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Background: Nanoscale surface roughness has been suggested to have antibacterial and

antifouling properties. Several existing models have attempted to explain the antibacterial

mechanism of nanoscale rough surfaces without direct observation. Here, conventional and

liquid-cell TEM are implemented to observe nanoscale bacteria/surface roughness interaction.

The visualization of such interactions enables the inference of possible antibacterial mechanisms.

Methods and Results: Nanotextures are synthesized on biocompatible polymer micropar-

ticles (MPs) via plasma etching. Both conventional and liquid-phase transmission electron

microscopy observations suggest that these MPs may cause cell lysis via bacterial binding to

a single protrusion of the nanotexture. The bacterium/protrusion interaction locally compro-

mises the cell wall, thus causing bacterial death. This study suggests that local mechanical

damage and leakage of the cytosol kill the bacteria first, with subsequent degradation of the

cell envelope.

Conclusion: Nanoscale surface roughness may act via a penetrative bactericidal mechan-

ism. This insight suggests that future research may focus on optimizing bacterial binding to

individual nanoscale projections in addition to stretching bacteria between nanopillars.

Further, antibacterial nanotextures may find use in novel applications employing particles

in addition to nanotextures on fibers or films.

Keywords: liquid TEM, graphene liquid cell, antibacterial nanopatterns, antibacterial

surface topology, antibacterial microparticles

Introduction
Antibacterial treatments are frequently implemented in modern medicine, agricul-

ture, and antimicrobial textiles.1,2 Bacteria are, however, capable of developing

resistance to many antibacterial treatments.3,4 Conventional antibiotics typically act

by preventing the upkeep of the cell wall, interfering with the bacterial metabolism,

or by inhibiting the synthesis of nucleic acids or proteins.5 Antibiotics may also

depolarize the cell membrane, allowing ion influx.6 This change in ion concentration

can kill bacteria.7 Antibiotic resistance occurs through limiting uptake of the anti-

biotic, removal of the antibiotic from within the bacteria, inactivation of the antibiotic

through chemical modification or hydrolysis, or modification of the antibiotic’s

target.8,9 In gram-negative bacteria, the outer plasma membrane provides intrinsic

protection against the uptake of many antibiotics.10 Antibiotics primarily depend on

the presence of porin proteins in the plasma membrane.11 These porin proteins

facilitate the transport of hydrophilic antibiotics across the cell envelope.11
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Mutations in the porin proteins may prevent the transporta-

tion of antibiotics.11 Bacteria may also reduce the number of

porins.11 In contrast, gram-positive bacteria lack the outer

plasma membrane and are less likely to limit the uptake of

antibiotics.12 Gram-positive bacteria thus primarily depend

on removal of the antibiotic, destruction of the antibiotic, or

inactivation of the antibiotic via chemical modification.5

Alternatively, bacteria may alter the target of the antibiotic

to prevent the antibiotic effects.5

Three general approaches to battle antibiotic-resistant

bacteria exist: 1) continued development of conventional

antibiotics, to which bacteria continue to adapt, 2) sterili-

zation techniques using chemical agents, such as bleach,

other harsh chemicals, or heating and cleaning of surfaces;

such approaches have limited medical applications, require

continuous reapplication, and may have detrimental envir-

onmental ramifications. 3) Novel fundamentally-different

antibacterial treatments that rely on silver or specific sur-

face topologies.13–19 To this end, bacteria were shown to

develop resistance to silver treatments.20,21 Silver may

also present an ecological hazard similar to that posed by

chemical or antibiotic treatments.22 Regardless of whether

an antibacterial treatment features an antibiotic drug,

strong chemical, or silver, introduction of substances

toxic to bacteria may be inherently caustic and induce

environmental damage.16,23

Antibacterial surface topologies were first observed in

nature. Cicada wings and dragonfly wings exhibit nanotex-

tures which induce bacterial death and reduce bacterial

fouling.24–27 These antibacterial nanotextures may be synthe-

sized on a variety of biodegradable, non-toxic, and non-

pathogenic materials without the presence of any bactericidal

chemical or elemental agent.28 In previous works, Serrano

et al explored nanotexturing of biomedical sutures,28 which

showed reduced bacterial attachment, suggesting the sutures

would be less likely to transmit infections prior to

implantation.28 However, nanostructured cicada wings were

previously shown to kill bacteria with a physical mechanism

rather than by preventing bacterial adhesion.26

The bactericidal property of nanopillar surface topologies

has been proposed to occur through several mechanisms:

Pogodin et al proposed that bacteria bind to the top of

nanopillars.26 The bacteria then attempt to bind below the

surface and are consequently stretched between the

nanopillars.26 This stretching of the cell membrane suppo-

sedly causes rupture of the cell wall and induces bacterial

death.26 In both gram-negative and gram-positive bacteria,

the cell wall includes a layer of peptidoglycan, which

provides mechanical support.29 In gram-positive bacteria,

the cell envelope includes the outer cell wall, an intermediate

periplasmic space, and an interior plasma membrane.29 In

gram-negative bacteria, the cell envelope includes an outer

lipopolysaccharide and protein layer, an intermediate peri-

plasmic space, a middle cell wall, a second periplasmic

space, and an interior plasma membrane.29 Linklater et al

proposed another mechanism, in which the bacteria induce

mechanical forces on the surface of nanopillars upon

binding.30 These forces then deflect the nanopillars, which

then induce strain on the bacteria upon relaxation of the

pillars.30 This strain damages the cell wall and induces the

observed cell death.30 While nanopillar surfaces were experi-

mentally shown via traditional fluorescent light microscopy

and scanning electron microcopy (SEM) to induce bacterial

death, the mechanism of bactericidal activity was mathema-

tically inferred in both Linklater et al and Pogodin et al rather

than demonstrated experimentally.26,30 In another mechan-

ism, Michalska et al proposed that black silicon nanopillars

directly penetrate the cell wall of the bacterium.31 However,

Linklater et al later suggested that the bacterial death

observed in Michalska et al occurred via the strain

mechanism.30,31

Additional studies have focused on mathematical mod-

eling of bacteria/nanotexture interaction.32–34 By necessity,

these mathematical models included assumptions such that

the stiffness of the bacteria may be modeled as a single-

layer of peptidoglycan, that deformation of the bacterial cell

wall does not induce other metabolic processes (eg, apop-

tosis) through programmed cell death, and that the bacteria

binding to the surface occurs through purely physics-based

methods, such as hydrophobic interactions and Van der

Waals forces. The initial bacteria/surface contact is indeed

dependent on physical factors, such as surface charge and

wettability (hydrophilicity/hydrophobicity).35–39 However,

bacteria/surface binding occurs in a second stage, wherein

adhesion forces far exceed the forces in the initial contact

period and are dominated by multiple adhesion proteins and

attachment pili.35–39 Bacterial binding of nanotextures is an

active process and depends on the metabolic rate, which

confirms the active role of protein adhesion in bacteria/

nanotexture binding.40 Thus, while mathematical models

are insightful and may prove useful for offering predictions,

experimental verification of these mathematical models is

also essential. Further, multiple bactericidal mechanisms

are possible and may not be mutually exclusive.

Observational non-mechanistic studies provide direct

evidence of the efficacy of a treatment on a particular
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bacterial strain. However, bacterial strains vary in size,

stiffness, and metabolic processes.41 Due to these bacterial

differences, observational studies require testing antibac-

terial treatments iteratively against multiple strains to pro-

duce a generalized inference of the real-world applications

of any antibacterial approach.31 Experimental studies of

the E.coli/nanotexture interaction mechanisms are thus

needed to complement existing observational studies and

mathematical models. Here, both conventional transmis-

sion electron microscopy (TEM) and liquid-phase TEM

are implemented to observe the mechanism of bacterial

death. Liquid-phase TEM allows for high-resolution

nanoscale observations of the E. coli/nanotexture interac-

tions without requiring preservation of the sample. E. coli

K12 is well-characterized in literature as a model organism

and was thus chosen for this investigation.42,43 In contrast

to previous works on films or larger fibers, here poly

(lactic-co-glycolic acid) (PLGA) microparticles (MPs)

are nanotextured and are shown to have an antibacterial

effect on E. coli in liquid media.26,28,30,31 PLGA is bio-

compatible, biodegradable, low-cost, FDA-approved, and

may be functionalized with other antibacterial treatments

to produce a combined antibacterial effect if desired.44,45

Suspensions containing E. coli and nanotextured PLGA

MPs were imaged in TEM via both conventional TEM and

liquid-phase TEM via graphene liquid cells (GLCs) to

observe bacterial death and structural changes in E. coli.

Materials and Methods
Bacteria Culturing
E. coli K12 were commercially purchased (Escherichia coli

(Migula) Castellani and Chalmers, ATCC® 29425™). Starter

cultures were preserved in 50% glyceraldehyde and 50%

phosphate buffered saline (PBS) and frozen at −80°C as

previously described.46 E. coli was cultured in 50mL lyso-

geny broth (LB) at 37.5°C on an orbital shaker at 100RPM as

previously described.47

PLGA Microparticle Etching
PLGA MPs were commercially purchased (Degrdex® PLGA

microspheres, LG500). The particles varied between several

nanometers to several micrometers in diameter. The PLGA

MPswere then dispersed in DI water and sonicated for 5 mins.

The PLGA MP suspension was then dropcast in 10μL quan-

tities onto approximately 5x5cm copper sheets and allowed to

dry completely for at least 12 hrs. The PLGA-covered copper

sheets were then plasma etched via the method described by

Serrano et al.28 The particles were etched using a South Bay

PC150 plasma etcher under 200 ppm oxygen at 100 W in 1

min increments, with 2 mins between each increment to pre-

vent heating of the sample. After etching, the copper sheets

were cut into strips and placed in microcentrifuge tubes con-

taining 1 mL sterile PBS and sonicated for 5 mins to remove

the PLGA MPs from the copper sheets.

SEM of PLGA MPs
PLGA MPs on copper after plasma etching were gold sput-

ter-coated for 1 min and imaged in SEM via a RAITH100

eLine EBL at 2kV to 3kV with working distances of 13 mm

to 20 mm.

AgNP Solution Preparation
Silver NPs (AgNPs) were commercially purchased and

added to sterile PBS. The suspensions were then sonicated

to facilitate suspension of the AgNPs, and exposed to UV

light to sterilize the sample.

Colony Counting
E. coli were cultured in LB broth to the stationary phase of

E. coli growth. Ten microliters were then extracted from

each E. coli culture to determine viability prior to the addition

of antibacterial materials. PLGAMPs and AgNPs were added

to the appropriate E. coli samples, which were then immedi-

ately returned to the incubator. The extracted samples were

diluted to 10−2, 10−4, and 10−6, and plated on LB agar plates,

as described previously.48 The colony counting procedure was

repeated at 4 hrs and 8 hrs after the addition of the antibacterial

or control samples to the E. coli culture to observe bacterial

death over time. This procedure was repeated six times to

produce statistically valid data. The results were analyzed via

Student’s t-test.49

Conventional TEM Imaging
E. coli was cultured to the stationary phase at which point

PLGA MPs etched for 2 mins were added, incubated an

additional 20 mins, and then fixed for imaging with conven-

tional TEM. The stationary phase refers to the phase of bacter-

ial population growth at which the total population is

constant.50 Bacteria and the antibacterial agent were centri-

fuged to isolate the sample as a pellet, with the LB broth

removed. The samples were then preserved in resin via glutar-

aldehyde and osmium fixing and staining, as per Feng et al.51

This conventional TEM method includes microtoming the

samples to produce cross-sectional 2D slices for imaging.52

Some of the rod-shaped, bacilli E. coli may thus appear
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circular due to the orientation of these bacteria within the 2D

slice.53 A JEOL 1220 TEM was used for image acquisition.

TEM images were false-colored for clarity. The original,

unaltered images are included in the SI.

In situ TEM Imaging
E. coli was cultured to stationary phase in LB broth. PLGA

MPs etched for 2 mins were added to the solution and

incubated for an additional 20 mins. The LB broth was

then removed via centrifugation and the sample rehydrated

in PBS. Approximately 1 μL of the solution was placed on

a graphene-coated TEM grid and then covered with another

graphene-coated grid to produce a graphene sandwich.

Textor et al provided a detailed review of this GLC synth-

esis process.54 The incident electron dose varied between

3×109 Gy/s to 6×1010 Gy/s throughout the experiment.

A JEOL 1220 TEM was used for imaging. TEM images

were false-colored for clarity. The original, unaltered

images are included in the SI.

Results and Discussion
In the first step, the PLGA MPs were plasma-treated to pro-

duce nanotextures on their surface. The MPs were plasma

etched for 1, 2, and 5 mins to induce different surface rough-

ness (see Material and Methods, Figure 1A–C). The PLGA

MPs were imaged via SEM to observe the surface topology

(Figure 1D–G). The PLGAMPs show minimal nanotexturing

in particles etched for 1 min, while at 2 mins these nanotex-

tures are deeper and more pronounced. At 5 mins of plasma

etching, the sample is highly damaged leaving behind

damaged, disordered PLGA. Particles etched for 2 mins,

with the roughest surface morphology, were selected for anti-

bacterial testing.

H
D E

F G

A B C
O

2

Copper 

sheet

PLGA 

MPs

Cathode

Anode

Figure 1 Schematic of plasma etching of PLGAMPs (A-C), SEM imaging of the control PLGAMPs and the plasma-etched PLGAMPs (D-G) and viability graph of E. coli control and
in the presence of antibacterial agents (H). In (A) oxygen flows in low concentration (200 ppm volume) through a charged environment to create free radicals (B) which etch the
surface, leaving behind rough MPs (C). In (D) unetched particles show smooth surface morphology. In (E) the PLGA MPs show mild dimpling of the surface after 1 min of plasma

etching. In (F) the PLGAMPs etched for 2 mins showmore pronounced, sharp patterns as opposed to the PLGAMPs shown in (D) and (E). Finally, in (G) 5 mins of etching severely

damaged the MPs, reducing the PLGA to primarily amorphous PLGA aggregations. The bactericidal efficacy of PLGA MPs and AgNPs are compared in (H) where control and

bacteria treated with 3 μg/mL AgNPs do not show decreased CFU/mL, while the 100 μg/mL AgNPs samples show decreased viability. The error bars in (H) represent the standard

error. The unetched PLGA does not exhibit a statistically significant bactericidal effect, nor does the PLGA etched for 5 mins. However, the PLGA etched for 2 mins, which features

rough MP surfaces, does exhibit a statistically significant bactericidal effect. The scale bar is 1 µm in (D), and 500 nm in (E), (F), and (G).
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In the next step, the bacterial activities of treated and

untreated PLGA MPs were studied and compared with

AgNPs. Unetched smooth PLGA MPs, PLGA MPs etched

for 2 mins, and PLGA MPs etched for 5 mins were added in

concentrations of 6 μg/mL to separate E. coli cultures at the

stationary growth phase (see Material and Methods,

Figure 1H). Additionally, AgNPs, known to have bactericidal

effects, were added to separate LB broth solutions in con-

centrations of 3 μg/mLAgNPs and 100 μg/LAgNPs to create

positive controls (see Material and Methods).21 The results

show the PLGAMPs etched for 2 mins lowered the viability

of E. coli by approximately 64% (p<0.05) as compared to

controls, while the 100 μg/mL AgNPs exhibited bactericidal

effects which lowered the viability of E. coli by approxi-

mately 57% (p<0.10) (Figure 1H). The E. coli sample con-

taining 3 μg/mL AgNP may not have shown a statistically

significant antibacterial effect (Figure 1H) due to the large

size of the AgNPs used in this work, which may reduce the

bactericidal efficiency of AgNPs as compared to smaller

AgNPs used in other studies (Figure 1H).55 The control,

smooth PLGA MPs did not kill E. coli, in agreement with

previous findings that PLGA is non-toxic.44 The highly

damaged amorphous PLGA MPs likewise do not exhibit

any bactericidal effect, suggesting that the plasma etching

process does not alter the chemistry or surface properties of

the PLGA MPs to produce bactericidal effects. Further, the

increased surface area on the highly damaged PLGA etched

for 5 mins would be expected to increase the bactericidal

effect if bacterial death was due to a chemical effect rather

than the rough surface topology. Only the PLGAMPs etched

for 2 mins with the rough nanotextured surface kill bacteria,

to which only the nanotextures are unique, thus indicating

that it is the nanotextures that kill E. coli.

Direct mechanical damage to the cell wall compromises

the cell envelope permeability and induces cell death.26

Metabolically mediated cell wall degradation may occur

due to a cessation of metabolic cell wall maintenance or

by the production of intracellular autolysins which actively

break down the cell wall.56 Further, escape of the bacterial

cytosol, the fluid within bacteria, and a decrease in volume

are indicative of bacterial death.57 Conventional light

microscopy therefore uses fluorescent dyes to determine

the integrity of the cell wall regardless of the mechanism

of bacterial death.58 However, TEM allows nanoscale

observation of the cell envelope and MPs and thus does

not require fluorescent dyes since cell-wall damage can be

directly deserved.51,59

Nanotextured PLGA MP/bacteria surface interactions

were examined via conventional TEM as shown in Figure 2

(see Material and Methods) and Figure S1. In this figure,

a PLGA MP has rough nanotexture and uneven edges as

observed with SEM (Figure 1). As shown in Figure 2A and

B (progressive magnification) (also in Figure S1), the MP has

a surface protrusion inside an adjacent bacterium. The location

of the surface protrusion suggests that the MP sharp features

pierced the cell envelope of the bacterium, including the outer

membrane, peptidoglycan layer, and innermembrane. Piercing

the cell envelope would produce local cell damage and lysis of

the bacterium.26,30,31,60 The absence of the bacterial cell envel-

ope in Figure 2B indicates that this damage was sufficient to

stop themetabolicmaintenance of the cell envelope or produce

apoptosis.60 In contrast to mathematical modeling in previous

PLGA MP

E. coli

Cell wall

A B

Figure 2 Bacterial death is induced by rough MP topography as observed in a cross-sectional image obtained via conventional TEM. In (A) and (B) low to high magnifications

of surface interaction between an E. coli and a rough PLGA particle etched for 2 mins is shown. A sharp peak on the PLGA particle appears to have penetrated the E. coli
bacterium cell envelope. The area bracketed in (A) is shown at higher magnification in (B). The scale bars in (A) and (B) are 200nm.
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works, in Figure 2 the E. coli is not stretched between nano-

pillars but rather is in contact with a single sharp protrusion,

which appears to have been directly penetrated the cell surface

(Figure S1).26,30,32–34

E. coli and PLGA MPs etched for 2 mins were then

encapsulated together in GLCs (Figures 3 and S2). In GLCs,

a liquid sample is encapsulated between two layers of gra-

phene (see Material and Methods).61–64 The graphene layers

are impermeable to liquid matter, fully encasing the sample,

and allow transmission of the electron beam through the

sample. The graphene also dissipates energy, which reduces

undesired effects of the beam exposure (SI, Liquid-TEM

Imaging).57 Previous works have shown that the effects of

changes in pressure, temperature, free radical generation, and

exposure to the electron beam itself are non-significant under

low electron doses for large samples, such as those containing

E. coli, as implemented here (SI notes).57,59,61,65–76 Thus,

previousworks indicate thatE. coli 1)maintain theirmetabolic

processes, 2) maintain their cell envelopes, and 3) continue to

undergo binary fission within liquid-phase TEM.57,59,61,65–76

Liquid-phase TEM (Figures 3 and S2) provides further

evidence of the penetration of nanoprotrusions in E.coli, as

also observed forensically with conventional TEM

(Figures 2 and S1). The cell envelope of the bacterium

immediately adjacent to a rough PLGA MP is highly

damaged and shows escape of the bacterium’s cytosol. In

contrast, areas distal to the PLGA MP surface protrusion

show smooth, undamaged cell envelopes. The localization

of cell damage to the site of bacterium/PLGA MP inter-

action indicates that the bacterium was not killed by

general metabolic factors, which would cause diffuse

damage throughout the bacterium cell envelope. Bacterial

death thus must have occurred due to the localized damage

produced by the E. coli/surface interaction.

Gram-negative bacteria, including E. coli, contain pepti-

doglycan cell walls approximately 2nm to 8nm in thickness. In

contrast, gram-positive bacteria have cell wall thicknesses

from approximately 20nm to 35nm.41,77 Peptidoglycan has

been considered to provide the structural support and is

a primary contributor to the mechanical properties of

bacteria.78 The thickness of the peptidoglycan layer might be

intuitively expected to reflect the stiffness of bacteria. In con-

trast to this expectation, initial experimental studies reported

that gram-negative bacteria exhibit an averageYoungmodulus

of approximately 30MPa while gram-positive bacteria exhibit

a Young modulus of 20MPa.41 However, further studies

showed that theYoungmodulus varies significantly depending

on the bacterial species, growth medium, preparation method,

dry or wet state, and measurement method, with previously

reported Young modulus values between 0.05MPa and

769MPa.41,79 This variation in mechanical properties reflects

cell wall variations in proteins, phospholipids, teichoic acids,

lipoteichoic acids, and differences in peptidoglycan-

peptidoglycan binding or interactions.80 Peptidoglycans con-

sist of alternating sugar moieties, β-(1,4) linked

N-acetylglucosamine and N-acetylmuramic acid, which are

then attached to a peptide chain.81,82 While the sugar moieties

are highly conserved between bacterial species, the attached

peptide chains are bacterial strain-specific and vary signifi-

cantly in peptide chain length and amino acid composition.41

Figure 3 GLC encapsulation of E. coli and PLGA MPs shows localized damage to the cell envelope of the bacterium. In (A), a lower-magnification image shows an overview

of the E. coli and PLGA MP. In (B), a higher magnification shows the PLGA MP and bacterium in close proximity. The cell wall proximal to the PLGA MP shows damage with

a shape similar to the adjacent MP. A high contrast liquid indicates the cytosol of the bacterium, which clearly identifies the death of the bacterium. The cytosol has a distinct

contrast from the PBS medium due to the proteins, glycans, and other bacterial components within it. Other areas of the E. coli cell wall are smooth and show no damage or

degradation. The scale bars in (A) and (B) are 200 nm.
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Peptidoglycansmay bemonomers or cross-linked as dimers or

trimers, with linkages between a variety of amino acid

residues.83,84 The variation in peptide chains and the activity

of crosslinking proteins produces unique chain

crosslinking.85,86 The degree and type of peptidoglycan cross-

linking are thus highly positively correlated with the stiffness

of the bacteria.80 Some bacteria may also contain actin-like

filaments that form a rudimentary cytoskeleton.87 These actin-

like filaments may influence the mechanical properties of

bacteria, including their stiffness.87 In short, the thickness of

the peptidoglycan layer and the gram-positive/gram-negative

classification are not sufficient to establish the mechanical

properties of bacteria.41 This suggests that the bactericidal

nature of nanoscale surface topologies may also be effective

in gram-positive bacteria, since the cell wall of such bacteria

may be comparable to E. coli.41

The deformation of the bacterial cell wall thus depends

not on simple physical forces and the thickness of the pepti-

doglycan layer, but on the Young modulus of the bacterial

cell wall and the attachment forces of the bacterial adhesion

proteins. E. coli was previously shown to exhibit a Young

modulus of 22 MPa.88 This suggests the attachment pressure

of E. coli exceeds this value to produce strain within the cell

wall to produce the damage shown in Figures 2 and 3

(Figures S1 and S2). The bactericidal mechanism of anti-

bacterial nanotextures observed here and supported by litera-

ture is illustrated schematically in Figure 4. First, simple

physical forces, eg, hydrophobic/hydrophilic interactions,

bring the E. coli into contact with the PLGA particle

surface.38,39 The adhesion proteins then attach and contract

to bind the E. coli to the PLGA surface.38,39 However, the

protruding fixture on the PLGA surface exerts a local force

opposing the adhesion proteins bound to the non-protruding

surface (Figures 2,3 and S1,S2). This causes stretching in the

E. coli cell membrane over the PLGA nanopillar, as experi-

mentally observed here in Figures 2 and 3 (Figures S1 and

S2) and illustrated in Figure 4A–D, which damages the cell

envelope. This damage causes the death of the E. coli and

leakage of the cytosol localized to the nanotexture projection,

as experimentally observed in Figures 3 and S2. This cell

B D F H

i
ii

iii

A C E G

Figure 4 Schematic illustration of bacterial death mechanism. The bacterium is shown in blue on the left side of the image (i), whereas the cell envelope is indicated as a dark blue
layer on the outer edge of the bacterium (ii). The PLGA particle is shown in grey on the right-hand side (iii). In (A) and (B) the particle has come into contact and deforms the cell

envelope, before breaking it in (C) and( D). This damage then causes degradation of the cell envelope in (E) and (F), before the cell wall disintegrates in (G) and (H).
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death later results in total degradation of the cell envelope

due to reduced metabolic cell envelope maintenance or pro-

duction of autolysis, as experimentally observed in Figure 2

(Figure S1) and illustrated in Figure 4E–H.56 Here,

a mechanism by which nanoscale surface roughness may

kill E. coli K12 has been shown.

Conclusions
We report rough nanotextured polymer MPs that exhibit anti-

bacterial action. Such MPs have applications distinct from

previously designed media, such as antibacterial gels, liquid

suspensions, or powders. The nanotextured surface topology

of theMPswas shown to be bactericidal via a localizedE. coli/

surface interaction mechanism. The MP surface protrusions

deform bacterial cell walls to induce bacterial death rather than

act by damaging bacterial cell walls via stretching between

nanopillars. This cell-wall damage suggests that the attach-

ment pressure exceeded the force required for deformation of

the cell wall of the bacterium. The deformation of the cell

envelope appears to cause cell lysis and death of the E. coli.

Future studies are required to explore the nanoscale interaction

of rough surface topology with other types of bacteria, and to

further exploit the antibacterial mechanism suggested here.

One should be aware that the success rates of liquid-phase

TEM experiments are very low. The reproducibility of such

liquid-phase TEM tests is also very challenging and needs to

be revisited. We believe more careful studies are needed to

ensure the bacteria are alive in the TEM environment.
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