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	 Background:	 Protein kinase membrane-associated tyrosine/threonine (PKMYT1) has been found in many tumors, but its as-
sociation with clear cell renal cell carcinoma (ccRCC) remains unclear.

	 Material/Methods:	 PKMYT1 expression in ccRCC was examined in the Cancer Genome Atlas (TCGA), Gene Expression Omnibus 
(GEO), and Tumor Immune Estimation Resource databases. The correlation between PKMYT1 expression and 
clinicopathological parameters was explored via the chi-square test. Receiver operating characteristic curves 
were used to estimate the diagnostic performance of PKMYT1. Kaplan-Meier curves, a Cox model, nomogram, 
time-dependent receiver operating characteristic curves, and decision curve analysis (DCA) were used to eval-
uate the prognostic value and clinical utility of PKMYT1. Genes coexpressed with PKMYT1 in ccRCC were iden-
tified based on TCGA, the gene expression profiling interactive, and cBioPortal. Gene Set Enrichment Analysis 
revealed biological pathways associated with PKMYT1 in ccRCC.

	 Results:	 Weighted gene coexpression network analysis identified PKMYT1 as one of the genes most significantly cor-
related with progression of histological grade. PKMYT1 was significantly upregulated in ccRCC compared with 
normal tissue (P<0.001), with a trend toward differentiating between individuals with ccRCC and those who 
were healthy (area under the curve=0.942). High PKMYT1 expression was correlated with unsatisfactory surviv-
al (hazard ratio=1.67, P=0.001), indicating that it is a risk factor for ccRCC. A nomogram incorporating PKMYT1 
level was created and showed a clinical net benefit. PKMYT1 was strongly positively correlated with the anti-
silencing function of 1B histone chaperone (ASF1B) gene in ccRCC.

	 Conclusions:	 PKMYT1 is upregulated in ccRCC and its presence indicates poor prognosis, making it a potential therapeutic 
target for ccRCC.
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Background

Kidney cancer is the 12th most common solid neoplasm, with 
approximately 400 000 new diagnoses and 175 000 tumor-
associated deaths globally in 2018 [1]. Renal cell carcinoma 
(RCC) accounts for approximately 90% of all renal tumors and 
is derived from epithelial cells in renal tubules [2,3]. There are 
3 primary histologic subtypes of RCC: clear cell RCC (ccRCC) 
(about 75-80% of RCC), papillary RCC (pRCC) (about 10%), and 
chromophobe RCC (chRCC) (about 5%) [4,5]. Rapid develop-
ment in the molecular characterization of ccRCC has facilitated 
advances in targeted therapy, thus improving median surviv-
al of patients with advanced-stage RCC stage from less than 
10 months before 2004 to 30 months by 2011 [6]. Specifically, 
ccRCC is usually characterized by few specific symptoms and/
or laboratory abnormalities. About 20% to 30% of individuals 
with RCC present with advanced-stage disease at initial diag-
nosis. In addition, approximately 30% of patients who have 
localized ccRCC experience recurrence or metastasis after tu-
mor-targeted surgery [7,8]. Thus, it is essential to further inves-
tigate reliable ccRCC-associated molecular biomarkers, thereby 
facilitating early diagnosis, monitoring of tumor development, 
and discovery of novel therapeutic targets [9].

PKMYT1 (also known as MYT1), a member of the WEE1 family, 
exerts a crucial effect on Golgi and endoplasmic reticulum assem-
bly in mammalian cells. It is a kinase that efficiently phosphory-
lates cell division cycle 2 (cDC2) in both threonine-14 (Thr14) and 
tyrosine-15 (Thr15) in the African clawed frog, Xenopus [10–12]. 
Throughout the cell cycle, DNA-damage checkpoints can help 
preserve genomic stability in normal cells, a monitoring mecha-
nism that is commonly deregulated in tumors. Because of the ac-
tion of tumor-suppressor genes such as P53, mutations in which 
result in deactivation of the G1 checkpoint, most tumor cells 
are heavily dependent on the G2/M checkpoint, thus ensuring 
its genomic stability and survival advantage [13,14]. PKMYT1 
is involved in G2 arrest in oocytes and its activity is modulated 
through Akt phosphorylation [12]. PKMYT1 serves as a negative 
modulator of the cell cycle, preventing cells from transforming 
from G2 to the mitosis phase through 2 pathways [15]. One is 
binding of PKMYT1 localized to the cytoplasm to the cDC2/cy-
clin B complex, which restrains the complex from entering the 
nucleus [16]. In addition, PKMYT1 suppresses cDC2 activity by 
phosphorylating the Thr14/Thr15 residue on cDC2 [17–20]. 
Considering that PKMYT1 secures the G2/M phase transition, 
inhibitors that target PKMYT1 could potentially effectively di-
minish the survival ability of tumor cells, which would endowed 
them with potential in clinical therapy [13]. Currently, an increas-
ing number of studies have demonstrated that overexpression 
of PKMYT1 facilitates proliferation, migration, invasion, and col-
ony-forming ability, as well as epithelial-mesenchymal transi-
tion, (EMT) in multiple tumors. Specifically, a study has dem-
onstrated that PKMYT1 is positively associated with polo-like 

kinase 1 (PLK1) in breast cancer. In breast cancer, the 2 genes 
may act synergistically to modulate tumor growth by maintain-
ing precise control of the cell cycle and genome stability [13]. 
PKMYT1 facilitates the progression of prostate cancer by tar-
geting cyclin B1 and cyclin E1 expression [10]. PKMYT1 also in-
teracts with microspherule protein 1 (MCRS1) – an oncogene 
known to play a role in several tumors – to promote the malig-
nant phenotype of gastric cancer (GC) [21]. PKMYT1 can bind 
and inactivate glycogen synthase kinase 3beta and further ac-
tivate beta-catenin/T-cell factor signaling, thus facilitating the 
development of hepatocellular carcinoma (HCC) [22]. PKMYT1 
facilitates development of ovarian cancer (OC) by negative-
ly modulating SIRT3 [23]. Diminished expression of PKMYT1 
is also accompanied by decreased levels of Notch1, p21, and 
Hes1, indicating that PKMYT1 has potential to strengthen the 
activity of the Notch signal pathway in non-small cell lung can-
cer (NSCLC) [24]. Silencing PKMYT1 expression eliminates irra-
diation-induced G2/M phase arrest and enhances the sensitiv-
ity of cancer cells to radiation [15].

Nevertheless, an understanding of the correlation between 
PKMYT1 and ccRCC and the effect of PKMYT1 on ccRCC pro-
gression remains elusive, and further investigation in this 
area is warranted. In the present study, multiple integrated 
bioinformatics approaches were used to assess the expres-
sion, prognostic effect, and potential biological function of 
PKMYT1 in ccRCC.

Material and Methods

Extraction of differentially expressed gene

A flow diagram of our research approach is shown in Figure 1. The 
Cancer Genome Atlas (TCGA) database (https://tcga-data.nci.nih.
gov/tcga/) was used to acquire publicly available messenger RNA 
(mRNA) profiles and corresponding clinicopathological data from 
539 ccRCC tissues and 72 adjacent normal samples, Information 
recorded included: sex; race; laterality; tumor, node classifica-
tion, and metastasis classification; tumor, node metastasis (TNM) 
stage; histologic grade; tumor status; relapse; and vital status. 
Differentially expressed genes (DEGs) were identified from TCGA 
database and GEO datasets (http://www.ncbi.nlm.nih.gov/geo/) 
(including GSE15641 [25], GSE36895 [26] and GSE40435 [27], as 
well as GSE105261 [28]) through the “DEseq2” package and via 
the “Limma” package, respectively. The thresholds were |log2-
fold change (FC)| >2.0 and false discovery rate (FDR) <0.01 [29].

Weighted gene coexpression network analysis was applied 
for screening PKMYT1

Coexpression methodology with weighted gene coexpression 
network analysis was transformed into connection weights 
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or topology overlap measurements to assess the correlations 
among the identified DEGs [30,31]. The R package of weight-
ed gene coexpression network analysis software was used to 
formulate a coexpression network for 2369 DEGs in 519 ccRCC 
tissues with specific clinicopathological data. We considered 
module significance (MS) as the average gene significance (GS) 
for all genes in a module [32]. We estimated the association 
between the module eigengene (ME) and clinical traits to in-
vestigate relevant modules. Commonly, the module with the 
greatest absolute value of MS was considered to be the one the 
most associated with a clinical trait, which then was selected 
for further analysis. The module membership (MM) was used 
to describe the significance of genes in the module. Thus, we 
identified the PKMYT1 gene in a module via MM and GS [33]. 
The levels of expression of PKMYT1 in different tumors were 
identified through the Tumor Immune Estimation Resource 
(TIMER) database (http://timer.cistrome.org/).

Survival analysis

Pearson’s test was used to assess the correlation between 
PKMYT1 expression and clinicopathological variables in ccRCC. 
Kaplan-Meier plots with log-rank tests were applied to evalu-
ate the association between overall survival (OS) of patients 
with ccRCC and PKMYT1 expression. A receiver operating char-
acteristic curve (ROC) with areas under the curve (AUC) was 
formulated to assess the diagnostic efficiency of PKMYT1 in 
ccRCC [34,35]. Cox regression analysis was used to calculate 
the hazard ratio (HR) with 95% confidence interval (CI) to es-
timate the prognostic effect of PKMYT1 in ccRCC.

Nomogram formulation and validation

A nomogram was developed with the “rms” R package to esti-
mate the probability of 3-, 5-, and 10-year OS in patients with 
ccRCC. A concordance index (C-index) and calibration plot were 
applied to evaluate the nomogram discrimination and the con-
sistence between nomogram prediction and practical obser-
vation, respectively [34,35]. The time-dependent ROC curves 
were applied to evaluate the predictive capability of the no-
mogram, PKMYT1 expression level, and additional clinicopath-
ologic variables for 3-, 5-, and 10-year OS. DCA is a novel sta-
tistical method for evaluating the utility of a predictive model 
in clinical decision-making and to help select the best mod-
el for use in clinical practice [36]. DCA can estimate the clini-
cal net benefit of every model in contrast to all or no strate-
gies. The best model is the one with the greatest net benefit, 
as calculated [35,37]. We conducted DCA to compare the po-
tential predictive benefit of the nomogram, PKMYT1 expres-
sion, and traditional clinical parameters.

PKMYT1 mutations analysis

The cBioPortal database (https://www.cbioportal.org/) (last 
accessed May 20, 2020) was used to analyze the frequen-
cy of PKMYT1 mutations in ccRCC. The Catalogue of Somatic 
Mutations in Cancer (COSMIC) (https://cancer.sanger.ac.uk/cos-
mic/) is a high-resolution database used to investigate the im-
pact of somatic mutations on multiple human cancers, which 
was used to explore mutations in PKMYT1 in ccRCC [38,39].

DEGs from TCGA and GEO
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expresssion in ccRCC
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Figure 1. Flowchart of the study design.
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Gene coexpression analysis

We identified long noncoding RNAs (lncRNAs), micro-RNAs 
(miRNAs), mRNA, and RNA-binding protein (RBP), as well as 
transcription factors (TFs), that interact with PKMYT1 using the 
RNA InterActome (RAID) database (RAID v2.0, www.rna-soci-
ety.org/raid/) [40]. The Gene Expression Profiling Interactive 
Analysis (GEPIA) (http://gepia.cancer-pku.cn/index.html) is a 
database-based resource which incorporates 9736 tumors 
and 8587 normal tissues from TCGA and the Genotype-Tissue 
Expression datasets, thus analyzing RNA sequencing expres-
sion [41]. The correlation coefficient was generated via the 
Spearman method, which was used to estimate the degree of 
gene expression correlation. PKMYT1 and the genes positive-
ly coexpressed with PKMYT1 expression in ccRCC are shown 
on the x-axis and the y-axis, respectively.

Function enrichment analyses

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were formulated by us-
ing the clusterProfiler package (version 3.14.3). Thus, the bi-
ological attributes of the genes that were positively correlat-
ed with PKMYT1 were investigated [42]. Gene Set Enrichment 
Analysis (GSEA) (https://www.broadinstitute.org/gsea/) was 
used to determine the significance of the potential biological 
mechanisms in the high and low PKMYT1 expression groups. 
Gene sets with a normalized (NOM) P<0.05 and FDR <0.25 
were considered significantly enriched.

Statistical analysis

R language software (R 3.6.3 version) was used for statistical 
analysis. A Wilcoxon rank sum test was conducted to compare 
PKMYT1 expression in ccRCC tissues and adjacent non-tumor 
samples using TCGA and GEO datasets. All ccRCC cases were 
stratified into the high- or low-expression group according to 
the median value of PKMYT1 expression. The correlation be-
tween clinicopathological parameters and PKMYT1 mRNA lev-
el was estimated via the chi-square test and the Fisher ex-
act test. The Kaplan-Meier method was used to compare OS. 
Univariate and multivariate Cox analyses were formulated to 
determine the correlations between PKMYT1 mRNA level and 
OS and with additional clinicopathological parameters. Pearson 
correlation analysis and Spearman correlation analysis were 
used to assess the relevance of PKMYT1 and ASF1B gene ex-
pression values. P<0.05 was deemed to be statistically signif-
icant (* P<0.05; ** P<0.01; *** P<0.001).

Results

PKMYT1 is a differentially expressed gene significantly 
associated with histological grade in ccRCC

Based on the cutoff value of FDR <0.05 and |FC|>2, there were 
2369 DEGs between ccRCC and normal kidney samples, in-
cluding 1115 upregulated and 1254 downregulated DEGs. The 
heat map and volcano plot for mRNA profiles are shown in 
Figure 2A and 2B, respectively. A total of 2369 DEGs were clus-
tered to formulate the coexpression network through weight-
ed correlation network analysis [43]. The soft threshold pow-
er value of 3 defined the adjacency matrix, and MEs up to 0.75 
were merged (Supplementary Figure 1). Ten different gene co-
expression modules were identified in ccRCC after the insignif-
icant gray module was excluded (Figure 2C). The results of an 
eigengene connectivity analysis of those modules are shown in 
Figure 2D and 2E. The yellow module, which was most signifi-
cantly correlated with histological grade of ccRCC, was pivotal 
for predicting development of ccRCC (r=0.31; P=1e-12) (Figure 
2F). PKMYT1 was one of the most significant genes in the yellow 
module (GS=0.951435, MM=0.935643) (Figure 2G), which indi-
cates that PKMYT1 is one of the DEGs that is the most signifi-
cantly correlated with histological grade in ccRCC and it poten-
tially predicts the prognosis of ccRCC based on histological grade.

PKMYT1 is significantly upregulated in ccRCC

As shown in Figure 3A, PKMYT1 expression was significantly 
increased in multiple solid tumors, especially in bladder uro-
thelial carcinoma and esophageal carcinoma. Mining TCGA 
and multiple GEO datasets (including GSE15641, GSE36895, 
GSE40435, and GSE105261) further demonstrated that PKMYT1 
was markedly upregulated in ccRCC samples compared with 
normal kidney tissues (Figure 3B–3F).

PKMYT1 expression is associated with clinicopathological 
parameters in ccRCC

The association between PKMYT1 expression and clinicopath-
ological variables in 530 cases of ccRCC from the TCGA data-
base was further analyzed through Pearson’s c2 test. As shown 
in Table 1, PKMYT1 was significantly correlated with T classifi-
cation (P<0.0001), N classification (P=0.027), M classification 
(P=0.0058), TNM stage (P=0.0021), histologic grade (P=0.0002), 
tumor status (P=0.0037), status of relapse (P=0.0065), and vi-
tal status (P=0.0009). More specifically, PKMYT expression was 
enhanced in patients whose tumors had more advanced T, N, 
M classification, TNM stage, and histological grade, and those 
in whom ccRCC had relapsed (Figure 4A–4G). There was no sig-
nificant association between PKMYT1 mRNA levels and addi-
tional clinicopathological factors, such as age, sex, and later-
ality of the neoplasm (Supplementary Figure 2A–2C).
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Figure 2. �Bioinformatic analysis of ccRCC and normal kidney samples in the TCGA database.(A, B) The heatmap and volcano plot of 
the DEGs between 539 ccRCC cases and 72 normal samples. (C) Cluster dendrogram of DEGs and module screening based 
on gene expression profiles of 539 ccRCC samples. (D, E) Heatmap of the correlation coefficient expressed between modules. 
(F) Relationships between consensus module eigengenes and various clinical traits. (G) Analogous scatter plots for the yellow 
module. ccRCC – clear cell renal cell carcinoma; TCGA – The Cancer Genome Atlas; DEGs – differently expressed genes.
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Figure 3. �PKMYT1 is prominently overexpressed in ccRCC. (A) PKMYT1 mRNA expression in multiple neoplasms and adjacent normal 
samples from the TIMER database. PKMYT1 mRNA level in ccRCC and normal kidney tissues from (B) the TCGA database, 
(C) GSE15641, (D) GSE36895, (E) GSE40435, and (F) GSE105261. ccRCC – clear cell renal cell carcinoma; TIMER – Tumor 
Immune Estimation Resource.
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Variable Groups N Low High c2 P value

Age (years)

£60 264 129 135

0.27136 0.6024>60 266 137 129

NA

Sex

Male 344 164 180

2.2003 0.138Female 186 102 84

NA

Race

White 459 226 233

0.4298*
Asian 8 4 4

Black 56 33 23

NA 7

Laterality

Right 280 148 132

1.5888 0.2075
Left 249 117 132

Bilateral 1

NA

T classification

T1 271 149 122

22.122 P<0.0001

T2 69 44 25

T3 179 72 107

T4 11 1 10

TX

NA

N classification

N0 239 121 118

4.8908 0.027
N1 16 3 13

NX 275

NA

M classification

M0 440 231 209

7.6072 0.0058
M1 80 28 52

MX 10

NA

TNM stage

I 265 145 120

14.688 0.0021

II 57 36 21

III 123 55 68

IV 82 29 53

NA 3

Table 1. �Correlation between PKMYT1 mRNA levels and clinicopathological parameters in 530 patients with ccRCC from the TCGA 
database.
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PKMYT1 for diagnosing and predicting prognosis of ccRCC

An ROC curve was used to further clarify the diagnostic effi-
ciency of PKMYT1 expression in ccRCC cases for which infor-
mation was extracted from the TCGA dataset. It showed that 
expression of the gene was satisfactory for differentiating be-
tween ccRCC and tissue from healthy individuals, achieving 
an AUC of 0.942 (95% CI: 0.906–0.978) (Figure 5A). In addi-
tion, the AUC values for the ability of PKMYT1 to distinguish 
between normal renal tissue and ccRCC at TNM stages I, II, 
III, and IV were 0.946 (95% CI: 0.908–0.985), 0.899 (95% CI: 
0.833–0.965), 0.951 (95% CI: 0.914–0.988), and 0.971 (95% CI: 
0.942–0.999), respectively (Figure 5B–5E). Similarly, PKMYT1 
also demonstrated significant diagnostic value in distinguish-
ing normal tissue from ccRCC of histological grades G1, G2, 
G3, and G4, with AUCs of 0.944 (95% CI: 0.897–0.991), 0.932 
(95% CI: 0.890–0.973), 0.954 (95% CI: 0.919–0.989), and 0.971 
(95% CI: 0.943–0.999), respectively (Figure 5F–5I). These find-
ings demonstrate that PKMYT1 is a potentially reliable and 
promising biomarker for diagnosis of even early-stage ccRCC.

To determine whether PKMYT1 exerted a significant effect on 
the prognosis of ccRCC, all ccRCC cases for which information 
was extracted from the TCGA database were stratified into 
high- and low-expression groups, based on the median value 

for PKMYT1 expression. The Kaplan-Meier curve with log-rank 
test showed that prognosis of ccRCC was worse in those with 
high expression of PKMYT1 than in those with low expression 
of the gene (HR=1.67, 95% CI: 1.23–2.27, P=0.001) (Figure 6A). 
High PKMYT1 expression indicated shorter OS than low PKMYT1 
expression in men (HR=1.81, 95% CI: 1.23–2.67, P=0.002) and 
older patients (HR=1.61, 95% CI: 1.10–2.37, P=0.015) with 
TNM stage II ccRCC (HR=8.36, 95% CI: 1.83–38.2, P=0.006), 
histological grade G4 disease (HR=1.71, 95% CI: 1.00–2.91, 
P=0.049), and relapse (HR=1.69, 95% CI: 1.14–2.51, P=0.009) 
(Figure 6B–6F).

Cox regression analysis was conducted to assess the prognostic 
performance of PKMYT1 mRNA level in ccRCC. Univariate anal-
ysis showed that high PKMYT1 expression (HR=1.82, 95% CI: 
1.32-2.52, P<0.001) was significantly associated with inferior 
OS (Table 2). The multivariate analysis also found that a high 
PKMYT1 mRNA level (HR=1.79, 95% CI: 1.29–2.49, p=0.001) 
had the ability to predict unsatisfactory prognosis. Thus, high 
PKMYT1 expression can be considered an independent risk 
factor for OS in ccRCC patients.

Table 1 cotinued. �Correlation between PKMYT1 mRNA levels and clinicopathological parameters in 530 patients with ccRCC from the 
TCGA database.

Variable Groups N Low High c2 P value

Histologic grade

G1 14 11 3

19.3 0.0002

G2 227 127 100

G3 206 99 107

G4 75 23 52

NA 8

Tumor status

With tumor 138 54 84

8.4434 0.0037Tumor-free 358 194 164

NA 34

Relapse

No 373 202 171

7.3991 0.0065Yes 157 64 93

NA

Vital status

Dead 172 68 104

10.939 0.0009Alive 358 198 160

NA

* P value of Fisher’s exact test conducted on a small sample. mRNA – messenger RNA; ccRCC – clear cell renal cell carcinoma; 
TCGA – The Cancer Genome Atlas.
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A novel nomogram model was established and validated 
using ROC and DCA

We next formulated a nomogram that incorporated statisti-
cally significant clinical parameters identified by multivariate 
analysis, thus predicting 3-, 5-, and 10-year OS for patients 
with ccRCC. Histologic grade made the greatest contribution to 
prognosis, followed by tumor status, TNM stage, and PKMYT1 
expression (Figure 7A). The nomogram performed favorably for 
prediction, with a C-index of 0.784. The calibration plot for the 
probability of survival at 3, 5, and 10 years revealed great con-
cordance between the prediction of the nomogram and actu-
al observations (Figure 7B–7D).

We further performed ROC analysis to compare the predictive 
efficiency of our nomogram with that for PKMYT1 expression, 
histological grade, TNM stage, and tumor status. In the ROC 
curves of 3-year OS in the TCGA dataset, our nomogram dis-
played the highest AUC value of 0.808 (95% CI: 0.779–0.867), 
followed by that for TNM stage (0.765, 95% CI: 0.659–0.797), 
tumor status (0.724, 95% CI: 0.687–0.767), histological grade 
(0.697, 95% CI: 0.662–0.717), and PKMYT1 expression (0.659, 
95% CI: 0.599-0.707) (Figure 8A). Similarly, the AUC for the no-
mogram in predicting 5-year OS achieved a value of 0.758 (95% 
CI: 0.693-0.801), which was greater than those for TNM stage 

(0.716, 95% CI: 0.654–0.736), PKMYT1 expression (0.699, 95% 
CI: 0.628–0.746), histological grade (0.669, 95% CI: 0.592-0.698), 
and tumor status (0.596, 95% CI: 0.518–0.622) (Figure 8B). 
The AUC values for the nomogram, tumor status, histologi-
cal grade, TNM stage, and PKMYT1 expression for 10-year OS 
were 0.739 (95% CI: 0.652–0.863), 0.678 (95% CI: 0.592–0.723), 
0.661 (95% CI: 0.604–0.738), 0.653 (95% CI: 0.588–0.768), and 
0.639 (95% CI: 0.572–0.743) (Figure 8C). These results under-
score that our nomogram, which comprised PKMYT1 expres-
sion level and other clinical parameters, is an optimal model 
for predicting long-term prognosis of ccRCC. PKMYT1 expres-
sion had a slightly lower or similar predictive performance for 
predicting prognosis of ccRCC compared with that of the ad-
ditional clinical indicators (including histologic grade, TNM 
stage, and tumor status).

In addition, we developed DCA curves to assess the clinical 
effect of our nomogram and other indicators, thus helping us 
to visually estimate their utility. As shown in Figure 8D, the 
DCA of our nomogram showed the greatest net benefits, fol-
lowed by histological grade, PKMYT1 expression, TNM stage, 
and tumor status, which suggests that PKMYT1 expression 
level has relatively satisfactory clinical utility for predicting 
the prognosis of ccRCC.
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PKMYT1 mutations are rare in ccRCC

The mutation frequency of PKMYT1 in ccRCC was assessed 
through cBioPortal, which accounted for 0.1% (Figure 9A). 
Specifically, the mutant types of PKMYT1 in ccRCC were inves-
tigated through the COSMIC database. As shown in Figure 9B, 
missense mutation was the most frequent type of PKMYT1 
mutation in ccRCC (27.91%), followed by synonymous mu-
tation (11.63%), nonsense mutation (2.03%), and frameshift 

mutation (0.87%). Nucleotide alterations primarily consisted 
of C>T, G>A, C>A and G>C mutations, the greatest proportion 
of which (33.57%) were C>T (Figure 9C).

PKMYT1 positively modulates cell proliferation in ccRCC

Using the RAID database, we investigated molecules that 
have potential to interact with PKMYT1. Specifically, PKMYT1 
displayed crosstalk with 3 lncRNAs (lncMTX2, TUG1, and 
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Variable Mean survival (Mo) 95% CI
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Total 44.9 42.0–47.9

Age (years)

	 £60 46.9 42.6–51.2 Ref

	 >60 43 39–47.1 1.61 (1.17–2.21) 0.004 1.25 (0.9–1.75) 0.188

Sex

	 Female 45 39.6–50.3 Ref

	 Male 44.9 41.4–48.5 0.96 (0.69–1.34) 0.811

Race

	 Asian 30.6 17.1–44.2 Ref

	 Black 26.2 19.2–33.1 2.01 (0.26–15.7) 0.507

	 White 47.3 44.1–50.4 1.89 (0.26–13.52) 0.527

T classification

	 T1+T2 47.6 44–51.3 Ref

	 T3+T4 41 36–46.1 2.88 (2.09–3.97) <0.001 0.64 (0.34–1.2) 0.164

N classification

	 N0 45.2 40.8–49.5 Ref

	 N1 27.2 11.7–42.6 2.81 (1.36–5.83) 0.005

M classification

	 M0 47.1 43.9–50.3 Ref

	 M1 35.2 27.4–43.1 4.57 (3.3–6.32) <0.001 1.31 (0.84–2.05) 0.236

TNM stage

	 I+II 48 44.4–51.7 Ref

	 III+IV 40.2 35.3–45 3.61 (2.59–5.03) <0.001 2.54 (1.19–5.41) 0.016

Histologic grade

	 G1+G2 46.6 42.4–50.9 Ref

	 G3+G4 43.5 39.4–47.6 2.63 (1.83–3.76) <0.001 1.57 (1.06–2.32) 0.024

Tumor status

	 Tumor-free 46.5 43.1–50 Ref

	 With tumor 40.9 35.3–46.4 5.41 (3.89–7.53) <0.001 4.75 (2.32–9.75) <0.001

Laterality

	 Left 43.5 39.4–47.7 Ref

	 Right 46.2 42–50.3 0.66 (0.48–0.91) 0.010 0.73 (0.53–1.01) 0.057

Relapse

	 No 45.3 41.8–48.8 Ref

	 Yes 44.2 38.7–49.8 4.17 (3.0–5.8) <0.001 0.64 (0.31–1.32) 0.225

Table 2. Univariate and multivariate analyses of OS in patients with ccRCC in the TCGA database.
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Table 2 continued. Univariate and multivariate analyses of OS in patients with ccRCC in the TCGA database.

OS – overall survival; ccRCC – clear cell renal cell carcinoma; TCGA – The Cancer Genome Atlas; HR – hazard ratio; 95% CI – 95% 
confidence interval.

Variable Mean survival (Mo) 95% CI
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Neoadjuvant treatment history

	 No 45.1 42.1–48.1 Ref

	 Yes 39.7 24–55.3 2.19 (1.15–4.16) 0.017 1.22 (0.62–2.39) 0.561

PKMYT1 expression

	 Low 47.7 43.7–51.7 Ref

	 High 42.1 37.8–46.4 1.82 (1.32–2.52) <0.001 1.79 (1.29–2.49) 0.001
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linc00673), multiple miRNAs (such as has-miR-20b-5p, has-
miR-371b-5p, has-miR-519d-3p, and has-miR-106b-5p), mRNAs 
(such as AR, CSF3R, CCAR1, KIAA1109, and SIGLEC1), RBPs 
(such as WDR33, GRWD1, CPSF1, METAP2, and FMR1), and TFs 
(such as HNF4A, SWARCC2, TAF1, REST, and FXR1) (Figure 10A). 
Furthermore, TCGA database (Figure 10B), the cBioPortal da-
taset (Figure 10C), and the GEPIA dataset (Table 3) were over-
lapped to select 52 common genes that are positively coex-
pressed with PKMYT1 in ccRCC (Figure 10D). The functional and 
pathway enrichment analysis was conducted to explore the bi-
ological significance of these coexpressed genes. GO analysis 

demonstrated that pathway enrichment with the top 15 genes 
was associated with organelle fission, nuclear division, cell cy-
cle G2/M phase transition, and signal transduction by p53 class 
mediator (Figure 11A), which was roughly consistent with the 
findings of the KEGG analysis (Figure 11B). As revealed in the 
results from GSEA, high expression of PKMYT1 was positive-
ly correlated with the cell cycle (NES=2.389, P<0.0001), p53 
signaling pathway (NES=2.164, P<0.0001), DNA replication 
(NES=1.908, P=0.009), and base excision repair (NES=1.854, 
P=0.007) (Figure 11C). Therefore, PKMYT1 plays an essential 
role in facilitating cell proliferation in ccRCC.
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Expressions of PKMYT1 and ASF1B in ccRCC are 
significantly correlated

To further explore the underlying modulation of PKMYT1 
in ccRCC, data extraction was conducted in a ccRCC co-
hort via cBioPortal. The regression analysis revealed that 
PKMYT1 and the anti-silencing function 1B (ASF1B) gene 
displayed the greatest correlation coefficient (Spearman’s 
correlation=0.85, P=1.07e-145; Pearson’s correlation=0.89, 
P=4.11e-174) (Figure 12A). Similarly, data based on GEPIA also 
demonstrated that there was a strongly positive correlation 
between PKMYT1 and ASF1B transcription (R=0.65, P<0.0001) 
(Figure 12B). A heat map in accordance with the TCGA database 
further confirmed the previously described positive correlation 
(Figure 12C). These findings suggest that PKMYT1 may be in-
volved in ASF1B signaling pathways, and may be a function-
al partner of ASF1B in ccRCC. An analysis of RNA sequencing 
and clinical information extracted from TCGA dataset demon-
strated that levels of ASF1B expression were significantly en-
hanced in ccRCC compared with normal tissue (Figure 12D). 
Furthermore, based on the Human Protein Atlas (HPA) data-
base, a high ASF1B level was significantly correlated with di-
minished OS in ccRCC (P=0.006) (Figure 12E).

Discussion

Globally, RCC is the 9th most common tumor in men and the 
10th most common in women, resulting in over 140 000 can-
cer-associated deaths annually [44–46]. ccRCC is the most fre-
quent histological subtype of RCC, with high likelihood of inva-
sion, metastasis, and resistance to chemotherapy, which makes 
eliminating this neoplasm more challenging [47,48]. Thus, a 
growing number of studies are focusing on the pathogenesis 
and diagnosis of and therapy for ccRCC.

In our study, we showed the level of expression and clinical 
significance of PKMYT1 in ccRCC for the first time. Initially, 
PKMYT1 was found to be one of the genes significantly as-
sociated with histologic progression of ccRCC via the WGCNA 
method. PKMYT1 mRNA levels were prominently increased in 
ccRCC compared with adjacent normal kidney samples in the 
TIMER, TCGA, and multiple GEO datasets. Notably, PKMYT1 
mRNA levels were positively correlated with TNM stage and 
histological grade of ccRCC. ROC analysis demonstrated that 
PKMYT1 could distinguish healthy individuals from patients 
with ccRCC. In addition, enhanced PKMYT1 levels also corre-
sponded to unsatisfactory prognosis in patients who were 
male, older, had TNM stage II or histological grade G4 disease, 
or disease that had relapsed. PKMYT1 expression was further 
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Gene symbol Gene ID PCC

SPC24 ENSG00000161888.11 0.85

CENPM ENSG00000100162.14 0.77

TOP2A ENSG00000131747.14 0.76

RECQL4 ENSG00000160957.12 0.74

C16orf59 ENSG00000162062.14 0.72

PTTG1 ENSG00000164611.12 0.72

RP11-360L9.7 ENSG00000253174.2 0.71

POLD1 ENSG00000062822.12 0.71

TK1 ENSG00000167900.11 0.71

CDC20 ENSG00000117399.13 0.69

CDC45 ENSG00000093009.9 0.69

TROAP ENSG00000135451.12 0.69

B3GNTL1 ENSG00000175711.8 0.67

RNASEH2A ENSG00000104889.4 0.67

ATP5G1P4 ENSG00000227440.1 0.66

DDX39A ENSG00000123136.14 0.66

BIRC5 ENSG00000089685.14 0.66

PAQR4 ENSG00000162073.13 0.66

CDCA3 ENSG00000111665.11 0.66

ASF1B ENSG00000105011.8 0.65

Table 3. The top 20 genes positively correlated with PKMYT1 mRNA expression in ccRCC from the GEPIA database.

mRNA – messenger RNA; ccRCC – clear cell renal cell carcinoma; GEPIA – Gene Expression Profiling Interactive  
Analysis; PCC – Pearson correlation coefficient.

identified as an independent adverse factor for prognosis of 
ccRCC through a survival analysis that integrated a Cox anal-
ysis and a nomogram. ROC curves and DCA both demonstrat-
ed that PKMYT1 expression levels were slightly less useful 
for predicting prognosis of ccRCC prognosis than traditional 
clinical indicators such as histological grade and TNM stage. 
Consistent with the present results, PKMYT1 has been shown 
to be upregulated in oncogenesis and progression of multiple 
human tumors, including colorectal cancer [49], esophageal 
squamous cell carcinoma (ESCC) [11], hepatocellular carcinoma 
(HCC) [22], non-small-cell lung cancer (NSCLC) [24], gastric can-
cer (GC) [21], and breast cancer [13], as well as OC [23]. These 
reports have also revealed a significant correlation between 
increased PKMYT1 expression and advanced clinical stage and 
progressive histological grade, as well as unsatisfactory prog-
nosis of diversiform tumors [11,13,21–24,49], which coincides 
with the results from our study. One report revealed that muta-
tion in the C-terminal domain of PKMYT1 influenced the prog-
nosis of neuroblastoma by altering its catalytic activity [50]. A 
previous study also demonstrated that PKMYT1 was a poten-
tial ccRCC metastasis-related novel gene, based on expression 
profiles in cultures and tumor tissues [51]. Thus, high PKMYT1 

expression potentially indicates tumor progression and it may 
be a promising diagnostic and prognostic biomarker for ccRCC.

In the present study, we highlighted that PKMYT1, as a piv-
otal regulator of G2/M transition, exerted a strong effect on 
DNA-damage recovery and maintenance of genomic stability 
during rapid ccRCC cell proliferation. Given the challenge of 
developing effective therapies for ccRCC and the significance 
of the G2/M checkpoint for tumor cell survival, we speculate 
that PKMYT1 may be an attractive molecular target for ccRCC 
treatment. Another report revealed that depletion of PKMYT1 
suppressed the b-catenin/TCF pathway, which is considered 
a driver of the EMT in multiple tumors and that the gene can 
interact with primary EMT-related biomarkers, such as Twist, 
Snail, and Slug [22,52,53]. Similarly, downregulation of PKMYT1 
impeded Twist expression by hindering the Akt/mTOR path-
way, thus suppressing migration and metastasis as well the 
EMT process in ESCC cells [11]. Considering that EMT is a cru-
cial determinant for tumor metastasis and progression [52,53], 
targeting the b-catenin/TCF and Akt/mTOR pathway through 
PKMYT1 may be a promising strategy for tumor treatment. 
Some PKMYT1 inhibitors have been developed, such as the 
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tyrosine kinase inhibitors dasatinib and bosutinib. Studies of 
the pyridopyrimidine derivatives PD-0166285, PD-173952, and 
PD-173955 also are under way [11]. No potential PKMYT1 in-
hibitors have yet been studied in clinical trials [14].

ASF1, a histone H3-H4 chaperone that comprises 2 ASF1 iso-
forms (ASF1A and ASF1B), has a critical effect on modulation of 
S-phase progression in multiple organisms. Depletion of both 
ASF1 isoforms triggers primary defects in S-phase progres-
sion. ASF1A and ASF1B are crucial to handle histones at rep-
lication forks through interaction with the MCM2-7 complex, 

which is a putative helicase with the ability to unwind DNA 
ahead of the replication fork [54,55]. Importantly, high ASF1B 
expression correlates with faster disease development and 
metastasis in various tumors, including small-cell breast can-
cer [54], prostate cancer [56], and ccRCC [57]. Notably, in pros-
tate cancer, downregulation of ASF1B suppressed expression 
of cyclin D1 and resulted in cell cycle arrest [56]. ASF1B over-
expression accelerated tumor cell proliferation and migration 
in an Akt/P70 S6K1-dependent pathway in ccRCC [57]. Thus, 
the positive association of ASF1B and PKMYT1 in ccRCC sug-
gests an underlying cell cycle checkpoint mechanism related 
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Figure 11. �PKMYT1 accelerates ccRCC progression by modulating the tumor cell cycle. The most significant signaling pathways in 
ccRCC found through (A) GO, (B) KEGG analysis, and (C) GSEA. Abbreviations: ccRCC – clear cell renal cell carcinoma; 
GO – gene ontology; KEGG – Kyoto Encyclopedia of Genes and Genomes; GSEA – gene set enrichment analysis.
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to rapid tumor cell proliferation, based on maintenance of ge-
nomic stability. Overexpression of PKMYT1 may result in ge-
nomic stability through modulation of G2/M in cancer cells. 
The ASF1B regulatory pathway simultaneously participates in 
controlling the S-phase duration for prompt cell proliferation. 
Co-targeting PKMYT1 and ASF1B may be a promising approach 
to preventing ccRCC progression.

Our study deepens our comprehension of the correlation be-
tween PKMYT1 and ccRCC, but several limitations need to be 
discussed. Initially, our report was performed on the basis 
of data extracted from multiple public biological databases. 
Although we identified PKMYT1 expression at mRNA and pro-
tein levels and performed a survival analysis of ccRCC cases 
using information from TCGA, GEO, and HPA databases, vali-
dation of our results in further experiments is required to un-
ravel the molecular mechanisms related to PKMYT1 in ccRCC 

development and prognosis. It is also essential to incorporate 
more prognostic factors into the nomogram to enhance the 
precision of survival analysis. Ultimately, the effects of PKMYT1 
on drug resistance associated with ccRCC require validation 
in future studies.

Conclusions

Our study is the first to assess the upregulation and negative 
prognostic role of PKMYT1 in development of ccRCC, and our 
results suggest that the gene may be a promising therapeu-
tic target for the management of ccRCC.
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