-terminal
active fragment (n-SREBP), which translocates into the nucleus and activates the transcription of genes
required for cholesterol synthesis and uptake [7]. In addition to long-term regulation, HMGCR also
undergoes phosphorylation/dephosphorylation, which affect its enzyme activity at a shorter time
scale [6]. A plethora of experimental findings demonstrate that peripheral cholesterol homeostasis
is sex- and age-dependent, and this peculiarity may be related to the sex-related incidence of
cholesterol-dependent pathologies, e.g., CVD [8].

The blood–brain barrier (BBB) separates brain cholesterol from the rest of the body; thus,
the homeostatic control of this compound in the central nervous system is independent from the
periphery, but probably governed by the same regulatory circuits. Our research group, and other
laboratories, recently highlighted that sex and aging can severely influence cholesterol metabolism
also in the brain [9–15].

Here, we will illustrate the sex- and age-dependent differences in cholesterol homeostasis, focusing
on the intergenerational effects induced by exogenous compounds in the brain.
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2. Sex- and Age-Dependent Differences of MVA Pathway in the Liver

A critical problem associated with aging is the increased occurrence of hypercholesterolemia,
which represents an alarming risk factor for CVDs. CVDs display dimorphic features that may
depend on sex-dependent regulation of cholesterol homeostasis [16]. It has been observed that the
flow through the MVA pathway, and in turn cholesterol biosynthesis, is affected by sex and aging.
For instance, hepatic HMGCR content and activity are similar in female and male rats at 8 days of age,
whereas they develop sexually distinct features at 15-days and 3-months of age. These differences
are due to the elevation of plasma estrogen levels, starting from 15 post-natal days in female rats [17].
However, the lower HMGCR activity in female rats does not lead to a concurrent reduction in
plasma cholesterol. This discrepancy is explained by the fact that estrogens balance the suppression of
cholesterol biosynthesis by increasing intestinal cholesterol absorption [4,18,19]. The dimorphism in
MVA pathway regulation is also present during aging. In the elderly, loss of homeostasis frequently
leads to changes in the biochemical composition of the body, and hypercholesterolemia represents one
of the most common metabolic alterations occurring with increasing age in humans and pre-clinical
experimental models [20–22]. Although cholesterol plasma levels tend to increase in both males
and females with age, the molecular mechanisms underlying the age-related hypercholesterolemia is
different between sexes. In males, the age-dependent buildup of reactive oxygen species (ROS) induces
hyperactivation of HMGCR, which reflects the increment of cholesterol biosynthesis. Conversely,
the fall in plasma estrogen concentration upregulates HMGCR activity, and induces subsequent
hypercholesterolemia in females. Notably, both aged male and female rats show decreased HMGCR
phosphorylation causing increased cholesterol synthesis. The causes differ: in aged male rats this
depends on an ROS-induced hyperactivation of protein phosphatase 2 A (PP2A), while in aged female
rats it depends on an estrogen-induced reduction of AMP activated kinase (AMPK) activation. In fact,
the activity of AMPK is constant in aged males, but decreases in females [6]. This work has been carried
out using separately male and female, but other papers support these sex- and age-dependent results.
In fact, it has been demonstrated that age and sex differently impact on cholesterol metabolism in
LDL-/- mice [23] and in human beings [24].

Due to its pivotal role in cholesterol biosynthesis, HMGCR is an important pharmacological target
for the treatment of hypercholesterolemia. Up to now, the experimental evidence obtained on males
has been directly translated to females with respect to clinical practice without considering these
well-established sex-differences. In the era of personalized medicine, it seems urgent to consider the
age- and the sex-dependent differences to optimize preventive, diagnostic, and therapeutic approaches
to combat hypercholesterolemia [8].

3. Cholesterol Metabolism in the Brain: What about Sex and Age?

The importance of cholesterol in the central nervous system (CNS) is primarily underlined by
its abundance. The brain represents only the 2% of the total body weight but contains 23% of the
whole-body cholesterol [25].

Cholesterol is an essential structural component of myelin sheaths and neuronal membranes.
The formation, shape, and release of synaptic vesicles, which have particularly high cholesterol content
(40 mol%), depend on this molecule [26]. Cholesterol is not equally distributed in membranes of
brain cells, instead it is more present in the inner part of the plasma membrane and in the lipid rafts,
which regulates a number of molecular processes involved in chemical synaptic transmission [2].

As mentioned above, brain cholesterol metabolism is separated from the rest of the body,
since the BBB prevents the passage of lipoproteins. Thus, all cholesterol present in the CNS is
synthesized in situ through the MVA pathway [27]. In the mouse brain, cholesterol is synthesized
at a rate of 0.26 mg/day during the first week of life. In adult animals, the synthesis exceeds
the need and surplus cholesterol is excreted into the plasma at a rate of about 0.023 mg/day [28].
The conversion of cholesterol to 24-S hydroxycholesterol (24S-OHC) represents the major pathway
for cholesterol excretion in the brain. Indeed, 24S-OHC is sufficiently hydrophilic to cross the
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BBB and flow into the bloodstream [29]. The 24S-OHC production is catalyzed by cholesterol
24-hydroxylase (CYP46A1), a cytochrome p450 family member that is mainly expressed in neurons.
In addition to this pathway [30], other studies demonstrate that 5α-hydroxy-6-oxocholesterol
(3β,5α-dihydroxycholestan-6-one), 7β-hydroxycholesterol and 7-oxocholesterol, which are generally
considered cholesterol metabolites formed through reactive oxygen species, can contribute to cholesterol
removal from the brain at rates of about 0.1, 2, and 2 mg/24 h, respectively [31].

A well-accepted model for cholesterol homeostasis in the brain suggests that during the
embryonic stage, the period of major growth and cholesterol-rich myelin formation, and before
astrocyte differentiation, neurons are able to meet their need for cholesterol by biosynthesis. Postnatally,
neurons are thought to attenuate their synthesis, and import cholesterol from astrocytes. Indeed,
cholesterol biosynthesis in glial cells is maintained at high rates also in the adult brain. Once synthetized,
cholesterol is integrated into apolipoprotein E (apoE)-containing lipoproteins, which are secreted by
astrocytes through ATP Binding Cassette A1 (ABCA1) [32,33]. The transcription factor coding for
ABCA1 is the nuclear receptors liver X receptor (LXR), which is activated by 24S-OHC (Figure 2) [34].
Subsequently, apoE-containing lipoproteins are then taken up by neurons through endocytosis mediated
by Low Density Lipoprotein Receptor family members (LDLR, LRP1, LRP1b, LRP2, VLDLR) [35].
Therefore, the import of cholesterol from astrocytes may allow neurons to save energy for the generation
of electrical activity [36].
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The MVA pathway is differently regulated in brain regions, which are known to differ in
energy balance, metabolism, cytoarchitecture, and white matter composition. HMGCR exhibits specific
expression and activation profiles among different brain areas. For instance, cortex, hippocampus,
brain stem and cerebellum are characterized by different protein levels of the enzyme. In particular,
HMGCR content is high in hippocampus and cortex, and very low in brain stem. Furthermore, HMGCR
is more phosphorylated in brain stem than in hippocampus, cortex, or cerebellum, corroborating
a region-specific activation of the MVA pathway [10]. Similarly, sterol regulatory element binding
protein 2 (SREBP2) and other proteins involved in the regulatory network show distinct distribution
and activation patterns in the brain [10,37]. In addition, regional distribution of LDLR [10] and
lipolysis-stimulated lipoprotein receptor (LSR) [38], two important receptors involved in cholesterol-rich
lipoprotein uptake, has been reported as well. High activation of the MVA pathway does not necessarily
correspond to a high content of cholesterol, or vice versa. In fact, even though the brain stem possesses
the highest cholesterol content with respect to other brain areas [39,40], the activity of MVA pathway
appears nearly suppressed [10]. These data agree with other reports demonstrating a different
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cholesterol turnover in distinct brain regions [41,42]. The reported evidence emphasizes that the
different levels of key proteins controlling cholesterol metabolism across the brain may reflect the
regional needs of cholesterol required for proper functioning [43,44].

The MVA pathway shows not only regional, but also age- and sex-specific differences. In fact,
it has been demonstrated that HMGCR levels are lower in the hippocampus of 3-month-old female
rats than in age-matched males. Moreover, differences in LDLR were also observed in aged rats,
since its expression is higher in the hippocampus and lower in the cortex of females with respect to
age-matched males [11]. This sex- and age-dependent dimorphism, especially observed in regions
crucial for learning and memory, may have clinical relevance, as marked disparities in the incidence,
manifestation, prognosis, and treatment of neurodegenerative disease have been observed between
the sexes.

Mutations in genes involved in the MVA pathway or cholesterol metabolism, cause neurologic
and psychiatric diseases such as Smith–Lemli–Opitz syndrome (SLOS), Niemann-Pick type C
disease (NPC), and desmosterolosis [26]. However, other brain diseases have been related to
MVA/cholesterol metabolism such as Autism spectrum disorder (ASD) [2], Huntington’s disease
(HD) [29,45], Alzheimer’s disease (AD) [27,46–48], and Parkinson disease (PD) [49]. Interestingly,
most of them display sex-related differences either on the incidence or severity of symptoms, such as
NPC [50,51], AD [52–54], ASD [55–57], PD and HD [58]. In this context, more efforts are required to
clarify whether the sex-dependent disparities are due to differences in MVA/cholesterol metabolism.

4. Modulation of MVA Pathway by Endogenous and Exogenous Compounds

The MVA pathway, and in particular HMGCR, are regulated by endogenous signals to maintain
the proper cholesterol content. The principal regulators are the major end-products of the biosynthetic
pathway itself, which act through negative feedback mechanisms. Notably, specific proteins can
monitor the intracellular level of sterols by means of a polytopic intra-membrane sequence called
Sterol Sensing Domain (SSD) [4,28]. Moreover, the MVA pathway, namely HMGCR activity, is tightly
controlled by several hormonal signals under physiological conditions. These include insulin, glucagon,
glucocorticoids, thyroid hormones, and estrogen. Insulin appears to stimulate HMGCR activity by
increasing its transcription rate by promoting SREBP-1 and SREBP-2 activity, leading to increased
synthesis of both fatty acid and cholesterol in liver and extra-hepatic tissues [59,60]. On the contrary,
glucagon reduces plasma cholesterol content [61], mainly by increasing the level of hepatic LDLR [62,63].
HMGCR is also controlled by the circadian rhythm due to variation of the levels of insulin and glucagon.
Thyroid hormones promote cholesterol synthesis inducing hmgcr gene transcription and enhancing
mRNA stability [64]. Moreover, thyroid hormones control HMGCR activity decreasing phosphorylation
via AMPK [65]. Finally, glucocorticoids decrease HMGCR protein levels [61]. Regarding estrogens,
conflicting data are reported. Experimental evidence indicated that estrogens increase hepatic HMGCR
activity by stabilizing its transcript levels [61]; nevertheless, 17β-estradiol also decreases HMGCR
levels via feedback regulation following the increased cholesterol uptake [66,67].

Aside endogenous signals, the MVA pathway can also be regulated by exogenous compounds.
The most well-known are statins, a class of molecules that lowers cholesterol biosynthesis by irreversible
inhibition of HMGCR activity. In 1976, Endo and coworkers isolated the first natural HMGCR inhibitor
(mevastatin, also known as compactin) from Penicillium citrinum [68]. Four years later, lovastatin
(or mevinolin) was isolated from Aspergillus terreus [69]. These natural statins are produced via
polyketide pathways. Specifically, polyketides constitute a large group of structurally different
secondary metabolites synthetized by fungi. To date, the reason why fungi produce HMGCR inhibitors
is not entire clear. These compounds may inhibit the growth of environmental competitors [70].
Considering their powerful inhibition of HMGCR activity and, in turn, cholesterol biosynthesis,
natural and synthetic statins successfully entered clinical practice, becoming the gold standard to
reduce hypercholesterolemia and the risk of CVD [71,72]. Despite the extensive clinical use of statins,
evidence for putative sex-dependent differences is inconclusive and limited. For instance, statins seem
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to induce similar effects between the sexes in secondary CVD prevention, but conflicting data are
reported concerning primary CVD prevention [73]. Two main causes may be at the root of these
conflicting data: (i) the poor representation of women in clinical trials; (ii) the fact that women adhere
less to the treatment because of family caregiving and more severe adverse side effects [74].

Different experimental models have shown that the MVA pathway can be modulated by several
exogenous compounds other than statins, such as particulate matter (PM 2.5) [75], Bisphenol A
(BPA) [76], polyprenols [77], Omega3 fatty acids [23,78,79], antioxidants [80,81], tocotrienols [82],
and myclobutanil [83]. Unfortunately, most of the studies analyzed the effects of exogenous compounds
without addressing sex-dependency and thus missing a critical factor in understanding the impact of
these compounds on the MVA pathway. Just to give an example, a recent study demonstrates that female
mice are more susceptible than their male counterparts to ambient PM2.5 exposure, with cholesterol
levels increased only in exposed female mice compared to control group [84]. Furthermore, evaluating
the toxicity of the fungicide myclobutanil (MYC) in zebrafish, Pang and colleagues demonstrated a
marked sex-specific modulation of liver cholesterol metabolism. In particular, the authors found that
exposure to MYC increases the levels of genes involved in the cholesterol synthesis, including HMGCR,
in female animals, while they observed an opposite effect in males, where expression levels were
significantly reduced [83].

Maternal Exposure Effects of Exogenous Compounds on MVA Pathway in the Brain

It is well-established that the exposure to pollutants, drugs and other exogenous compounds
during pregnancy and lactation represent a serious health concern not only during fetal and postnatal
development, but also during adulthood. The hypothesis of a fetal origin of adult diseases states
that any challenge occurring in utero permanently changes the body’s structure and function in ways
which program the appearance of disease in later life’ [85]. To date, numerous papers demonstrate
that maternal exposure to exogenous and potentially dangerous compounds causes disorders in the
offspring [86–90].

Any compound impacting HMGCR activity, if able to cross the BBB, can affect the activation of
MVA pathway in the brain, thus inducing prospective functional alterations, which can also be related
to altered behavior [28,46,91]. A critical function of MVA pathway in the brain is the regulation of
neurite elongation [92,93]. In particular, the rate of neurite extension increases upon MVA pathway
inhibition, suggesting that an abnormal activity of this pathway during pregnancy and/or lactation
may negatively impact this critical period of brain development. Moreover, changes in cholesterol
production can affect neurotransmission by altering synapse structure, formation, and plasticity [32,46].
Perinatal inhibition of the MVA pathway by simvastatin prevents the detrimental effects on affective
and cognitive components induced by a high fat diet in the offspring [94] supporting the idea that a
proper amount of cholesterol is crucial for brain function.

Some drugs, commonly used to treat neurological disorders, and often prescribed to
pregnant women, may have profound effects on brain development in the offspring. For instance,
maternal exposure to aripiprazole (ARI), used to treat patients with schizophrenia and bipolar disorders,
inhibits the 7-dehydrocholesterol reductase (DHCR7), the last enzyme in cholesterol biosynthesis.
The inhibition causes accumulation of 7-dehydrocholesterol (7-DHC) in the brain of embryos [95] and
affects neuronal viability, proliferation and differentiation. Notably, mutation in the gene encoding
DHCR7 is causative for Smith–Lemli–Opitz Syndrome (SLOS), a neurodevelopmental disorder
characterized by multiple congenital malformations in different organs, intellectual disabilities,
and behaviors characteristic of autism spectrum disorders [27], unfortunately in this study the
sex-dependent difference have not taken in consideration. We have shown that maternal exposure to
valproic acid (VPA), a drug used to cure epilepsy, induces sex-, age-, and region-specific alterations of
the MVA pathway in the offspring’s brains. In particular, cerebellum, cortex, hippocampus, and nucleus
accumbens were affected in a sex-dependent manner, whereas no changes were shown in amygdala
and dorsal striatum. These alterations were inhomogeneous, leading to hyperactivation or suppression
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of MVA pathway in relation to each brain area and in dependence on age. This peculiar behavior
suggests a complex regulation depending on the distinctive structures and functions, and on the sexual
dimorphism characterizing this organ. For these reasons, it is not surprising that the response to the
same stimulus differ substantially depending on the brain region and the physiological context [96,97].
Prenatal exposure to VPA is a well validated experimental model of ASD [98], suggesting that the
VPA-induced effects on MVA pathway may be connected with this neurodevelopmental disorder
displaying a sex-specific onset with a 3:1 male to female ratio [55]. Sex- and region-dependent effects
have also been reported following in utero ethanol exposure in rodents. For instance, Soscia and
colleagues found decreased cholesterol levels in the cerebellum of newborn rats exposed to ethanol
during gestation [99]. Similarly, other studies on rat fetuses prenatally exposed to ethanol revealed
a reduction in the amount of cholesterol in the neocortex. Western blot analyses suggest that the
reduction of cholesterol levels is due to increased cholesterol efflux, as ABCA1 transporters were
significantly upregulated upon ethanol prenatal exposure. Importantly, the authors highlighted a
sex-dependent effect since cholesterol metabolism was only affected in the brains of female fetuses [100].
Another study suggested that prenatal ethanol exposure exerts long-term effects on the offspring,
as adult rats prenatally exposed to ethanol showed an increased brain cholesterol content [101].
Notably, fetal alcohol syndrome (FAS) shares several common features with SLOS, being characterized
by growth retardation, facial abnormalities, and behavioral alterations [100]. Considering that
morphological and behavioral dysregulations observed in SLOS are caused by mutations in the gene
encoding for DHCR7, further research will reveal whether disturbances in cholesterol metabolism
contribute to the outcomes associated to FAS. Furthermore, shedding light on these molecular
mechanisms may lead to novel therapeutic strategies based on cholesterol modulation.

Several studies suggest effects in the offspring after maternal exposure to plastic pollutants.
For instance, phthalates, present in many consumer products, have received both media attention
and regulatory scrutiny because of their toxic effects on reproduction and development [102,103].
Xu and colleagues reported that Di-(2-ethylhexyl)-phthalate (DEHP), one of the most widely used
industrial plasticizer, exerts detrimental effects on brain lipid profile upon maternal exposure. Indeed,
the administration of DEHP at the dose of 1500 mg/kg from the beginning of the rat gestation
significantly reduced the sphingomyelin and free cholesterol content of the brain of the offspring [104].
Besides DEHP, bisphenol A (BPA) is often considered a prototype exogenous molecule to study
the impact of contaminants on human and environmental health. Exposure to this compound has
been associated with serious endocrine-disrupting effects in humans and wildlife [105]. The effects
of maternal exposure to BPA are principally obesity and dyslipidemia [106]. More recently, it has
been demonstrated that exposure of rats to BPA during gestation and lactation, even at low doses
(10 µg/kg/day), induces life-long dimorphic changes in metabolic homeostasis of the offspring:
at weaning, female pups have higher plasma cholesterol and triacylglycerol levels than males, while at
adult age, males have lower visceral fat than females. Notably, only females show hyperactivity
suggesting that BPA can induce sex-dependent changes in behavior [107]. Maternal exposure to BPA
may interfere with developmental programs in offspring, producing adverse outcomes, specifically
altering the dimorphic development of many neuronal networks [108]. Indeed, most research on
BPA focuses on sex-dependent differentiation of brain regions controlling reproduction, estrogen and
testosterone signaling [108] and the neuroendocrine system [109–114].

Prenatal exposure to BPA mainly affects lipid metabolism, at least in peripheral tissues [115–117],
but its effects on brain lipid metabolism are not very well understood. Recently, we demonstrated that
prenatal exposure to BPA, even at a dose lower than 4 µg/kg/day (the approved threshold by European
Food Safety Authority) affects cholesterol metabolism in the brain of rat fetuses [118]. In exposed animals,
HMGCR activity was increased. Similarly, LDLR levels were also higher in the BPA group compared
to controls, suggesting a significant loss of cholesterol homeostasis. The modulation of HMGCR activity
was paralleled by changes in proteins associated with the MVA pathway. In particular, the active
fractions of RhoA and Ras, prenylated proteins controlling neurite outgrowth, synaptic connectivity,
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and memory [46], were affected in the brains of fetuses upon maternal exposure to BPA. Interestingly,
BPA only induced sex-dependent alterations at the highest dose tested (250 µg/kg/day), and enhanced
HMGCR activity in male, but not in female fetuses. On the contrary, no sex-dependent modulation
was observed at the dose of 2.5 µg/kg/day [118]. Since proper activation of the MVA pathway assures
appropriate neurite outgrowth [92,93] and its disturbance contributes to neurodevelopmental disorders
such as ASD [96,97], these data suggest a dangerous role of in utero BPA exposure in brain development
(Figure 3).
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5. Conclusions and Perspectives

The MVA pathway is crucial for brain development and functioning. The importance of normal
sterol metabolism is evidenced by the many genetic disorders associated with mutations in cholesterol
biosynthesis enzymes. Prenatal exposure to drugs and chemicals present in the environment, food,
and consumer products, can affect key developmental pathways. When exogenous compounds cross
the placenta- and blood-brain barrier, they can perturb brain development and cause neuro-pathological
changes in the offspring. It is well-accepted that exogenous factors strongly contribute in the etiology
of childhood and adult disease. The findings reported here support the hypothesis that deleterious
effects of common chemicals and drugs are due, at least in part, to their ability to disrupt MVA pathway.
However, further investigations are needed to clarify critical points: the molecular mechanisms
mediating long-term effects of exogenous compounds are largely unknown and the specific chemical
concentration ranges that pose a risk to health during prenatal development are still elusive. Moreover,
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data on putative brain epigenetic modulations induced by mother exposure to exogenous compounds
and affecting MVA pathway in the brain are missing.

Sex-specific differences in response to external stimuli are present during prenatal life. However,
there is a gap in knowledge about the mechanism explaining how sex modulates the susceptibility
with respect to environmental chemicals in the offspring. Knowing the sex-dependent responsiveness
of the fetus will be indispensable to instruct specific interventions and recommendations.
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