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Abstract

In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses,
symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations
suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health
conditions, comorbidities, genetics and other factors—compounding the complexity of COVID-19 pathobiology and
potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for
efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a
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novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with
comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin
and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with
established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP,
NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19)
that will help researchers and diagnosticians alike.
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Introduction
The devastating outbreak of the novel, highly contagious Coro-
navirus Disease (COVID-19), originating in Wuhan, China, has
rapidly spread worldwide since first reported in early January
2020. COVID-19 has created major challenges for worldwide
health systems, caused global disruption and has had far-
reaching consequences to the global economy [1]. In response,
the World Health Organization declared a global pandemic; as
of 9 February 2021, there are more than 106 million confirmed
cases globally and more than 2.3 million reported fatalities [2].
The causative agent, SARS-CoV-2 (Severe Acute Respiratory Syn-
drome Coronavirus 2; SCoV2) is the seventh coronavirus known
to infect humans [3]. Coronaviruses SCoV, MERS-CoV and SCoV2
can cause severe disease; while Coronaviruses HKU1, NL63, OC43
and 229E are associated with mild disease states [4, 5]. High
recombination rates and the genetic diversity of coronaviruses
in the wild suggest that further outbreaks and unpredictable
virulence will likely arise in future recombinants [6], which
could lead to different and diverse outcomes in patients. Serious
clinical manifestations of COVID-19 (in some individuals)
include: severe acute respiratory syndrome, inflammatory
pneumonitis, hypoxia, blood clots, embolisms, gastrointestinal
illness, cardiac and vascular damage and organ damage (lung,
heart, kidney, liver, brain) [7]. Severity and mortality of COVID-19
appear to be more prevalent in men than women and, overall,
more so in the elderly with underlying health conditions such
as hypertension, cardiovascular disease, immunosenescence,
immunocompromised systems and diabetes [6–10]. Clinical
observations of hospitalized COVID-19 patients report lym-
phopenia, monocytopenia and hypoalbuminemia, as well as
elevated proinflammatory cytokines (‘cytokine storm’). In severe
cases, pneumonia with a ‘ground glass’ opacity in chest CT
scans, lung injury and pneumonitis are typically observed [11,
12]. Lymphopenia and cytokine storm may initiate severe COVID-
19 pathogenesis, viral sepsis, inflammation-induced lung
injury and pneumonitis, acute respiratory distress syndrome,
respiratory failure, shock, organ failure and death [7, 13, 14]. The
probability of severe damage from the direct or indirect effects
of SARS-CoV-2 replication can be exacerbated by underlying
injuries caused by chronic conditions such as hypertension,
diabetes and cancer [9, 15, 16]. Identification of physiological or
pathological differences associated with poor outcomes of the
COVID-19 in patients with underlying conditions—and discovery
of prospective biomarkers predictive of these outcomes—is of
paramount importance.

The FDA-NIH Biomarker Working Group (FNBWG) defines
a biomarker as a ‘characteristic that is measured as an
indicator of normal biological processes, pathogenic pro-
cesses, or responses to an exposure or intervention, including
therapeutic interventions’ [17]. Molecular biomarkers (also
known as molecular markers or signature molecules) may
be (for example) genes, proteins, glycans or metabolites
that can be used for disease assessment and treatment

evaluation and have distinct functions in biomedical research,
clinical practice and medical product development. Within
the context of the Biomarkers, EndpointS and other Tools
(BEST) Resource, the FNBWG further distinguishes important
subtypes by role [17], with the Diagnostic, Prognostic and
Susceptibility/Risk categories relating biomarkers to disease, the
Pharmacodynamic/Response, Predictive and Safety categories
relating biomarkers to interventions (drug treatment, for
example) and the Monitoring category suitable for both.
Measured as objective, reproducible numeric or categorical
values, biomarkers play a significant role in highlighting the
relationships among environmental exposures, human biology
and disease [18]. The BEST categorization provides a constructive
framework by which to organize, standardize and integrate data
elements.

While researchers race to find drugs or vaccines for the virus,
a critical need to identify biomarkers for COVID-19 disease has
become evident. A recent article provides an excellent overview
of the myriad biomarkers currently being used in the fight
against COVID-19 [19]. The article briefly touches upon the biol-
ogy of the virus and discusses biomarkers from the perspective
of therapeutics and drug discovery. However, it does not cover as
broad a spectrum of FNBWG-approved segregated biomarkers as
is necessary to consider the extensive impact of COVID-19 on
patients with comorbidities. It also does not do justice to the
amount of COVID-19 biomarker data available in the literature.
Indeed, a simple Google Scholar search for COVID-19 biomarkers
retrieves more than 17 000 records, indicating that significant
data for nucleic acid, protein and other biomarker material
await analysis by cross-disciplinary investigation of COVID-19
publications and repositories.

Though preliminary discoveries demonstrate clinical appli-
cability of potential biomarkers, additional research must
establish specificity and sensitivity during risk assessment,
diagnostic measurements or therapeutic applications to a
particular disease state [20, 21]. For both research and clinical
applications, improved methods for aggregation of biomarker
knowledge must be implemented, a process that comparatively
lags behind due to the heterogeneous nature of biomarker
data. Indeed, preliminary evaluation reveals that almost none
of the biomarker data described in these references are
standardized and harmonized to existing ontologies and terms.
Here, we describe a publicly available compilation of COVID-
19 biomarkers that enables researchers to explore up to date
COVID-19 biomarkers in different stages of development and
application. Furthermore, we describe features of COVID-19
discovered through the lens of biomarkers that offer insight
into COVID-19 pathobiology.

Materials and methods
The overall workflow involves data collection, organization,
standardization and integration of the data elements (Figure 1).
Further details are provided below.

https://data.oncomx.org/covid19
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Figure 1. Steps for collection, organization, standardization and integration of the data elements in the COVID-19 biomarker resource data model.

Crowdsourcing

The project was advertised to collaborating faculty members and
members of the community, which led to the recruitment of ∼30
volunteers. The volunteers ranged from high-school students,
undergraduate and graduate students with a biology and basic
bioinformatic skills. All volunteers went through a brief training
to orient them to the standardized workflow, which involved
reading publications and filling in tables. Key staff members of
the OncoMX team led the volunteers and served as reviewers
for all annotations. Reviewers then re-read the publications to
ensure that the cell entries were correct prior to moving them
to the reviewed biomarker table. Based on their skills and qual-
ity contributions to the project, a few volunteers were given
additional training to become project trainers.

Data collection and compilation

Using Google Scholar, curators searched for articles publicly
available after January 2020 that mentioned ‘COVID-19’ and
‘biomarker’. Information about a biomarker and its role in
COVID-19 was retrieved from selected articles and filled into
a structured format (described under ‘Disease biomarker data
model’ in Results and Discussion). The curator included notes
in a free text column that documented any comments regarding
the data curated. Each curator uploaded their data file into a
shared drive once every week. Reviewers would then compile
the data from all the curators into a single cohesive dataset file
marked Unreviewed.

Biocuration, review processing and quality check

The unreviewed data were scrutinized by at least two review-
ers with experience in biomarker curation and ontology map-
ping. All annotations were checked for content. These checks
included: confirmation of the biomarker name mentioned in the
article, appropriate mapping of the biomarker accession, suit-
able representation of the BEST biomarker type based on the arti-
cle and definitions provided by the FNBWG, and documentation

of the specimen type with mapping to Uberon anatomical IDs.
Table 1 provides details on the rubric of approved data types in
each of the columns. Curator notes were carefully assessed dur-
ing reviews of the biomarker entries to answer any queries that
arose. The data were checked for completeness and adherence to
the rubric of data collection (Table 1). A second layer of curation
was applied as a sanity check to evaluate reviewers’ findings.
This is in line with the efforts of meeting the Core criteria set by
ELIXIR [22] to build quality and reduced error resources for the
community. Furthermore, multiple publications and pre-print
articles served as verification to support the biomarker entity.
Resulting entries were compiled and quality checked to ensure
integrity and format stability.

Mapping COVID-19 biomarkers with comorbidities
(cancer and diabetes)

Initial COVID-19 biomarker trends showed an overlap with
cancer and metabolic syndrome biomarkers. To further study the
commonality, COVID-19 biomarkers were cross-checked against
established biomarkers for cancer and diabetes using search
parameters comparable to the ones mentioned above. The
identified biomarkers were further annotated and curated as
described above. Similarly, the biomarker entities were verified
with the support of numerous publications and established
biomarkers data such as EDRN [23].

Results and discussion
With the rapid increase in the number of publications and
preprints mentioning COVID-19 biomarkers, it was clear that
a crowdsourcing effort was needed to rapidly collect and
cross-validate the data. Biomarker data from publications and
bioinformatics databases furthermore require harmonization
against a robust standardized data model. We describe our
crowdsourced efforts backed by our disease biomarker data
model to organize COVID-19 biomarker data that will assist
researchers working on the development of diagnostics or drugs.
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Table 1. Biomarker table header descriptions and column content

Header Description Type

Biomarker ID Biomarker identifier generated in this
resource

Alphanumeric code (A001)

Main x-ref Accession/identifier with other standardized
databases

UPKB (UniProtKB/Swiss-Prot acc) or PCCID (PubChem
Compound ID) or CO (Cell Ontology ID) or PRO (Protein
Ontology ID) or DO (Disease Ontology ID) or PDB
(Protein Database ID) or NCIt (NCI Thesaurus concept
code) or CHEBI or LOINC

Assessed biomarker entity Common name and gene symbol or short
name in parenthesis

Free text.

Biomarker The change measured in disease versus
healthy

increased/decreased level or increased/decreased
expression or increased/decreased cell count or ratio

BEST biomarker type Category of BEST Biomarker monitoring; diagnostic; prognostic; predictive;
risk/susceptibility; safety;
pharmacodynamic/response

Specimen type The type of specimen used to access the
biomarker

Uberon name (Uberon ID)

LOINC code LOINC is clinical terminology that is
important for laboratory test orders

LOINC numeric code

Disease name Disease ‘Ontology term or name for the
disease with DOID in parenthesis’

Disease name (DOID)

Literature evidence Literature reporting the biomarker Text from article (PMID or DOI)
Notes Free text to add meta data to the entry

Disease biomarker data model

The data model for the COVID-19 biomarkers is based on the
OncoMX cancer biomarker model [24], with some revision
(Figure 2). Briefly, the model captures information on biomarker
name, assessed biomarker entity, specimen type, biomarker
description and drug mentioned. The model, furthermore, cap-
tures ancillary data regarding the biomarker such as biomarker
accession and BEST biomarker type. Importantly, the platform
implements strict adherence to accepted standards used in
major resources, such as National Center for Biotechnology
Information [25], European Bioinformatics Institute (EBI) [26],
Alliance of Genome Resources [27] and others. Along with
OncoMX, these resources rely heavily on existing biomedical
standards and ontologies for semantic unification of datasets,
which can enable efficient knowledge modeling, information
retrieval and data sharing across otherwise diverse data [22,
28–34]. Accordingly, our biomarkers model requires mapping
to accessions that included the canonical UniProtKB/Swiss-
Prot accession [35], PubChem Compound ID [36], Cell Ontology
ID [37], Protein Ontology ID [38], Disease Ontology ID [39],
Uberon Anatomy Ontology [31], Protein Database ID (PDB) [40],
NCI Thesaurus concept code (NCIt) [41], Chemical Entities
of Biological Interest (CHEBI) [42] and Logical Observation
Identifiers Names and Codes (LOINC) [43]. The emphasis
on leveraging existing standards and ontologies promotes
extensibility and sustainability, allowing the platform to focus
on data quality, integration, standardization and knowledgebase
maintenance and extension.

COVID-19 biomarker data curation and integration

Crowdsourcing allowed us to annotate and cross-validate 145
biomarker type combinations. These curated biomarkers are
classified into the appropriate diagnostic, monitoring, prog-
nostic disease biomarkers as shown in Figure 3. The majority

of the biomarkers are prognostic in nature. Such biomarkers
help to predict the likelihood of disease progression or severity,
providing justification for patients needing special treatment
such as ICU admission. The second category is monitoring
biomarkers, which are serially measured to determine the
disease status in an individual exposed to SARS-CoV-2 virus.
Diagnostic biomarkers enable the detection of COVID-19 in
patients with different clinical manifestations ranging from
pulmonary distress to gastrointestinal illness. Comorbidities
such as cardiovascular disease and diabetes pose an increased
chance of contracting the disease and are evaluated as risk
factors. Our results indicate the emergence of a pattern
that points to specific pathways and cell types targeted by
SARS-CoV-2. Our manually curated resource shows that most
biomarkers belong to biological processes within specific tissue
systems and supports the need for further investigations using
multidrug combination therapies targeting these biological
processes.

Immune system biomarkers are elevated in COVID-19

Various manuscripts asserted that certain biomarkers strongly
correlated with COVID-19 [e.g. C-reactive protein (CRP), interleu-
kin-6 (IL-6), D-dimer], while other biomarkers [e.g. Von Wille-
brand factor (VWF), citrullinated histone H3 (Cit-H3), macrophage
colony stimulating factor, RNA-binding protein EWS (EWS)]
showed latent connections requiring further investigation.
Figure 4 shows the leading assessed biomarker entities as
indicated by the number of articles supporting the biomarker,
along with the direction of the trend (increased or decreased
values) detected in COVID-19 patients. A high level of CRP,
identified as a top biomarker appearing in 41 independent
studies, indicates disease progression and has been positively
correlated with lung lesions [44]. CRP level has been used as a
monitoring biomarker in early stages of the disease to determine
progression from mild to severe [44, 45]. IL-6 is a known cancer
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Figure 2. Disease Biomarker Framework: Harmonization of biomarker-centric knowledge (including terms, definitions, synonyms), enriched with objects imported

from related reference ontologies under a unified framework. (a) Biomarker are mapped to accessions that included the canonical UniProtKB/Swiss-Prot accession [33],

PubChem Compound ID [34], Cell Ontology ID [35], Protein Ontology ID [36], Disease Ontology ID [37], Uberon Anatomy Ontology [28], Protein Database ID (PDB) [38],

NCI Thesaurus concept code (NCIt) [39], CHEBI [40] and LOINC [41]. (b) The schema depicts some named relations (black arrows) existing among some named types

of biomarker-related data (colored rectangles/squares). BEST (Biomarkers, EndpointS and other Tools) categories of biomarkers are described by FDA-NIH Biomarker

Working Group (FNBWG) [18]; assessed_biomarker_entity is the name of the entity assayed as a biomarker (e.g. IL-6); biomarker is the name of the measured biomarker

(e.g. increased IL-6 level); specimen_type is the name of the tissue (from Uberon ontology) in which the named biomarker was measured.

Figure 3. Classification of COVID-19 biomarkers into 7 BEST categories. (a) The collated 145 COVID-19 biomarkers are mapped to the Monitoring, Prognostic and

Diagnostic BEST biomarker categories. The instances of potential COVID-19 biomarkers provide measurable evidence data of existing or potential health status. (b)

Stylized graph of BEST biomarker types modeled on disease progression. Each category of BEST biomarker fulfils a distinct role ‘as an indicator of normal biological

processes, pathogenic processes or responses to an exposure or intervention.’

biomarker [24]. It was also used as a disease progression
monitoring biomarker in multiple studies and its elevated levels
were shown to be strongly associated with respiratory failure in
symptomatic COVID-19 patients. Diagnosticians have used this
biomarker to determine the need for mechanical ventilation [46].
Other interleukins, such as IL-4 and IL-2, were also proposed for
biomarker assessment in some studies. Notably, interleukins can
be both pro- and anti-inflammatory and, as such, use of these
biomarkers should be coupled with other indicators of disease
progression. Interestingly, Herold et al. [46] found no correlation
between IL-6 levels and age, comorbidities, radiological findings,
respiratory rate or qSofa score of patients. On the other hand,
IL-4 was shown to inhibit SARS-CoV replication partially by
down regulating ACE2 expression in vitro [47]. While this study
investigated SARS-CoV and not SARS-CoV-2, research advises
screening of all patients for hyper inflammation [48] and

the use of inflammation biomarkers to assess the severity
of disease. Neutrophil-to-lymphocyte ratio (NLR) was also
suggested as a prognostic biomarker in over 10 independent
studies. It has been commonly used as a marker for subclinical
or systemic inflammation, and a high NLR has been linked
to poor clinical outcome in many solid tumors. For COVID-
19 patients of advanced age, this ratio, when elevated, could
serve as a prognostic biomarker to determine access to valuable
limited clinical resources such as intensive care units (ICUs)
or ventilators [49]. Another biomarker reported by multiple
research groups, in agreement with aggravated inflammation
observed in COVID-19 patients, is serum amyloid A protein
(SAA). SAA was used as both a monitoring and a prognostic
biomarker by multiple independent research groups to evaluate
severity and prognosis of COVID-19. Dynamic changes in
SAA have been proposed as prognostic markers in COVID-19
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Figure 4. COVID-19 Biomarkers highlights. Top biomarkers are depicted as increased or decreased levels of the indicated assessed entity. The size of the circle is

indicative of the number of articles supporting the biomarker. The color of the circle corresponds to the BEST biomarker type and the proportion in the circle with the

number of articles supporting the biomarker in that category.

progression [50]. This is because it belongs to the family of
apolipoproteins that are constitutively expressed in plasma.
SAA is a potential therapeutic target in chronic inflammation
[51]. A common theme from our resource points to the immune
system of the patients and the inflammatory response to the
disease. Other concurrent biomarkers in our resource are tumor
necrosis factor-∝ (TNF-∝), interferon-ϒ inducible protein-10 (IP-
10), CD4+ counts and CD8+ counts, all of which suggest the
immune system of the patient as a central target to determine
disease progression, therapy and possibly prevention.

Coagulation cascade biomarker levels are important in
COVID-19 response

Another biomarker substance that has been extensively studied
is D-dimer, a degradation product of cross linked fibrin resulting
from plasmin cleavage [52]. Several independent studies from
Wuhan, China, showed that elevated levels of D-dimer in COVID-
19 patients are associated with higher mortality. Indeed, it has
been used as a prognostic biomarker to predict mortality rates
in patients with COVID-19 [53]. However, since it is a product
of cross-linked fibrin, there are many other common condi-
tions in which it can be elevated and, consequently, use of this
biomarker warrants caution. The most common substances or
processes resulting in analytical interference with D-dimer lev-
els are paraproteins, bilirubin, lipids and hemolysis [52]. As such,
establishing a fold-change cutoff specific for the patient for this
prognostic biomarker before drawing conclusions is essential.
Interestingly, our resource suggests the use of other biomarkers
from similar biological processes, though these have been stud-
ied less extensively. These include increased VWF and decreased

antithrombin levels, among others. VWF, made within endothe-
lial cells, helps platelets stick together, assists clot formation
and transports coagulation factor VIII to areas of clot formation
[54]. High levels of VWF have been linked to potential efficacy
of COVID-19 treatment and have also been used as a prognostic
biomarker for endothelial damage [55]. Escher et al. [56] observed
an ∼500% increase in VWF and coagulation factor VIII expression
in COVID-19 patients during later stages of stay in an ICU. This
increase was observed in patients that registered an increase
in D-dimer expression in the earlier stages of their stay in the
ICU. These patients underwent extensive endothelial stimula-
tion and damage, which can be explained by the presence of
ACE2, the receptor for SARS-CoV-2, on the surface of endothelial
cells [56]. Similarly, antithrombin, a glycoprotein that plays a
critical role in controlling coagulation [57], was also proposed as
a biomarker by at least two independent studies. Decreased lev-
els of antithrombin, along with increased levels of D-dimer and
VWF, in conjunction with other proposed biomarkers such as
increased fibrinogen expression and decreased platelet counts,
point to recurrent coagulopathies in COVID-19 patients.

Immune and coagulation cascade biomarkers link
metabolic syndrome to COVID-19

A biomarker that seems to have given interesting results, in the
context of metabolic syndrome, diabetes and hyperlipidemia,
is Low Density Lipoprotein (LDL) [58, 59]. Subjects with pre-
existing dyslipidemia and metabolic syndrome (defined as high
triglyceride and low HDL) appear to have decreased LDL at the
onset of the disease, with lower levels predicting worse outcome
for mortality [58]. It is possible that virus particles require LDL
to proliferate and replicate, in which case the drop in LDL at
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the onset would indicate huge virus reproduction capability,
rather than a good indicator in the context of metabolic syn-
drome. Thus, even in these subjects, lowering of endogenous
LDL production with medications such as statins may help to
reduce or at least impair further virus production capability
[58]. It has also been shown previously that NLR in diabetic
patients is significantly higher than in healthy individuals and
is positively correlated with insulin resistance. This study also
suggested that NLR is a reliable predictive biomarker for insulin
resistance [60]. High levels of NLR observed in both COVID-19
and diabetic patients point to the reliability of this biomarker in
both diseases while informing on how patients with metabolic
syndrome are at an increased risk of worse prognosis if they
contract COVID-19. Another biomarker from our resource, D-
dimer, which is part of the coagulation cascade, has been shown
to be significantly elevated in COVID-19 patients with diabetes,
as compared with COVID-19 patients without this comorbidity.
This results in worse prognosis for patients with this comorbid-
ity, as hypercoagulation might lead to further complications [61].
These data indicate D-dimer as an extremely useful biomarker,
especially in patients with these comorbidities. Other biomark-
ers included in our resource that have previously been suggested
for the detection of both metabolic syndrome and COVID-19
are IL-6, IL-10 and TNF-∝; all are part of the immune cascade.
Elevated levels of IL-6 and TNF-∝ positively correlate with both
metabolic syndrome and COVID-19; however, IL-10 is found to
be suppressed in metabolic syndrome but elevated in COVID-19
patients [62]. These studies highlight the importance of carefully
curating biomarker information in different disease settings.

Cancer patients have an elevated risk and a poorer
prognosis of COVID-19

Our resource has also registered biomarkers, such as Cit-H3 and
ACE2, that have extensive ramifications in various cancers. Cit-
H3 plays an important role in neutrophil release of nuclear chro-
matin, also called neutrophil extracellular traps (NETs), which
have been associated with tumor progression in colon cancer
[63, 64]. Notably, NETs have also been proposed as a biomarker
for SARS-CoV-2 infection in COVID-19 patients and are known to
play a role in thrombosis, thereby strengthening our observation
that specific biological processes are activated during SARS-CoV-
2 infection. Finally, the angiotensin converting enzyme ACE2,
which serves as a receptor for the spike glycoprotein of SARS-
CoV-2, shows stabilized protein levels in colorectal and renal
cancers and has also been proposed to be used as a biomarker
[65]. This suggests that the majority of cancer patients, and not
just immunocompromised patients, also have an elevated risk of
contracting the disease and might have a poorer prognosis when
compared with non-cancer individuals with COVID-19.

Mapping COVID-19 biomarkers with cancer and diabetes has
identified similar expression profiles, emphasizing the underly-
ing physiological or pathological association. Preliminary anal-
ysis has shown an overlap in established EDRN [23] cancer
biomarkers (such as IL-6, CRP, TMPRSS2, HE4, CA125, IL1B, IL-
4, IL-10, HGF and VWF) with COVID-19. Taken together, these
data suggest that hyper-activation of the immune system, coag-
ulopathies and the targeting of specific types of cells that are
indispensable for vasculature (such as endothelial cells) are
the primary modus operandi of SARS-CoV-2, and combination
therapies targeting these biological processes may be beneficial
for COVID-19 patients. Additionally, risk factors such as cardio-
vascular disease, hypertension, thrombocytopenia and cancer

need to be taken into consideration while devising therapeutic
regimens.

Phases of biomarker development and use

Specific biomarkers approved for clinical use for certain diseases
can potentially be used for emerging diseases such as COVID-
19. However, such repurposed use would need to be tested and
experimentally validated. We propose six phases of biomarker
development and use based on previous discussions on this
matter [66, 67]. The phases are preclinical exploratory, clini-
cal assay and validation, retrospective longitudinal, prospective
screening, disease control and finally regulatory body guidance
or approval for clinical use for the specific disease/condition
and BEST category. The COVID-19 biomarkers presented here
would thus be considered in the preclinical exploratory stage
and would have to go through the other phases to be accepted
as a bona fide biomarker.

There is an urgent need within the research community
to have an integrated and harmonized COVID-19 biomarker
resource. Rapidly accumulating, dispersed and heterogeneous
COVID-19 datasets pose challenges to data comparison and
extrapolation of meaningful observations, hindering translation
of information into clinical applications. In this effort, we have
found a number of issues. For example, we note that the same
biomarker is often known by multiple different names—which
might differ from the name used in standardized databases—
thus potentially making the connection between biomarker and
underlying biology less amenable to discovery. One such case
is Carbohydrate Antigen 15–3, also commonly known as Krebs
von den Lungen-6, which is called Mucin-1 in UniProtKB. Our
resource has solved these discrepancies by including all such
entries identified by respective studies, and then unifying them
under common identifier links to standardized databases. Fur-
thermore, we have assigned unique five-character alphanumeric
codes to each of the biomarkers in our resource for ease of
referencing. Another issue involves discerning exactly what is
being measured. For example, what substance is being assayed
when using alanine aminotransferase (ALT) as a biomarker? Is
it alanine aminotransferase 1, alanine aminotransferase 2, or
both? (It is both). Finally, biomarkers may be assigned to dif-
ferent categories for a particular disease in different resources.
For example, soluble urokinase plasminogen activator recep-
tor (suPAR) isolated from ovarian cysts appears to distinguish
between malignant versus benign cysts [68] and is therefore
diagnostic, but that same substance is considered prognostic
(for a number of diseases) when obtained from blood [69]. Such
common issues, often faced while compiling of a knowledgebase
based on an extensive literature, have been addressed in our
resource.

Future directions
Our goal is to build a stable and sustainable infrastructure for
both common and rare COVID-19 biomarkers using the criteria
identified by ELIXIR [22], and to provide regular updates that
will help the research and medical community stay abreast
of the extensive research being conducted in the face of the
ongoing pandemic. To further develop and improve the COVID-
19 Biomarker resource, we envision extending the search for
new biomarkers in future curation rounds with adjusted query
terms and parameters—for example expanding the assessed
biomarkers entities to include glycan panels. We have initiated
the expansion of the OncoMX biomarker model (manuscript in
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preparation) to record a panel of data types associated with
MALDI-MS measured N-glycans covalently attached to immuno-
captured serum glycoproteins from cirrhosis, hepatocellular car-
cinoma and liver transplant cohorts. Additionally, we anticipate
expanding the data model to capture patient demographic and
comorbidity data that can further aid in data analyses with the
application of machine learning to search for possible common
correlations/associations between patient features (demogra-
phy, comorbidity, etc.) and observed biomarkers. This will be fur-
ther valuable to examine interesting biological questions about
COVID-19 and may help improve treatment. To these ends, we
recognize the need for standardization and formalization of the
collected information in an ontology that connects biomark-
ers with their indications. Construction of such an ontology is
underway, as semantic modeling of biomarkers will empower
novel comparisons across related medical domains, support
programmatic data science methods of discovery and make
biomarker information available for easy integration into other
resources. Furthermore, we are set up for continued crowd-
sourced contributions at https://data.oncomx.org/covid19. This
will also enable addition of annotation as well as validation of
biomarkers overtime.

Conclusion
Variations in symptoms have not only exacerbated the diagnosis,
prognosis and monitoring of COVID-19 but have also made it dif-
ficult to identify and develop vaccines and drugs. Our COVID-19
Biomarker resource has drawn from our extensive experience
in integrating large biomarker (OncoMX [24]) and glycoprotein
(GlyGen [70]) datasets. As such, our biomarker resource cur-
rently includes over 500 biomarker articles encompassing both
vastly studied and largely cross-referenced biomarkers, as well
as rare and risk biomarkers. An overview of the current repos-
itory shows that the COVID-19 impacts the patient’s immune
system and is involved in various coagulopathies. Risk biomark-
ers included in our resource also shed light on at-risk patient
populations and allow investigation of underlying comorbidities
that might affect prognosis and treatment outcome. In the stages
of understanding the pathology of this infectious disease, we
provide this biomarker resource to support continued research
around the world to better understand and manage COVID-19.
Collective analyses of these biomarkers using a resource such as
ours will help researchers gain a wider perspective of the disease
state, with potential positive clinical impact.

Key Points
• Most comprehensive COVID-19 biomarkers with a

robust biomarker data model.
• Annotated COVID-19 biomarkers suggest complex

vascular pathobiology of the disease.
• COVID-19 biomarkers display a large extent of com-

monality with established cancer biomarkers (ACE2,
IL-6, IL-4 and IL-2) as well as biomarkers for metabolic
syndrome and diabetes (CRP, NLR, LDL).

Data availability and License

All data are freely available at https://data.oncomx.org/covi
d19 under the Creative Commons CC-BY-4.0 license.

Authors’ Contributions

Conception and design: NG and RM.
Collection and assembly of data: NG, AB, DL and HIVE lab

volunteers.
Data analysis and interpretation: NG, AB, DL, KC, RK, DN,

LS, SS, RM.
Manuscript writing: All authors.
Final approval of manuscript: All authors.
Accountable for all aspects of the work: All authors.

Acknowledgements

HIVE Lab (https://hive.biochemistry.gwu.edu): Sneh Talwar
(content developer); Ashia Joseph (bioinformatics curator).
Collaborators: Dr. Shant Ayanyan (physician);
Volunteers: Anders Gyllenhoff (bioinformatics curator);
Andy Cao (bioinformatics curator); Anjali Shankar (bioinfor-
matics curator); Antarjot Kaur (bioinformatics curator); Arya
Adake (bioinformatics curator); Ashia Joseph (bioinformatics
curator); Avery Ye (bioinformatics curator); Chakshu Gandhi
(bioinformatics curator); Dia Jhaveri (bioinformatics curator);
Gracelyn Hill (bioinformatics curator); Helen Ibeawuchi
(bioinformatics curator); Jonathan Ye (bioinformatics cura-
tor); Kathryn Cowie (bioinformatics curator); Kristina Ayers
(bioinformatics curator); Mariana Escalante (bioinformatics
curator); Meylakh Barshay (bioinformatics curator); Miguel
Mazumder (bioinformatics curator); Niharika Chandna
(bioinformatics curator); Nikita Wagle (bioinformatics
curator); Nora Shepherd (bioinformatics curator); Noyanika
Vattathara (bioinformatics curator); Nuerye Ainiwan (bioin-
formatics curator); Pranav Mishra (bioinformatics curator);
Renee Long (bioinformatics curator); Rishab Desai (bioin-
formatics curator); Rita Mazumder (Asst. coordinator and
bioinformatics curator); Ruqaia Al-Kohlany (bioinformatics
curator); Sahana Ramesh (bioinformatics curator); Sara
Burr (bioinformatics curator); Sejal Singh (bioinformatics
curator); Siddharth Krishnan (bioinformatics curator).

Funding

National Cancer Institute (Grant No. U01CA215010 to R.M.);
National Science Foundation (DEB-2028280 to K.A.C.).

References
1. Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) and coronavirus disease-
2019 (COVID-19): the epidemic and the challenges. Int J
Antimicrob Agents 2020;55:105924.

2. World_Health_Organization WHO Coronavirus Disease
(COVID-19) Dashboard. https://covid19.who.int/ (2020).

3. Coronaviridae Study Group of the International Committee
on Taxonomy of, V. The species severe acute respiratory
syndrome-related coronavirus: classifying 2019-nCoV and
naming it SARS-CoV-2. Nat Microbiol 2020;5:536–44.

4. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal
origin of SARS-CoV-2. Nat Med 2020;26:450–2.

5. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coron-
aviruses. Nat Rev Microbiol 2019;17:181–92.

https://data.oncomx.org/covid19
https://data.oncomx.org/covid19
https://data.oncomx.org/covid19
https://hive.biochemistry.gwu.edu
https://covid19.who.int/


COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model 9

6. Su S, Wong G, Shi W, et al. Epidemiology, genetic recombi-
nation, and pathogenesis of coronaviruses. Trends Microbiol
2016;24:490–502.

7. Prompetchara E, Ketloy C, Palaga T. Immune responses
in COVID-19 and potential vaccines: lessons learned from
SARS and MERS epidemic. Asian Pac J Allergy Immunol
2020;38:1–9.

8. Tang B, Bragazzi NL, Li Q, et al. An updated estimation of the
risk of transmission of the novel coronavirus (2019-nCov).
Infect Dis Model 2020;5:248–55.

9. Wang B, Li R, Lu Z, et al. Does comorbidity increase the risk of
patients with COVID-19: evidence from meta-analysis. Aging
2020;12:6049–57.

10. Yi Y, Lagniton PNP, Ye S, et al. COVID-19: what has been
learned and to be learned about the novel coronavirus
disease. Int J Biol Sci 2020;16:1753–66.

11. Huang C, Wang Y, Li X, et al. Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China.
Lancet 2020;395:497–506.

12. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with
human respiratory disease in China. Nature 2020;579:265–9.

13. Nicholls JM, Poon LLM, Lee KC, et al. Lung pathology of fatal
severe acute respiratory syndrome. Lancet 2003;361:1773–8.

14. WONG CK, Lam CWK, Wu AKL, et al. Plasma inflamma-
tory cytokines and chemokines in severe acute respiratory
syndrome. Clin Exp Immunol 2004;136:95–103.

15. Xia Y, Jin R, Zhao J, et al. Risk of COVID-19 for cancer patients.
Lancet Oncol 2020;21(4):e180.

16. Zhou F, Yu T, du R, et al. Clinical course and risk factors
for mortality of adult inpatients with COVID-19 in Wuhan,
China: a retrospective cohort study. Lancet 2020;395:1054–62.

17. FDA-NIH_Biomarker_Working_Group in BEST (Biomarkers, End-
pointS, and other Tools) Resource (Silver Spring (MD)); (2016).

18. O’Connor JP, Aboagye EO, Adams JE, et al. Imaging
biomarker roadmap for cancer studies. Nat Rev Clin Oncol
2017;14:169–86.

19. Zhang L, Guo H. Biomarkers of COVID-19 and technologies
to combat SARS-CoV-2. Adv Biomark Sci Technol 2020;2:1–23.

20. Hristova VA, Chan DW. Cancer biomarker discovery and
translation: proteomics and beyond. Expert Rev Proteomics
2019;16:93–103.

21. Nature_editoriale. Early detection: a long road ahead. Nat Rev
Cancer 2018;18:401.

22. Durinx C, McEntyre J, Appel R, et al. Identifying ELIXIR Core
data resources. F1000Res 2016;5:2422.

23. Srivastava S, Rossi SC. Early detection research program at
the NCI. Int J Cancer 1996;69:35–7.

24. Dingerdissen HM, Bastian F, Vijay-Shanker K, et al. OncoMX:
a knowledgebase for exploring cancer biomarkers in the
context of related cancer and healthy data. JCO Clin Cancer
Inform 2020;4:210–20.

25. Information, N.C.F.B. Database resources of the National
Center for biotechnology information. Nucleic Acids Res
2018;46:D8–d13.

26. Madeira F, Park Y, Lee J, et al. The EMBL-EBI search and
sequence analysis tools APIs in 2019. Nucleic Acids Res
2019;47:W636–41.

27. Alliance_of_Genome_Resources_Consortium. Alliance of
genome resources portal: unified model organism research
platform. Nucleic Acids Res 2019;48(D1):D650–D658.

28. de Coronado S, Wright LW, Fragoso G, et al. The NCI
thesaurus quality assurance life cycle. J Biomed Inform
2009;42:530–9.

29. Haendel MA, Chute CG, Robinson PN. Classification, ontol-
ogy, and precision medicine. N Engl J Med 2018;379:1452–62.

30. Köhler S, Carmody L, Vasilevsky N, et al. Expansion of
the human phenotype ontology (HPO) knowledge base and
resources. Nucleic Acids Res 2019;47:D1018–27.

31. Mungall CJ, Torniai C, Gkoutos GV, et al. Uberon, an integra-
tive multi-species anatomy ontology. Genome Biol 2012;13:R5.

32. Munir K, Anjum MS. The use of ontologies for effective
knowledge modelling and information retrieval. Appl Comput
Inform 2018;14(2):116–26.

33. Sharma DK, Solbrig HR, Tao C, et al. Building a semantic
web-based metadata repository for facilitating detailed clin-
ical modeling in cancer genome studies. J Biomed Semant
2017;8:19.

34. Smith B, Arabandi S, Brochhausen M, et al. Biomedical imag-
ing ontologies: a survey and proposal for future work. J Pathol
Inform 2015;6:37.

35. UniProt_Consortium. UniProt: a worldwide hub of protein
knowledge. Nucleic Acids Res 2019;47:D506–15.

36. Kim S, Chen J, Cheng T, et al. PubChem 2019 update:
improved access to chemical data. Nucleic Acids Res
2018;47:D1102–9.

37. Diehl AD, Meehan TF, Bradford YM, et al. The cell ontol-
ogy 2016: enhanced content, modularization, and ontology
interoperability. J Biomed Semant 2016;7:44.

38. Natale DA, Arighi CN, Blake JA, et al. Protein ontology (PRO):
enhancing and scaling up the representation of protein
entities. Nucleic Acids Res 2017;45:D339–d346.

39. Wu TJ, Schriml LM, Chen QR, et al. Generating a focused view
of disease ontology cancer terms for pan-cancer data inte-
gration and analysis. Database (Oxford) 2015;2015:bav032.

40. Berman HM, Westbrook J, Feng Z, et al. The protein data Bank.
Nucleic Acids Res 2000;28:235–42.

41. Sioutos N, Coronado S, Haber MW, et al. NCI thesaurus:
a semantic model integrating cancer-related clinical and
molecular information. J Biomed Inform 2007;40:30–43.

42. Hastings J, Owen G, Dekker A, et al. ChEBI in 2016: improved
services and an expanding collection of metabolites. Nucleic
Acids Res 2016;44:D1214–9.

43. Forrey AW, McDonald C, DeMoor G, et al. Logical observation
identifier names and codes (LOINC) database: a public use
set of codes and names for electronic reporting of clinical
laboratory test results. Clin Chem 1996;42:81–90.

44. Chaturvedi AK, Caporaso NE, Katki HA, et al. C-reactive
protein and risk of lung cancer. J Clin Oncol 2010;28:2719–26.

45. Wang L. C-reactive protein levels in the early stage of COVID-
19. Med Mal Infect 2020;50:332–4.

46. Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL-
6 and CRP predict the need for mechanical ventilation in
COVID-19. J Allergy Clin Immunol 2020;146:128–136.e124.

47. de Lang A, Osterhaus AD, Haagmans BL. Interferon-
gamma and interleukin-4 downregulate expression of the
SARS coronavirus receptor ACE2 in Vero E6 cells. Virology
2006;353:474–81.

48. Mehta P, McAuley D, Brown M, et al. COVID-19: consider
cytokine storm syndromes and immunosuppression. Lancet
2020;395:1033–4.

49. Yang AP, Liu JP, Tao WQ, et al. The diagnostic and predic-
tive role of NLR, d-NLR and PLR in COVID-19 patients. Int
Immunopharmacol 2020;84:106504.

50. Li H, Xiang X, Ren H, et al. Serum amyloid a is a biomarker
of severe coronavirus disease and poor prognosis. J Infect
2020;80:646–55.



10 Gogate et al.

51. Uhlar CM, Whitehead AS. Serum amyloid a, the major verte-
brate acute-phase reactant. Eur J Biochem 1999;265:501–23.

52. Adam SS, Key NS, Greenberg CS. D-dimer antigen: current
concepts and future prospects. Blood 2009;113:2878–87.

53. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission
to predict in-hospital mortality in patients with Covid-19. J
Thromb Haemost 2020;18:1324–9.

54. Franchini M, Lippi G. The role of von Willebrand factor in
hemorrhagic and thrombotic disorders. Crit Rev Clin Lab Sci
2007;44:115–49.

55. Aksenova AY. Von Willebrand factor and endothelial
damage: a possible association with COVID-19. EcoGen
2020;18:135–8.

56. Escher R, Breakey N, Lämmle B. Severe COVID-19 infec-
tion associated with endothelial activation. Thromb Res
2020;190:62.

57. Connors JM, Levy JH. COVID-19 and its implications for
thrombosis and anticoagulation. Blood 2020;135:2033–40.

58. Fan J, Wang H, Ye G, et al. Letter to the editor: low-density
lipoprotein is a potential predictor of poor prognosis in
patients with coronavirus disease 2019. Metab Clin Exp
2020;107:154243.

59. Klonoff D, Umpierrez G. COVID-19 in patients with dia-
betes: risk factors that increase morbidity. Metabolism
2020;108:154224.

60. Lou M, Luo P, Tang R, et al. Relationship between neutrophil-
lymphocyte ratio and insulin resistance in newly diag-
nosed type 2 diabetes mellitus patients. BMC Endocr Disord
2015;15:9.

61. Mishra Y, Pathak BK, Mohakuda SS, et al. Relation of D-dimer
levels of COVID-19 patients with diabetes mellitus. Diabetes
Metab Syndr 2020;14:1927–30.

62. Srikanthan K, Feyh A, Visweshwar H, et al. Systematic review
of metabolic syndrome biomarkers: a panel for early detec-
tion, management, and risk stratification in the west Vir-
ginian population. Int J Med Sci 2016;13:25–38.

63. Arelaki S, Arampatzioglou A, Kambas K, et al. Gradient infil-
tration of neutrophil extracellular traps in colon cancer and
evidence for their involvement in tumour growth. PLoS One
2016;11:e0154484.

64. Thålin C, Lundström S, Seignez C, et al. Citrullinated histone
H3 as a novel prognostic blood marker in patients with
advanced cancer. PLoS One 2018;13:e0191231.

65. Skarstein Kolberg E. ACE2, COVID19 and serum ACE as a
possible biomarker to predict severity of disease. J Clin Virol
2020;126:104350.

66. Pepe MS, Etzioni R, Feng Z, et al. Phases of biomarker devel-
opment for early detection of cancer. J Natl Cancer Inst
2001;93:1054–61.

67. Srivastava S. Cancer biomarker discovery and develop-
ment in gastrointestinal cancers: early detection research
network-a collaborative approach. Gastrointest Cancer Res
2007;1:S60–3.

68. Wahlberg K, Høyer-Hansen G, Casslén B. Soluble receptor
for urokinase plasminogen activator in both full-length
and a cleaved form is present in high concentration
in cystic fluid from ovarian cancer. Cancer Res 1998;58:
3294–8.

69. Virogates suPAR_mongraph_v3. https://www.virogates.co
m/wp-content/uploads/2020/01/20191008_English_suPAR_
mongraph_v3.pdf (2019).

70. York WS, Mazumder R, Ranzinger R, et al. GlyGen: computa-
tional and informatics resources for glycoscience. Glycobiol-
ogy 2020;30:72–3.

https://www.virogates.com/wp-content/uploads/2020/01/20191008_English_suPAR_mongraph_v3.pdf
https://www.virogates.com/wp-content/uploads/2020/01/20191008_English_suPAR_mongraph_v3.pdf
https://www.virogates.com/wp-content/uploads/2020/01/20191008_English_suPAR_mongraph_v3.pdf

	COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model 
	Introduction
	Materials and methods
	Results and discussion
	Future directions
	Conclusion
	Data availability and License
	Authors' Contributions
	Funding


