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Male infertility induced by heat stress has been attracting more and more attention. Heat stress not only causes apoptosis of
spermatocytes but also has adverse effects on Sertoli cells, further damaging spermatogenesis. Lycium barbarum polysaccharide
(LBP) is the main bioactive component of Lycium barbarum, which has a protective effect on male reproduction, but its
mechanism is still unclear. In this study, our results proved that LBP blocked the inhibitory effect on the proliferation activity of
Sertoli cells after heat stress, reversed the dedifferentiation of Sertoli cells induced by heat stress, and ameliorated the structural
integrity of the blood-testis barrier. In addition, it increased the expression of the androgen receptor and activated Akt signaling

pathway to resist heat-stress-induced injury of Sertoli cells.

1. Introduction

More than half of the childbearing couples could not have
children due to male infertility [1, 2], which is induced by
varieties of causes including the spermatogenic quantitative
or qualitative defect, catheter obstruction or dysfunction,
and hypothalamic-pituitary axis disorders [3, 4]. Among
these situations, abnormal spermatogenesis is the primary
culprit of impaired male fertility. Spermatogenesis is a
temperature-dependent process [5, 6]. For most mammals,
normal spermatogenesis entails the temperature in the
scrotum to be lower than body temperature. After heat
treatment to local testis, male animals display testicular
damages, including local testis tissue hypoxia [7, 8], germ
cells apoptosis [9], blood-testis barrier (BTB) dysfunction,
and reduced sperm count and quality [10-12]. Thus, scrotal
temperature increases and spermatogenesis is impaired,
leading to male infertility.

Spermatogenesis depends on mature Sertoli cells (SCs).
In the seminiferous tubule, SCs provide structural support
and supply nutrients, functional proteins, and cytokines for
spermatogenesis [13, 14]. The number of SCs is proportional
to the number of germ cells [15]. Occludin and zonula

occludens-1 exist between adjacent SCs [16] and compose
BTB which provides a suitable microenvironment for
spermatogenesis [17, 18]. The decrease of occludin and (or)
zonula occludens-1 causes the damage of BTB integrity,
negatively effecting spermatogenesis [15, 19].

Androgen receptor (AR) is a type I steroid receptor.
Androgens have to bind to AR before they can regulate the
development of germ cells and SCs. Expressed in SCs, an
androgen receptor (AR) plays a crucial role in spermato-
genesis [20, 21]. Studies demonstrated that the loss of AR
directly influences the maturation and the final quantity of
SCs [22, 23], as well as spermatogenesis [24]. Besides, the
absence of AR causes increased permeability of BTB in vitro
or in vivo [25, 26].

Lycium barbarum polysaccharide (LBP, PubChem SID:
134223164), the main component of Chinese wolfberry, is
characterized by high bioactivity and significant content [27].
The glucoside apart, which is composed of arabinose,
rhamnose, xylose, mannose, galactose, and glucose (Figure 1),
accounts for more than 90% of the LBP mass [28]. Evidence
shows LBP could ameliorate testicular damage by upregulating
the testosterone level and reducing germ cell apoptosis
[29-32]. However, limited research has been conducted on
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how LBP influences SCs and BTB. In the present study, we
explore the effects and mechanisms of LBP on heat-stress-
induced damage of SCs and BTB, centered around the changes
in AR.

2. Materials and Methods

2.1. Drug and Reagents. Lycium barbarum polysaccharide
powder was purchased from Nanjing Manhay Medical
Technology (Nanjing, China, No. zhe B2-20090288-37).

DMEM/F12, 0.25% trypsin-ethylenediaminetetraacetic
acid, collagenase IV, fetal bovine serum (FBS), and peni-
cillin-streptomycin liquid were purchased from Gibco (BRL,
Gaithersburg, MD, USA). 3-(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT), dimethyl sulfoxide
(DMSO), phosphate buffered saline (PBS), and the bicin-
choninic acid (BCA) protein assay kit were purchased from
Solarbio Life Sciences (Beijing, China). SP link detection kits
(biotin-streptavidin HRP detection systems) and the dia-
minobenzidine kit were purchased from ZSGB-BIO (Beijing,
China). The anti-Ki67 (ab16667) and anti-AR (ab133273)
were purchased from Abcam (Cambridge, UK). The anti-
occludin (PA5-20755) and anti-zonula occludens-1 (61-
7300) were obtained from Thermo Fisher Scientific (Wal-
tham, MA, USA). The anti-Phospho-Akt (Ser473) (#4060)
and anti-Akt (#4691) were obtained from Cell Signaling
Technology (Boston, MA, USA). The anti-CK-18 antibody
(10830-1-AP) and anti-beta-actin antibody (60008-1-1g)
were obtained from Proteintech (Chicago, IL, USA).

2.2. Animals. Mature male Sprague Dawley rats (8 weeks of
age) were purchased from Huafukang (Beijing, China, No.
SYXK Jing 2011-0024). These rats were treated and sacrificed
according to the National Institutes of Health Guidelines for
the Care and Use of Laboratory Animals (NIH Publication
No. 85-23, revised 1985). All animal procedures were ap-
proved by the Laboratory Animal Welfare and Ethics
Committee of the Beijing University of Chinese Medicine
(BUCM-4-2017010805-010).

2.3. Primary SC Isolation, Culture, and Heat Treatment.
Sertoli cell isolation was according to the previous method
[33]. Briefly, the testicular tissue was obtained from the testis
and washed twice in PBS precooled at 4°C. After fully
centrifuged at 1000 rmp about 5min, the sediment was
treated with collagenase IV (0.5mg/mL) for 5min. After
washing twice and certification for 5 min, the sedimentation
was secondly digested with trypsin (0.05%) for 5 min. FBS in
the same velum was added to stop digestion. Then, the
sedimentation was filtrated through a 100-mesh filter and
centrifugated at 1000 rmp for 5 min. The cells were washed
twice with DMEM/F12, collected in the culture medium
(DMEM plus F12 with 10% FBS and 1% penicillin-strep-
tomycin), and cultured at 35°C in a CO, incubator (5% CO,/
95% air). After 40 h culturing, the medium was replaced to
remove unattached germ cells, and 12-24 h later, when cells
were confluent, they were ready for the following experi-
ments. LBP was dissolved and diluted with PBS into different
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concentrations and then was added in SCs at the dose of
25 mg/L, 50 mg/L, and 100 mg/L. Cells in the control group
and heat-stress group were added with the same volume of
PBS. After 24 h, the control group was cultured at 35°C for
another 20 minutes, and the other groups were treated in a
43°C water bath for 20 minutes.

2.4. Evaluation of Cell Viability. MTT assay has been
widely used for measuring cell viability. The obtained ab-
sorbance value (OD value) under the specific wavelength is
directly proportional to the number of living cells. SCs were
seeded at 5x104 per well in 96-well plates in DMEM/F12
supplemented with 10% FBS. Cells were treated with LBP in
different concentrations or PBS for 24h. After removing
some supernatant, an MTT regent (5 mg/ml) was added to
each well for four hours. Then SCs were treated with DMSO
by shaking for 15min at room temperature, and the OD
value was measured at 570 nm by using a microplate reader
FLUO Star Omega (BMG Labtech, Offenburg, Germany).
The blank group had no cells in wells and was used as the
zero point of absorbance. Also, the absorbance value of each
group divided by the control group was cell viability (%).

2.5.  Immunohistochemistry. The immunohistochemistry
protocol in our experiment followed that described previ-
ously [34]. SCs were first fixed in a 4% polyoxymethylene
solution and then treated with 0.5% triton X-100 and 0.3%
hydrogen peroxide, respectively. After three washes in PBS,
cells were blocked with 10% goat serum to suppress the
nonspecific antigen and then incubated in the primary
antibody of Ki67 (1:200) or AR (1:200) overnight at 4°C.
The next day, after three washes in PBS, the biotinylated
secondary antibodies were added for 15min at 37°C. After
three washes in PBS, the horseradish enzyme labeling
streptavidin working solution was added for 15 min at 37°C.
Immunostaining was developed with the diaminobenzidine
kit and counterstained with hematoxylin. Six nonoverlap-
ping fields were selected for each group to take pictures.
Image-Pro Plus (Version 6.0, Media Cybernetics, Bethesda,
MD, USA) software was used to process the images and
count the positive cells for statistical analysis.

2.6. Western Blot. Western blot was performed as described
previously [35, 36]. The total protein was extracted from SCs
and transferred to polyvinyl difluoride (PVDF) membranes.
PVDF membranes were blocked in 5% nonfat milk for 1 h at
room temperature and then exposed to the primary anti-
bodies diluted in 1% blocking buffer: AR (1:1000), CK-18
(1:1000), occludin (1:1000), zonula occludens-1 (1:1000),
p-Akt (Ser473) (1:1000), and Akt (1:1000) at 4°C overnight.
After washing in tris-buffered saline containing 0.1% Tween-
20 (TBST) three times, the membranes were incubated in
horseradish-peroxidase- (HRP-) conjugated second anti-
bodies (1:4000) for 1h. After washing with TBST, the
membranes were visualized by a hypersensitive electro-
generated chemiluminescence solution (Proteintech).
B-Actin (1:5000) was used as an internal control for AR,



Evidence-Based Complementary and Alternative Medicine

/ "
O
////////’u
(¢} O |
/ ///////// \
H H
H
N
N 0 o
O\
H
(a)
H H
AN o H AN o
o) (0]
H o - H
N e N
O (0] O
O
o H

(d)

3
H H
S
| o
O
e O//////// © N
H “ H
., H

/////O P o
(@)
~, |

FIGURE I: Six main monosaccharides in LBP. (a) Arabinose (PubChem CID: 439195); (b) rhamnose (PubChem CID: 25310); (c) xylose
(PubChem CID: 135191); (d) mannose (PubChem CID: 18950); (e) galactose (PubChem CID: 6036); and (f) D-glucose (PubChem CID:

5793).

CK-18, occluding, and zonula occludens-1. Akt was used as
an internal control for phosphorylated-Akt in Ser473. Band
intensities were determined by the software Quantity One,
Version 4.6.2 (Bio-Rad Laboratories, Hercules, CA, USA).

2.7. Statistical Analysis. Each experiment was repeated at
least three times. Statistical analysis was performed with the
software SPSS version 20.0 (IBM, Albuquerque, NY, USA).
Data that conformed to normal distribution or approximate
normal distribution are expressed as means + standard error
of the mean (SEM). One-way analysis of variance was used
for analyzing the data in different groups, and the pairwise
comparisons were tested by the Tukey multiple comparison
test. P <0.05 was considered as significant, and P < 0.01 was
considered as highly significant.

3. Results

3.1. The Changes in Cell Viability of SCs after Different
Concentrations of LBP Treatment. To observe the effect of
LPB on cell viability and select appropriate drug concen-
trations, we detected the OD value by MTT. As shown in
Figure 2, compared with the control group, the cell viability
of SCs at 25 mg/L, 50 mg/L, and 100 mg/L LBP treatment
groups significantly increased (P <0.05 or P <0.01), while
the differences in other LBP groups were not statistically
significant (P > 0.05). Therefore, these three concentrations
were selected as the concentration of LBP drug groups.
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FIGURE 2: The changes of cell viability of SCs after different
concentrations of LBP treatment. After treatment of LBP at 25 mg/L,
50 mg/L, and 100 mg/L, the cell viability of SCs was obviously in-
creased. Data are presented as means+SEM (n=3) from three
independent experiments. * p < 0.05 and ** p < 0.01, compared to the
control group.

3.2. LBP Alleviates the Decrease of SC Proliferation Activity
after Heat Stress. To investigate the effect of LBP on the
proliferation activity of SCs after heat stress, we tested the
Ki67 in SCs (Figure 3). Ki67 expresses in the SCs nucleus.
Compared with the control group, the positive signal of Ki67
significantly decreased in the heat-stress group and 25 mg/L
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FIGUre 3: LBP improves the proliferation activity of SCs after heat stress. The expression of Ki67 was observed with the immunohis-
tochemical assay. Scale bar: 50 ym. The brown areas are Ki67 positive Sertoli cells (black arrows). Data are presented as means + SEM (n = 3)
from three independent experiments. ** p < 0.01, compared to the control group. ”p <0.01, compared to the heat-stress group.

LBP group (P <0.05 or P <0.01), and the 50 mg/L LBP and
100 mg/L LBP group have no significant change. Compared
with the heat-stress group, the positive signal of Ki67 in
LBP treatment groups showed a noticeable increase
(P<0.01). These data indicated that LBP treatment could
resist the reduction of Ki67 expression induced by heat
stress; however, the 25mg/L LBP group still had a no-
ticeable difference compared to the control group, and
50 mg/L LBP and 100 mg/L LBP could improve the pro-
liferation activity of SCs after heat stress to the level of
normal statement.

3.3. LBP Inhibits the Dedifferentiation of SCs after Heat
Stress. To observe the effect of LBP on the differentiation of
SCs, we tested the expression of CK-18 (Figure 4). The
expression of CK-18 in the heat-stress group significantly
increased (P <0.05 or P<0.01) when compared with the
control group. Moreover, compared with the heat-stress
group, the expression of CK-18 in LBP treatment groups (25,
50, and 100 mg/L) decreased significantly (P <0.01).

3.4. LBP Maintains the Integrity of BTB after Heat Stress.
To clarify the effect of LBP on BTB, we detected the TJ-as-
sociated protein, occludin (Figure 5(a)) and zonula occlu-
dens-1 (Figure 5(b)). As shown in Figure 5, compared with
the control group, the expression of occludin and zonula
occludens-1 in the heat-stress group significantly decreased
(P <0.05 or P<0.01). Compared with the heat-stress group,
the expression of occludin and zonula occludens-1 in LBP
treatment groups increased significantly (P < 0.01) in a dose-
dependent manner (P <0.05 or P <0.01).

3.5. LBP Maintains the Expression of AR in SCs after Heat
Stress. Testosterone only works when combining to the
androgen receptor. To determine the AR in SCs and to better
understand the mechanism of AR, we analyzed AR with
immunohistochemistry staining (Figure 6(a)) and western
blot (Figure 6(b)). Figure 6(a) shows that AR mainly ex-
presses in the nucleus and few are expressed in the cytoplasm
of mature SCs. As shown in Figure 6, the expression of AR
did significantly decrease (P <0.01) after heat treatment.
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FIGURE 4: LBP inhibits the dedifferentiation of SCs after heat stress. CK-18 was checked by western blot. Data are presented as means + SEM
(n=3) from three independent experiments. * p < 0.05 and ** p < 0.01, compared to control group. “p < 0.05 and *p < 0.01, compared to the
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FIGURE 5: LBP maintains the integrity of BTB after heat stress. Occludin and ZO-1 in SCs were detected with western blot (a, b). Data are
presented as means + SEM (n=3) from three independent experiments. ** p <0.01, compared to the control group. “p <0.05, “*p <0.01,

compared to the heat-stress group.

Compared with the heat-stress group, the expression of AR
in LBP treatment groups increased significantly (P <0.01).

3.6. LBP Maintains the Akt Phosphorylation in SCs after Heat
Stress. We all know the critical role of the Akt signaling
pathway in cell activity. It has been found that there is an in-
teraction between AR and Akt phosphorylation at Ser473 [37].
Consequently, we tested the expression of p-Akt (Ser473) to
explore the effective way of LBP on SCs (Figure 7). Compared
with the control group, the expression of p-Akt (Ser473) in the
heat-stress group significantly decreased (P < 0.01). Compared
with the heat-stress group, the expression of p-Akt (Ser473) in

LBP treatment groups increased significantly (P <0.01). These
data indicated that Akt phosphorylation at Ser473 was involved
in the protective effect of LBP on SCs and BTB.

4, Discussion

Sertoli cells are the most crucial somatic cells for sper-
matogenesis. The number and maturations of SCs determine
the spermatogenesis. In this study, our data indicate that
LBP could resist the decrease of proliferation activity, inhibit
the dedifferentiation of SCs after heat stress, and more
importantly, preserve BTB integrity and permeability by
maintaining AR and phosphorylated-Akt (Ser473).
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FIGURE 6: LBP upregulates the expression of AR in SCs after heat stress. The expression of AR was observed by immunohistochemical assay
(scale bar: 50 ym) and western blot (b). The brown areas are AR-positive Sertoli cells (black arrows). Data are presented as means + SEM
(n=3) from three independent experiments. * p < 0.05 and ** p < 0.01, compared to the control group. *p < 0.01, compared to the heatstress
group.
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FiGure 7: LBP promotes the Akt phosphorylation in SCs after heat stress. The phosphorylated Akt was detected with western blot. Data are
presented as means + SEM (n = 3) from three independent experiments. * p < 0.05 and ** p < 0.01, compared to the control group. **p < 0.01,

compared to the heat-stress group.

Lycium barbarum fruits, as a traditional Chinese med-
icine and health food for people, have been used to nourish
the kidney and improve fertility for thousands of years
[38, 39]. The polysaccharide is the primary active component
responsible for those biological activities in L. barbarum
fruits [28]. Also, LBP has been reported to possess a wide
range of pharmacological activities, including antioxidant,
anticancer, and neuroprotective effects, immune regulation,
and others [40]. Recently, there are some reports about the
effects of LBP on male fertility, for example, increasing the

serum testosterone level and decreasing apoptosis of germ
cells. However, the effects of LBP on SCs and BTB are rarely
reported. Thus, this study intends to investigate the effects
and underlying mechanisms of LBP on SCs and BTB.
Temperature is an essential controller for reproductive
activity and testicular homeostasis [41]. Only can physio-
logical scrotal hypothermia guarantee the normal sper-
matogenesis in most mammals [42]. Despite that SCs are
more tolerant to heat than germ cells, heat stress still can
cause damaged structure and dysfunction of SCs [43],
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FiGure 8: Effects and mechanism of LBP on Sertoli cells and BTB after heat stress. AR could directly interact with PI3K regulatory subunit
p85a to activate kinase Akt [37, 73]. LBP maintained the expression of Ki67 and TJ protein and suppressed the re-expression of CK-18 by
resisting the decrease of AR and maintaining phosphorylation of Akt in Sertoli cells after heat stress.

resulting in spermatogenic arrest and weak fertilizing ca-
pacity in vivo and in vitro [10, 44]. Some evidence and our
previous study proved that local testis heat treatment (43°C
for 20 min) successfully leads to dyszoospermia of monkey
and rodents [33, 45, 46]. Furthermore, compared with other
modeling methods of spermatogenesis disorder, heat-stress-
induced impairment on testis is reversible, which is very
suitable to study the sequence and interaction between SCs
and germ cells.

We first selected three suitable concentrations of LBP by
MTT (Figure 2) to treat Sertoli cell. As we previously said, the
number of SCs directly determines the number of sperm. Ki67,
a nuclear antigen closely related to cell mitosis, is often
considered as a marker of cell proliferative activity [47, 48]. For
rat SCs, the number of SCs keeps increasing after birth, as well
as the number of Ki67 positive cells, while it began to decline at
the age of 90 days [49], which suggest SCs of 60-day-old rats
are not fully mature and some of them still can proliferate.
Intervention on SCs of 60-day-old rats can affect the final
number of SCs in seminiferous tubules. Therefore, we detected
the expression of Ki67 to observe the proliferation activity of
SCs. The result confirmed that LBP could preserve the cell
proliferative activity of SCs after heat stress (Figure 3). Fur-
thermore, only mature SCs can support spermatogenesis. CK-
18 is a cytoskeleton molecule, which expresses in the prepu-
bertal SCs and gradually disappears after puberty on mammals
[50, 51]. High expression of CK-18 indicates that SCs are
immature and dysfunctional [52]. Our results imply that LBP
treatment could inhibit the re-expression of CK-18 after heat
stress (Figure 4) to prevent the dedifferentiation of SCs.

The formation of BTB occurs at the beginning of pu-
berty, and BTB is partly composed of tight junction (TJ),
which directly affects the permeability [53]. Occludin is a
highly phosphorylated transmembrane TJ-associated pro-
tein [54], believed as the initiator of BTB formation [55], and

it is related to the initiation of spermatogenesis as well
[56, 57]. Zonula occludens-1, a peripheral transmembrane
protein, forms a link between the transmembrane proteins
and the cytoskeletal compartment [58, 59] to maintain the
integrity of BTB and support the migration and release of
germ cells [60]. Reports have shown that increased per-
meability and dysfunction of BTB are blamed for the loss of
occludin and (or) zonula occludens-1, resulting in harmful
influence to spermatogenesis [61, 62]. Therefore, we selected
occludin and zonula occludens-1 as the molecule marker of
BTB integrity. Our data indicated that LBP could maintain the
expression of them in SCs to ameliorate the heat-stress-induced
increasing permeability and dysfunction of BTB
(Figure 5).

It is well known that testosterone and AR are the decisive
factors for maintaining male fertility and secondary sexual
characteristics. AR is believed as a crucial upstream factor in
controlling the development of SCs and the forming of BTB
[63]. AR deficiency caused failure of SCs maturation [64]
and decrease of TJ-associated protein expression [10, 11, 65].
In the present study, our data demonstrated that LBP could
against the decrease of AR induced by heat stress, which was
consistent with the change of tight junction protein, but
opposite to CK-18 (Figure 6). Furthermore, through in vivo
experiments, it was found that LBP increased the serum
testosterone level in rats. We concluded the increase of
testosterone and AR can improve their binding efficiency,
which may be an important reason for LBP to ameliorate
heat-stress-induced damage of SCs dedifferentiation and
increase of BTB integrity and permeability.

Akt/protein kinase B (PKB), a serine/threonine kinase, is
a mediator in the growth and proliferation of Sertoli cells
[66, 67]. Akt is activated by phosphorylation on threonine
308 (Thr308) and serine 473 (Ser473), with phosphorylation
at Ser473 resulting in maximal Akt activity [68]. Upregulated



Akt phosphorylation could promote the expression of Ki67
[69]. Besides, studies showed that the Akt signaling pathway
is related to the expressions of occludin and zonula
occludens-1 [70, 71], and activation of Akt by enhancing
phosphorylation of p-Akt (Thr308) and p-Akt (Ser473) can
effectively prevent the destruction of the TJ barrier [72].
Also, after blocking the Akt signaling pathway, AR trans-
duction was blocked into the testosterone signaling pathway
in SCs, and Akt phosphorylation at Ser473 is the key
molecule in the pathway of AR trafficking [37, 73]. In our
results, the expression p-Akt (Ser473) of heat-stress SCs
decreased while it increased after LBP treatment (Figure 7),
as well as AR. Therefore, we concluded that the Akt signaling
pathway involves in the effect of LBP on ameliorating heat-
stress-induced damages in SCs and BTB.

In summary, our study indicates that LBP can preserve
the expression of Ki67 and occludin and zonula occludens-
1 and inhibit the expression of CK-18 to prevent heat-
stress-induced impairment of Sertoli cells and BTB
through maintaining AR and Akt phosphorylation at
Ser473 (Figure 8). Also, it provides the experimental ev-
idence for clinical prevention of male reproductive heat-
stress injury.
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