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Abstract

Genome wide association studies (GWAS) can play an essential role in understanding

genetic basis of complex traits in plants and animals. Conventional SNP-based linear mixed

models (LMM) that marginally test single nucleotide polymorphisms (SNPs) have success-

fully identified many loci with major and minor effects in many GWAS. In plant, the relatively

small population size in GWAS and the high genetic diversity found in many plant species

can impede mapping efforts on complex traits. Here we present a novel haplotype-based

trait fine-mapping framework, HapFM, to supplement current GWAS methods. HapFM uses

genotype data to partition the genome into haplotype blocks, identifies haplotype clusters

within each block, and then performs genome-wide haplotype fine-mapping to prioritize the

candidate causal haplotype blocks of trait. We benchmarked HapFM, GEMMA, BSLMM,

GMMAT, and BLINK in both simulated and real plant GWAS datasets. HapFM consistently

resulted in higher mapping power than the other GWAS methods in high polygenicity simu-

lation setting. Moreover, it resulted in smaller mapping intervals, especially in regions of high

LD, achieved by prioritizing small candidate causal blocks in the larger haplotype blocks. In

the Arabidopsis flowering time (FT10) datasets, HapFM identified four novel loci compared

to GEMMA’s results, and the average mapping interval of HapFM was 9.6 times smaller

than that of GEMMA. In conclusion, HapFM is tailored for plant GWAS to result in high map-

ping power on complex traits and improved on mapping resolution to facilitate crop

improvement.

Author summary

Genome-wide association studies (GWAS) are commonly used in human and plant stud-

ies to identify genetic variants responsible for the phenotype of interest and provide foun-

dations for studying disease mechanisms and crop improvement. Most GWAS models are

developed and optimized using human datasets. However, the difference between human
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and plant datasets essentially limits their applications in plant studies, especially when

mapping complex traits such as drought resistance and yield. In this study, we present a

novel GWAS method, HapFM, tailored for plant datasets to overcome the difficulties of

many conventional GWAS methods. HapFM resulted in higher statistical power than

conventional GWAS methods for mapping complex traits in our simulation and real data-

set analyses. In addition, HapFM reduced the mapping interval by prioritizing candidate

causal regions in the genome, which benefits the downstream experimental studies. Last

but not least, HapFM can incorporate biological annotations to increase statistical power

further. Overall, HapFM balances statistical power, result interpretability, and down-

stream experimental verifiability.

Introduction

Genome-wide association study (GWAS) presents a powerful tool to link genetic variations

with phenotypic traits. In human studies, GWAS has been extensively employed to associate

numerous genetic markers with candidate genes responsible for human diseases, some of

which have become targets for medical interventions [1]. For example, the identification of an

androgen receptor (AR) gene through GWAS led to the development of therapeutic drugs for

patients with prostate cancer [2]. GWAS methods have also been used in plant studies to iden-

tify the genetic basis of certain agronomic traits (reviewed by [3]). There have been many suc-

cessful applications including the identification of OsSPY for plant architecture in rice [4],

metabolic genes for tomato flavor [5], and ZmFBL41 for blight resistance in maize [6].

Although genetic associations in plants have been revealed through GWAS, serious limitations

still exist in the current best practices, including insufficient statistical mapping power and

poor biological interpretation of GWAS results [3,7] [8,9]. For the most part, these limitations

are due to the relatively small population size in plant studies, usually in the hundreds, reduc-

ing mapping power as compared to human GWAS that may involve tens of thousands of

individuals.

Mapping power is critical for understanding the genetic architecture of complex traits in

GWAS. Many agronomic traits, such as yield, flowering time and disease resistance, are com-

plex in nature involving many loci with variable effect sizes, some of which are difficult to be

identified due to systemic issues in most plant GWAS datasets: small population size, existing

confounding factors such as population structure and kinship between individuals, and a high

level of genetic diversity common to plant genomes [3,8]. Conventional SNP-based GWAS

methods use linear mixed models (LMM) to account for population structure and kinship and

then marginally regress individual SNP markers to test for significance [10] [11]. A few varia-

tions of the LMM-based methods such as MLMM [12], SUPER [13] and FarmCPU [14] have

been proposed to increase mapping power. These GWAS models, however, still may have

insufficient mapping power especially when dealing with small effect SNPs in a small popula-

tion [15,16], especially when the functional causal variants may not be included in the GWAS

marker set. Moreover, a large number of markers causes multiple testing burden further

reducing detection power [3]. In human GWAS studies, variant-set mixed model association

tests, SMMAT [17] has been proposed to increase the mapping power by grouping nearby

markers to aggregate small effects and reduce the number of tests. This method has yet to be

evaluated in plant mapping studies. In the recent years, haplotype-based GWAS methods,

RAINBOW [18], and functional haplotype-based GWAS, FH-GWAS [19], were developed

which showed improvements in mapping power over SNP-based methods in plant datasets.
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These studies have demonstrated the feasibility of using haplotypes as variables to overcome

issues in plant GWAS.

In addition to mapping power, mapping interval is another critical aspect of GWAS with

small mapping intervals benefitting downstream experimental validation. In practice, mapping

interval is typically determined by the LD decay surrounding the significant SNPs. Many plant

species, especially those propagated via self-pollinating or vegetative cloning, have extensive

LD block structures [20–22]. For a significant locus in the high LD region, conventional SNP-

based GWAS methods identify markers with significant p-values without differentiating causal

from proximal markers. This can result in a large mapping interval spanning over dozens or

hundreds of genes [3] [23], greatly increasing the difficulty of downstream validations.

A typical approach to increase mapping resolution in plant mapping studies is to generate

fine-mapping populations to enhance recombination in the targeted region [24–26]. This

approach, however, is an escalation in time, sometimes years, and effort and an option that is

not always feasible. Post GWAS analyses such as statistical fine-mapping methods have been

proposed in human genetics, which can leverage biological annotations to prioritize potential

causal variants among linked genetic variants [27]. These methods, however, restrict fine-map-

ping analyses to significant GWAS loci only, which limits their utility in plant studies when

mapping power is insufficient. Similar to SNP-set based association methods, statistical fine-

mapping methods have not been adequately evaluated in plant studies yet.

As a result of the rapid growth in sequence-based resources, many plant species now, or in the

near future, have extensive genomic resources available to complement the study of genetic basis

of complex traits. In plants, complex variations, such as structural variation (SVs), are often the

drivers of many quantitative traits, and genome-wide catalogs of SVs are fast becoming available

for many plant species, including Arabidopsis [28], rice [29], tomato [30], soybean [31], maize

[32] to name a few. Similarly, the availability of transcriptomic datasets can be utilized to identify

gene expression changes that result in phenotypic alteration in plants [33]. Yet, in the past, con-

ventional plant GWAS methods have not been capable of incorporating these resources into the

trait mapping pipeline. Therefore, a novel trait mapping framework that can systemically incorpo-

rate informative genomic, transcriptomic and other meta-datasets to increase mapping power

would represent a significant improvement over the current methodologies.

In this paper, we present a novel haplotype-based trait fine mapping method, HapFM, that

addresses limitations in plant GWAS methodologies. Unlike previous haplotype-based map-

ping algorithms, HapFM incorporates the use of unique haplotypes clusters based on historical

recombination, rather than individual SNPs or uniform block partitioning of SNPs, to fit a

genome-wide statistical fine-mapping model and prioritize candidate causal blocks. Further-

more, HapFM was designed to permit the systemically incorporate biological annotations

such as SV and other biological elements to facilitate the biological interpretation of its map-

ping results. Compared to previous GWAS methods, HapFM resulted in greater mapping

power and smaller mapping intervals for complex traits in both simulated and real plant data-

sets. In addition, we demonstrated that it is possible to incorporate SV and functional annota-

tions into the HapFM fine-mapping model to further increase mapping power. Overall,

HapFM achieves a balance between statistical power, results interpretability, and downstream

experimental verifiability.

Material and methods

Genome-wide haplotype block partition

HapFM first performs genome-wide block partitioning, outputting sets of non-overlapping

SNPs using LD between SNPs as the partitioning metric. Previous studies have demonstrated
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that given the genotype data of a population, the linear reference genome can be divided into

blocks with limited haplotype diversity, also known as haplotype blocks [34]. HapFM utilizes a

2-step partitioning strategy to achieve high computation efficiency. The first step identifies

large independent blocks which are defined as a proximal set of SNPs with minimum pairwise

LD (r2) that are larger than a pre-defined threshold (r2 = 0.1 by default). A maximum distance

threshold between SNP pairs is also set to avoid unrealistically large blocks caused by random-

ness. The second step in the partitioning process identifies sub-block structures within the

large independent block by using existing block partition algorithms. The current version of

HapFM has the choice of three block partition algorithms—Uniform partition, PLINK [35]

and BigLD [36]. Users can also input their own block partitions.

Haplotype clustering

HapFM performs haplotype clustering on the unique haplotypes present in each haplotype

block after the block partition step. In this clustering step, HapFM first enumerates all of the

unique haplotypes in the block. When the number of unique haplotypes exceeds the user-

defined threshold (n = 10 by default), HapFM will perform haplotype clustering to reduce the

number of variables in the mapping step. For a block containing h unique haplotypes charac-

terized by s SNPs, HapFM uses the SNP indicator matrix (h×s) as input for the clustering algo-

rithms. HapFM currently has implemented four clustering methods: affinity propagation, X-

means, local scaling (LS)-spectral clustering and K-nearest neighbor (KNN)-spectral cluster-

ing. Affinity propagation was implemented using sklearn.cluster.AffinityPropagation function

from the scikit-learn package (0.23.2). X-means was implemented using the X-Means function

from the Pyclustering library [37]. LS-Spectral clustering and KNN-Spectral clustering were

implemented using in-house python scripts.

Genome-wide haplotype fine mapping model

The genome-wide haplotype fine mapping model follows a linear mixed model and a hierar-

chical Bayes inference framework:

y ¼ CaþHbþ �;

where y is a length n vector of phenotypic values; C is an n×cmatrix of covariates, α is a length

c vector containing the fixed effects of covariates; H is an n×m design matrix indicating the

counts of haplotype (clusters); β is a lengthm vector of random effects of haplotype (clusters);

� is a length n vector of random residual effects. The prior distribution for effect size β is

shown as below:

b � ð1 � pÞNð0; d2

0
Þ þ pNð0; d2

1
Þ;

bijgi �
Nð0; d2

0
Þ if gi ¼ 0

Nð0; d2

1
Þ if gi ¼ 1

;

(

gi � BernoulliðpÞ;

d
� 2

1
� Gammaða; bÞ;

bPIP ¼ Eðgjy;HÞ
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As shown in the model, the haplotype effect sizes follow a mixture of normal density with

mean 0 and variance s2
1

and a normal density with variance s2
0

pre-specified close to 0. The

latent variable γ encodes the components whose corresponding effect size come from ð0; s2
1
Þ.

The inference was performed using an in-house Gibbs sampler, and the posterior inclusion

probability (PIP) of each β indicates the inferred probability of the haplotype block being

causal of the signal.

The parameter π suggests the prior probability of causality for each haplotype block. If

annotation is not provided, the model assumes every haplotype block has the same prior prob-

ability for causality. If biological annotations are provided, the causal probability of each haplo-

type block will be inferred by fitting it into the following Probit model:

F� 1½Pðgi ¼ 1Þ� ¼ AT y;

where F−1 is the inverse of cumulative distribution function of a standard normal distribution,

A is the matrix containing the annotation features, and θ is the vector of effect size correspond-

ing to each biological annotation. The inference of θ follows the data augmentation method

from [38].

Simulation analyses

Two sets of simulation experiments were performed to evaluate the performance of block parti-

tion and haplotype clustering algorithms implemented in the HapFM framework, and to bench-

mark the mapping performance of HapFM against conventional GWAS methods, respectively.

In the first simulation study, we simulated genotype data of a diverse population with 500

individuals with the known ground-truth of block breakpoints and haplotype clusters. The

simulated genotype data contained 100 large independent blocks, and in each large indepen-

dent block, the number and the size of sub-blocks, s, was sampled from the Uniform (1, 10)

distribution and Uniform (10, 100) distribution, respectively. The number of haplotype clus-

ters, hc, in each sub-block was randomly sampled from a Uniform (2, 4) distribution. Haplo-

type diversity, d, is a parameter to simulated different diversity of the simulated population.

The total number of unique haplotypes, h, was calculated as hc×d. Random mutations were

then introduced to haplotype clusters to generate unique haplotypes. The unique haplotype

matrix Zh×s encompassed the SNP features of all the haplotypes in the block. The haplotype fre-

quencies, fh, were calculated by solving the linear equation:

fs ¼ Zfh

whereby the fs is a vector of the minor allele frequencies in the block randomly sampled from a

Uniform (0.05, 0.95) distribution. The haplotypes were then sampled from a Multinomial (2,

fh) to generate the genotype of the block for each individual.

In the second simulation experiment, we used two real plant genotype datasets to simulate

the phenotypes to benchmark the mapping performance of different GWAS methods. The

first real plant dataset was obtained from the 1001 Arabidopsis project [39], and the second

real plant dataset was obtained from the soybean pan-genome study [40]. In both real plant

datasets, marker imputation was performed following a 2-step imputation procedure [41], and

then markers with minor allele frequency (MAF) under 0.01 were filtered out. The first

100,000 markers in each dataset were used for the simulation analysis. In the real plant data-

sets, BigLD partition results were used for the phenotype simulation.

The phenotype of the population was simulated using the following equation:

y ¼ Caþ XZþ �;
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whereby the coefficients α were sampled from a Uniform (-1, 1) distribution, and the entries

in the covariate matrix C were sampled from a Uniform (-5, 5) distribution. X represents the

SNP genotype matrix. η represents the SNP effect sizes which was simulated in a hierarchical

manner: causal blocks and causal SNPs in the block. At the block level, the probability, πB, of a

block containing true causal SNPs was simulated at 0.005 and 0.05. and the block effect size ZBj

were simulated ranging from 0.5 to 3. Under each true causal block, three types of QTL archi-

tectures of were simulated (Fig 1A):

1. Architecture No.1: contains only one large effect causal SNP;

2. Architecture No.2: contains five to ten small effect causal SNPs that are not all on the same

haplotype

3. (3) Architecture No.3: mixture of large and small effect causal SNPs that are not all on the

same haplotype

For each QTL architecture, SNP-level effect size, ηi, was assigned to each individual causal

SNP based on the equation bBj ¼
P
SNPi2Bj

biIðli ¼ 1Þ, where I is the indicator function. The

Fig 1. The workflow of haplotype-based trait fine mapping (HapFM). HapFM consists of four steps: genome-wide haplotype block partition, unique haplotype

identification, haplotype clustering, and causal haplotype identification. Biological features, such as structural variations, functional annotations, signals of selection, etc.

can be incorporated into the fine mapping model. The y-axis of Manhattan plot generated by HapFM is block pip, indicating causal probability. The size of the dot

indicates the effect size of the block.

https://doi.org/10.1371/journal.pgen.1010437.g001
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effect sizes of non-causal SNPs were randomly sampled from the Normal (0, 0.0001)

distribution.

Processing of real datasets

In real data analyses, four existing datasets were used to demonstrate the performance of

HapFM on various types of genetic architectures and LD structures, and benchmark it with

other GWAS method. These datasets were an Arabidopsis flowering time dataset (FT10) [42],

rice yield [43], maize height [44] and a cassava HCN content [45]. The Arabidopsis flowering

time GWAS dataset included genotype information from two previously published datasets:

Arabidopsis Regmap [46] and 1001 Arabidopsis genome [39]. In the 1001 Arabidopsis geno-

type dataset, non-biallelic SNPs and SNPs with missing percentage greater than 20% were fil-

tered out giving a total of 8,231,757 remaining SNPs. In the Regmap genotype dataset, SNPs

that are not in LD (R2< 0.1) with nearby 20 SNPs we filtered out leaving 202,339 remaining

SNPs, 170,977 of which were also included in the filtered 1001 Arabidopsis genotype dataset.

The overlapping SNPs were used as the reference panel for imputation using Beagle 4.1 [47] to

impute missing data and phased genotypes by following a 2-step imputation procedure [41].

After imputation and phasing, SNPs with a minor allele frequency (MAF) < 0.05 and those

that were not in LD with nearby 20 SNPs were removed resulting in a 1,013,248 final SNPs

dataset. Next, genome-wide LD pruning was performed on the filtered genotypes using

PLINK with parameter set as—indep-pairwise 1000 100 0.1 [48]. Finally, principal component

analysis (PCA) was performed on LD-pruned SNPs and the first five PCs were used as covari-

ates to adjust for population structure.

The genotype and yield phenotype datasets of 529 rice individuals were downloaded from

Rice Variation Map (http://ricevarmap.ncpgr.cn/) [49]. Beagle 4.1 was used to impute missing

data and to phase genotypes. A total of 1,017,380 SNPs were used for GWAS analysis after

removing SNPs with MAF < 0.05 and SNPs that were not in LD (r2< 0.1) with nearby 20

SNPs. Genome-wide LD pruning was then performed on the filtered rice genotypes using

PLINK with parameter set as—indep-pairwise 1000 100 0.1 and remained 12367 LD-pruned

SNPs. PCA was performed on LD-pruned SNPs and the first two PCs were used as covariates

to adjust for population structure.

The genotype information and HCN content of 1134 cassava accessions were obtained

from a published dataset [45]. A total of 16596 SNPs were kept for GWAS analysis after filter-

ing out SNPs with MAF < 0.05 and SNPs that were not in LD (r2< 0.1) with nearby 20 SNPs.

Genome-wide LD pruning was then performed using PLINK with parameter set as—indep-

pairwise 1000 100 0.1 and remained 826 LD-pruned SNPs. PCA was performed on LD-pruned

SNPs and the first 10 PCs were used as covariates to adjust for population structure.

The maize HapMapV3.2.1 genotypes and 263 plant height phenotypes were downloaded

from Panzea (https://www.panzea.org/). Beagle 4.1 was used to impute missing data and to

phase genotypes. A total of 23,093,292 SNPs were used for GWAS analysis after removing

SNPs with MAF < 0.05 and SNPs that were not in LD (r2< 0.1) with nearby 20 SNPs.

Genome-wide LD pruning was then performed on the filtered rice genotypes using PLINK

with parameter set as—indep-pairwise 1000 100 0.1 and remained 148,961 LD-pruned SNPs.

PCA was performed on LD-pruned SNPs and the first three PCs were used as covariates to

adjust for population structure.

Benchmark different GWAS methods on simulated and real datasets

In both simulation and real data analyses, HapFM was compared with four other GWAS

methods: traditional LMM-based univariate association mapping GEMMA v0.98.1 [50],
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Bayesian Sparse LMM BSLMM v0.98.1 [51], SNP-set based association method SMMAT

v1.3.1 [17], and multi-loci association model, BLINK [52]. The kinship matrix, if needed, was

calculated by GEMMA with parameter -gk 1. To fit a univariate linear mixed model in

GEMMA, corresponding covariates were used with default settings for the other parameters.

To fit the BSLMM model, the -bslmm 1 option was used with default settings for the other

parameters. No covariate was included in the BSLMM model. To fit the SMMAT model, SNP

sets based on the haplotype blocks identified by HapFM used including the corresponding

covariates and default settings all parameters. To fit the BLINK model, corresponding covari-

ates were used with default settings for the other parameters.

In both simulation and real data analyses, the mapping power and mapping interval of dif-

ferent GWAS methods was compared with FDR set at< 0.05. HapFM and GMMAT identify

significant haplotype blocks whereas BSLMM, GEMMA and BLINK identify significant SNPs.

Therefore, the FDR values for BSLMM, GEMMA and BLINK results need to be adjusted for a

fair comparison. To do this, the most significant SNP in each HapFM block partition was

selected as the representative SNP of the block and the adjusted FDR values were calculated

using the formular [53]:

jSjq
M

;

whereby |S| represents the number of representative SNPs, q represents the desired FDR level,

and M represents the total number of SNPs. The mapping intervals of significant loci

(FDR< 0.05) of each GWAS method were then calculated. The mapping intervals of HapFM

and GMMAT were the length of their corresponding blocks. The mapping interval of

GEMMA, PLINK and BLINK were calculated by clumping SNPs based on their pairwise LD

using PLINK with the parameter set as—clump-r2 0.2. In addition, the mapping accuracy in

the simulated study was compared at the block level and calculated as the percentage of true

positive blocks identified (FDR< 0.05) from each GWAS method. For the SNP-based meth-

ods, GEMMA, BSLMM and BLINK, if the significant SNPs corresponding block contained

true causal SNPs, it was considered as the true positive even if the significant SNPs were not

the true causal SNPs. For the block-based methods, GMMAT and HapFM, if the significant

block contained true causal SNPs, it was considered as the true positive. The statistical map-

ping power was calculated by counting the percentage of true causal blocks identified with the

FDR cutoff set to 0.05 for all GWAS methods.

Results

Overview of HapFM workflow

In this paper, we present a novel haplotype-based trait fine-mapping framework, HapFM, to

serve as a powerful strategy for mapping complex traits (Fig 1). There are four steps in the

HapFM framework: block partition, unique haplotype identification, haplotype clustering, and

statistical fine mapping. In the block partition step, HapFM identifies genome-wide haplotype

blocks based on LD information among SNP markers. In order to increase computational effi-

ciency, HapFM utilizes a 2-step partitioning strategy. It first identifies large independent

blocks which are defined as a set of adjacent SNPs with minimum pairwise LD (r2) greater

than a pre-defined threshold (r2 = 0.1 by default). Next, HapFM partitions each independent

block into sub-blocks using available block partition programs such as BigLD. The block parti-

tion step outputs non-overlapping SNP sets representing haplotype blocks in the genome.

In the haplotype identification step, HapFM enumerates a set of unique haplotypes in each

block based on phased SNP genotypes. If the number of unique haplotypes exceeds the user-
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defined threshold (n = 10 by default), HapFM will cluster unique haplotypes to reduce the

number of variables used in the mapping step. After the haplotype clustering step, HapFM out-

puts a haplotype design matrix which indicates the occurrence of haplotype clusters in each

individual, and will be used for the statistical fine mapping step. The haplotype design matrix

also has the same format as the conventional SNP genotype matrix therefore it is compatible to

current GWAS methods as well.

In the genome-wide statistical fine mapping step, HapFM follows a linear mixed model and

a hierarchical Bayes inference framework. Upon availability, HapFM can also incorporate

existing biological evidence to model the prior probability of causality for each haplotype

block. The fine-mapping model accounts for the LD between haplotype blocks to prioritize the

candidate blocks that may have a causal relationship with the phenotype.

Block partition and haplotype clustering algorithms

Various algorithms were benchmarked to assess the robustness of block partitioning and hap-

lotype clustering steps used in HapFM. Four clustering methods: affinity propagation [54], X-

means [55], KNN-spectral clustering and local-spectral clustering [56], were first bench-

marked for the clustering step. A high haplotype diversity dataset was simulated to contain, on

average, 500 blocks and 15 unique haplotypes derived from three founder haplotypes in each

block. Both low and high polygenicity trait datasets were tested for comparative purposes.

Comparable mapping power was found for the low polygenicity simulations and none of the

clustering methods consistently outperformed the others (Figs 2A and S1A). In the high poly-

genicity datasets, affinity propagation and X-means clustering methods consistently resulted

in higher mapping power than KNN-spectral and local-spectral clustering (S1B Fig). Different

clustering algorithms resulted in similar true positive rate in both low and high polygenicity

simulations (S2 Fig). Affinity propagation gave 2.7 times more clusters than X-means in real

data analyses, which costs longer computational time in the mapping step. Overall, consider-

ing user-friendliness, mapping power, and computational time, X-means was found to be

more favorable than the other three cluster methods tested.

Next, we compared three different block partition algorithms—BigLD, Plink, and a uni-

form partition method—with the simulated ground truth for block partition accuracy. BigLD

and Plink generated outputs closer to the true partitions in the low haplotype diversity setting

while BigLD outperformed Plink when analyzing high diversity simulations, whose genome

partitions were numerous small blocks that failed to capture local LD structures (S3 Fig). Uni-

form partitioning underperformed in both datasets suggesting that the fixed size of blocks was

a poor reflection of the underlying LD structure.

We then compared the trait mapping power using haplotype blocks identified by each

method in simulated datasets. The simulated datasets covered both low and high haplotype

diversity and trait polygenicity, and three types of QTL architectures which represented differ-

ent numbers of large and small effect alleles in each locus (Fig 2A). The statistical mapping

power was defined as the percentage of the true causal blocks identified (See details in material

and methods). We first evaluated the mapping performance of different partition results in the

low-diversity simulations. Minor mapping power differences were found between BigLD and

Plink blocks in the low haplotype diversity simulations. BigLD blocks consistently resulted in

higher or comparable mapping power than that of Plink blocks in all three QTL architectures

in both low and high polygenicity simulations (Figs 2B and S4A). The mapping power of

BigLD blocks was comparable to ground truth blocks, and uniformed partition blocks had the

lowest mapping power consistently.
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We then evaluated the mapping performance of different partition results in the high-diver-

sity simulations. Major mapping power differences were found between BigLD and Plink

blocks in the high haplotype diversity simulations. BigLD blocks consistently resulted in higher

mapping power than that of Plink blocks in all four QTL scenarios in both low and high poly-

genicity simulations (Figs 2C and S4B). Plink blocks resulted in similar mapping power as that

of uniform partitions.

GWAS algorithms on real plant datasets-based simulations

Five GWAS algorithms: GEMMA, HapFM, BSLMM, GMMAT, and BLINK were studied for

true positive rate, false positive rate, mapping power, and mapping interval length in the real

plant dataset-based simulations. In both genotype dataset, trait polygenicity and causal block

architecture were varied in the simulations to comprehensively evaluate the performance of

different GWAS methods.

Fig 2. Simulation schemes and mapping power comparison of different block partition algorithms. (a) Three types of QTLs simulated in the datasets

representing different architectures of causal block. The effect of QTL1 is contributed by one large effect causal SNP. The effect of QTL2 is contributed by

several minor effect causal SNPs which are not on the same haplotypes. The effect of QTL3 is contributed by a mixture of modest and small effect causal SNPs

that are not on the same haplotypes. (b) Mapping power comparison (FDR< 0.05) of block partition algorithms in the low haplotype diversity and low

polygenicity simulations. The x-axis indicates the per-locus heritability. (c) Mapping power comparison (FDR< 0.05) of block partition algorithms in the high

haplotype diversity and low polygenicity simulations. The x-axis indicates the trait heritability.

https://doi.org/10.1371/journal.pgen.1010437.g002
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The first dataset was simulated from 1135 Arabidopsis individuals from the 1001 Arabidop-

sis genome project. There were 8.23 million SNP markers remaining after the imputation and

removing low frequency SNPs. The first 100,000 SNPs markers on chromosome 1 were used

for the Arabidopsis simulation experiment. HapFM identified 3,058 haplotype blocks and a

total of 9,610 haplotype clusters. In the low polygenicity simulation, BLINK resulted in the

highest mapping power in all three causal block architectures. GEMMA resulted in higher

mapping power than HapFM in QTL architecture 1 and 3. HapFM resulted in comparable

mapping power with GEMMA in QTL architecture 2 (S5A Fig). In the high polygenicity simu-

lation, HapFM resulted in similar mapping power to BLINK in QTL architecture 1 and 3 but

presented the highest mapping power in QTL architecture 2. GMMAT and BSLMM underper-

formed in both polygenicity settings (Fig 3A).

The second dataset was simulated from 2898 soybean individuals from the soybean pan-

genome project. There were 22.16 million SNP markers remaining after imputation and

removing low-frequency SNPs. The first 100,000 SNP markers were used for simulating soy-

bean phenotypes. There were 1654 haplotype blocks and 5801 haplotype clusters identified by

HapFM. Similar to the Arabidopsis simulation, in the low polygenicity setting, BLINK outper-

formed the other GWAS methods and resulted in the highest mapping power. HapFM and

GEMMA showed comparable mapping power in QTL architecture 1 and 3, and HapFM

Fig 3. Mapping power comparisons of different GWAS algorithms in the high polygenicity simulations using real plant genotype datasets. The x-axis

indicates the trait heritability. (a) Mapping power comparisons (FDR< 0.05) of different GWAS algorithms from the Arabidopsis dataset containing 1135

individuals. (b) Mapping power comparisons (FDR< 0.05) of different GWAS algorithms from the soybean dataset containing 2898 individuals.

https://doi.org/10.1371/journal.pgen.1010437.g003
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showed higher than GEMMA mapping power in QTL architecture 2. (S5B Fig). In the high

polygenicity simulation, HapFM resulted in the highest mapping power in QTL architecture 2

and 3, and comparable mapping power to BLINK in QTL architecture 1 (Fig 3B). GMMAT

and BSLMM underperformed in both polygenicity settings. The true positive rate of HapFM

was consistently higher than or similar to other GWAS methods (S6 and S7 Figs).

False positive rate of each GWAS algorithm was tested by generating phenotypes with 0

heritability (π = 0) using these same Arabidopsis and soybean genotype datasets. HapFM,

BSLMM, GEMMA and GMMAT resulted in 0 false positive signal in all 0-heritability simula-

tions. BLINK, on average, outputted 0.5 (sd = 0.97) false positive signals and 1.3 (sd = 1.06)

false positive signals for Arabidopsis and soybean simulations, respectively (S1 Table). In con-

clusion, HapFM does not inflate false positive rate when the underlying true effect size is 0.

HapFM consistently resulted in the smallest mapping interval in both Arabidopsis and soy-

bean genotype-based simulations (Fig 4). In the Arabidopsis simulation, BLINK, GEMMA

and BSLMM showed similar mapping interval which were defined by the distance of LD decay

(r2< 0.2) of the significant SNPs. GMMAT and HapFM showed the comparable mapping

interval length because they shared the same haplotype block partitions. On average, the map-

ping interval of GEMMA significant loci was 19.12 times larger than that of HapFM in the low

polygenicity setting, and it was 23.01 times larger than that of HapFM in the high diversity set-

ting. In the soybean simulation, higher variation in the mapping interval length was observed.

On average, the mapping interval of GEMMA significant loci was 26.01 times larger than that

of HapFM in the low polygenicity setting. In the high polygenicity simulation, higher mapping

interval length variation was observed in BLINK, BSLMM and GEMMA. On average, they

were 39.25, 11.57 and 25.55 times larger than that of HapFM, respectively.

Fig 4. Mapping interval comparisons of different GWAS algorithms in the simulations. The interval length ratio was calculated by normalizing to the mean

of HapFM’s interval length. The red dash line indicates the average interval length of significant loci identified by HapFM. (a). Interval length of significant loci

(FDR< 0.05) identified by different GWAS algorithms from the simulated Arabidopsis GWAS datasets (b). Interval length of significant loci (FDR< 0.05)

identified by different GWAS algorithms from the simulated soybean GWAS datasets.

https://doi.org/10.1371/journal.pgen.1010437.g004
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GWAS algorithms on actual plant datasets

Four plant GWAS datasets—Arabidopsis flower time, rice heading time, cassava HCN con-

tent, and maize height—were used to benchmark the performance of HapFM as compared to

the other GWAS algorithms. HapFM identified the highest or close to the highest number of

significant loci compared to the other GWAS algorithms in all real plant GWAS datasets

(Table 1). In the Arabidopsis flowering time dataset, HapFM first partitioned genome into

48,171 haplotype blocks, out of which it identified 82,431 haplotype clusters. The average and

median of block length were 2,803 nt and 457 nt, respectively. In the haplotype fine mapping

step, HapFM identified seven significant loci (FDR< 0.05). GEMMA identified five significant

loci (FDR < 0.05), out of which three loci were shared with HapFM results. The locus on Chr5

(most significant SNP: 5@3161477) was also detected by HapFM but slightly missed the signif-

icant FDR cutoff (FDR = 0.07). BLINK identified eight significant loci (FDR< 0.05), but only

three loci overlapped with GEMMA and HapFM results (Fig 5). GMMAT identified two sig-

nificant loci and both of them were identified as significant by HapFM and GEMMA. BSLMM

identified one significant locus also discovered by HapFM and GEMMA (S8 Fig). HapFM

identified four loci: Chr3@7598564–7598957, Chr4@405136–406621, Chr5@14063228–

14197451, and Chr5@16141604–16146257 that were unique to HapFM algorithm. In these

unique intervals, flowering time related candidate genes were identified in or near those loci.

In the Chr3@7598564–7598957 locus, there is no gene in the interval but an adjacent proximal

gene AT3G21570 located 1.3kb away, was previously shown to be exclusively expressed in the

developing flowers with transcriptomic changes during pollen germination and tube growth

in Arabidopsis [57]. The Chr4@405136–40662 interval overlaps with AT4G00950 (MEE47), a

gene that is highly expressed in mature flowers and required for female gametophyte develop-

ment and function in Arabidopsis [58] [59]. In the Chr5@14063228–14197451 interval, there

Table 1. Summary of GWAS results on the five real plant datasets.

Phenotype Dataset Block

number

GWAS

methods

# of significant loci

(FDR < 0.05)

Avg. significant locus length

(kb)

Avg. # of SNPs per

locus

Arabidopsis

Flowering

1003 individuals 1.12M

SNPs

48,171 HapFM 7 24.8 28

BLINK 8 248.3 188

GEMMA 6 237.8 105

GMMAT 1 218.6 80

BSLMM 2 10.1 27

Rice Heading Time 529 individuals 1.43M

SNPs

14,301 HapFM 20 236.2 63

BLINK 6 428.1 534

GEMMA 10 2024.4 517

GMMAT 1 52.2 43

BSLMM 4 249.1 66

Cassava HCN 1134 individuals 24.75K

SNPs

9,112 HapFM 3 62.0 44

BLINK 5 342.8 17

GEMMA 4 1068.9 348

GMMAT 0 NA NA

BSLMM 2 71.0 32

Maize Height 263 individuals 23.09M

SNPs

98,723 HapFM 10 398.1 62

BLINK 1 158.7 252

GEMMA 0 NA NA

GMMAT 0 NA NA

BSLMM 2 312.1 70

https://doi.org/10.1371/journal.pgen.1010437.t001
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are 30 protein-coding genes. Multiple candidate genes in the interval, such as AT5G36110,

AT5G35926, AT5G35995, have been shown to be highly expressed in different flower stages

and tissues [60]. The Chr5@16141604–16146257 locus overlaps with AT5G40360 (MYB115), a

gene was shown to be highly expressed during flowering stages and mature flowers and its

overexpression promotes vegetative-to-embryonic transition in Arabidopsis [61].

In addition to having the high mapping power, HapFM also mapped significant loci to the

smallest genomic intervals in most cases. For example, HapFM, GEMMA, and BSLMM all

identified the same significant locus, FT locus, on Chromosome 1 (Fig 5). The interval length

of the locus identified by GEMMA and BSLMM are both 21.9kb while the interval length of

the locus identified by HapFM is 2.7kb. On average, the average interval length of significant

loci identified by HapFM and GEMMA was 24.8kb and 237.8kb, respectively (Table 1). The

average number of SNPs per significant locus identified by HapFM and GEMMA was 28 and

105, respectively. Similar results were found in the other four real plant GWAS datasets

(Table 1). HapFM consistently resulted in similar or higher number of significant loci com-

pared to GEMMA, BSLMM, and GMMAT. In addition, the mapping interval of HapFM is

considerably smaller than GEMMA in all the comparisons.

Using the Arabidopsis flowering time dataset, a proof-of-concept study demonstrated that

biological annotations could be incorporated (HapFM-anno) and potentially increase map-

ping power. The biological-informed prior probability for each haplotype block was calculated

using eight biological annotations. In this example, the biological annotations were the num-

ber of CNV, INDEL, rare variants, high effect variants, moderate effect variants, low effect var-

iants, and modifier variants in each block. The estimated effect size of biological annotations

suggested the number of CNV in each block significantly affected the prior probability of each

haplotype block (Fig 6A). HapFM-anno identified nine significant loci in total using biologi-

cal-informed priors (Fig 6B and 6C). Five out of nine were also identified previously without

biological annotation incorporated. HapFM-anno identified four novel loci: Chr1@7884994–

7886542, Chr1@11474330–11475120, Chr1@25408933–25429985, and Chr5@23204856–

23205070 (Fig 6B). The interval Chr1@7884994–7886542 is at the upstream region of gene

AT1G22330 that is highly expressed in mature flowers [60]. The interval Chr1@11474330–

11475120 is at the upstream of the gene AT1G31940 that is highly expressed in mature flowers

[60] and involved in seed germination [62]. The locus Chr1@25408933–25429985 overlaps

with ten genes. Multiple candidate genes in the interval, such as AT1G67780 and AT1G67790,

have been shown to be highly expressed during petal differentiation and expansion stage [60].

The locus Chr5@23204856–23205070 overlaps with the gene AT5G57280 that has been shown

to be highly expressed in different flower tissues [60] and pre-meristematic cell-mound forma-

tion during shoot regeneration [63]. Two HapFM identified loci: Chr5@14063228–14197451

and Chr5@16141604–16146257, were not significant after incorporating biological

annotations.

Discussion

GWAS has emerged as a critical approach to understanding the genetic architecture of com-

plex traits. Human medical GWAS have taken the full advantage of large sample sizes and

high-quality genomic resources such as tissue specific gene expression and chromatin 3D

structure to resolve the genetic basis of many human diseases [1] [64–66]. Plant GWAS,

although suffering from limited genetic resources, is still a powerful method to identify the

Fig 5. Manhattan plots of different GWAS methods on the Arabidopsis flowering time (FT10) dataset. The red dash line indicates the FDR 0.05

threshold. In the HapFM’s plot, the size of the dot indicates the estimated effect size of the block.

https://doi.org/10.1371/journal.pgen.1010437.g005
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genetic architecture of traits for both basic biology and crop breeding research [15]. As the vol-

ume of plant genomic and phenotypic datasets increase, plant GWAS will begin to take on a

more significant role as it does in human medical studies. The successful identification of the

GWAS loci for traits such as disease resistance and plant architecture could significantly

increase yield and mitigate the food security issues. To date, SNP-based LMM and its variants

are commonly used but often lack of statistical power in plant GWAS studies especially map-

ping complex traits, due to limitations in the study designs and high polygenicity nature of

those traits [3,67]. Conventional GWAS methods use LMM to identify significant SNPs by

marginally testing one SNP at a time without considering LD between proximal SNPs. There-

fore, it is important to develop novel computational methods that are tailored for plant GWAS

dataset.

Fig 6. Arabidopsis flowering time GWAS results using biological-informed priors (HapFM-anno). (a) The estimated effect sizes of different biological annotations for

the Arabidopsis flowering time dataset. (b) The comparison of significant loci identified with and without incorporating biological annotations. (c) Manhattan plot of

HapFM-anno on Arabidopsis flowering time (FT10) dataset. The red dash line indicates the FDR 0.05 threshold. The size of the dot indicates the estimated effect size of

the block.

https://doi.org/10.1371/journal.pgen.1010437.g006
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There may be reasons why a conventional GWAS approaches may not be the most suitable

model for plant GWAS. Plant GWAS generally have a small population size, a magnitude or

two smaller than most human GWAS. In these circumstances, when an individual SNP has a

large effect size, marginal regression can successfully identify it together with its in-LD SNPs

and results in a significant peak in the Manhattan plot even in small GWAS populations. For

instance, conventional GWAS methods have been used in small populations to map traits con-

tributed by large-effect loci, such as qualitative resistance [68], plant architecture [4], metabolic

pathways [5]. On the other hand, conventional GWAS methods often struggle to map traits

contributed by numerous small-effect loci in populations of limited size. For example, signifi-

cant SNPs identified by an LMM-based GWAS method, FarmCPU, only explained 15% of the

phenotypic variation in a Sclerotinia resistance in soybean[69]. This result is consistent with

our simulation results that GEMMA, a representative of conventional LMM-based GWAS

method, that correctly identified large-effect loci in low-polygenicity traits while failing to

identify small-effect loci in high polygenicity traits. One way of increasing mapping power is

to increase sample size in GWAS. For example, in human height GWAS, 253,288 individuals

were analyzed identifying 423 loci, with the majority loci contributing less than 1% of the total

heritability [70]. Aggregating SNP effects is another way of increasing mapping power, such as

SNP-set based method. This assumes that there may exist more than one causal SNPs in the

SNP-set. HapFM follows a similar strategy by projecting SNPs on haplotypes and then testing

the effect sizes of haplotypes rather than individual SNPs. In addition, using haplotypes as vari-

ables also includes cis-interaction between SNPs, which is generally missing in SNP-based

LMM models.

The second reason conventional GWAS models are underpowered is that a large number

of SNPs cause multiple testing burdens in the marginal regression. As sequencing cost contin-

ues to decrease, however, genotyping a GWAS cohort by whole genome sequencing has

become more affordable than ever before. When WGS datasets are used in plants, the high lev-

els of genetic diversity of many plant species create datasets whereby millions of SNPs /

INDELs can be identified in individuals, especially when including wild relatives [41]. This

excessively large number of SNPs can affect the power of conventional SNP-based LMM meth-

ods because significance is tested on individual SNPs with overall significance calculated with

cutoffs to control type I error. The overall significance cutoff will be more stringent as the

number of SNPs increases in the analysis, significantly reducing the power of conventional

SNP-based GWAS approaches, such as GEMMA, GAPIT, and FarmCPU. A common solution

to the multiple testing issue is to select a subset of representative SNPs for each LD block, also

known as “tag SNPs”, to reduce the number of tests in the analysis. This method assumes,

however, that the causal SNPs are in LD with the tag SNPs [71] [72]. This can be problematic

since the selection of the representative SNP is arbitrary involving choosing parameters for LD

cutoff and physical distance. Moreover, information about other SNPs is lost with this method,

such as the number of causal SNPs, LD structure between nearby SNPs. As discussed below,

HapFM solves the multiple testing problem by combining SNPs into haplotypes, which greatly

reduced the total number of variables in the model.

Another limitation of conventional GWAS methods is the interpretability of mapping

results, including mapping interval and relevant biological information. Domestication and

modern breeding result in large LD blocks in many crop genomes [73] and most conventional

GWAS methods marginally test each SNP marker without considering the LD between nearby

SNPs. Therefore, a bundle of proximal SNPs may pass the significance threshold simply due to

strong regional LD, resulting in a large significant peak in the Manhattan plot. This is espe-

cially problematic when the mapping interval of the locus is defined as the boundary where

LD decays below a threshold (r2< 0.2). In a region with high LD, the mapping interval could
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span hundreds of genes and compounding the difficulty downstream experimental validation

[3,8,27]. A common practice to increase mapping resolution in the high LD region in many

plants is to generate a fine-mapping population to further reduce LD by introducing recombi-

nation into the region [74]. Nevertheless, developing a fine-mapping population is labor-

intensive and at a high cost, which largely limits its application. Mapping resolution can also

be improved by performing statistical fine-mapping in the region to identify a credible set of

SNPs with a high probability containing the true causal SNPs. Statistical fine-mapping meth-

ods has been successfully used in human genetic studies to narrow down the list of causal

SNPs [75] [76]. One limitation of this method, however, is that it is locus-specific rather than

genome-wide due to high computation intensity. Also, biological interpretation of the SNPs in

the credible set may be ambiguous because they may not be obvious functional variants.

HapFM leverages the combination of genome-wide haplotype block fine-mapping with sta-

tistical fine-mapping to identify causal haplotype blocks. When possible, HapFM partitions

large independent blocks into smaller and correlated blocks to further increase mapping reso-

lution. LD information between small blocks is then used to identify the causal blocks. The

causal block identified provides a reduced interval for the identification of functional variants.

One limitation of this method, however, is that structural rearrangements, such as inversion,

may result in the location of functional variants outside of the identified causal blocks.

Comparison with other GWAS methods in the simulation and real datasets showed that

HapFM could greatly increase mapping resolution and achieve higher mapping power with

complex traits. This indicates that HapFM may greatly improve current mapping efforts and

perhaps serve as an alternative GWAS strategy in plant studies. Our results show that HapFM

generated smaller mapping intervals than SNP-based LMM models, especially in regions of

high LD in the simulation studies. HapFM consistently mapped traits to a smaller interval with

fewer candidate genes than GEMMA and BLINK. These results suggest that HapFM is capable

of addressing the previously mentioned limitations found in many plant GWAS studies. In

low polygenicity simulations, BLINK and GEMMA showed higher mapping power than

HapFM, suggesting SNP-based LMM models in general, would provide a powerful method for

mapping simple traits contributed by major effect loci. Therefore, the choice of the mapping

algorithms may be determined by the genetic architecture of the traits. Other methods, such as

GMMAT and BSLMM, consistently underperformed in both the simulation and actual plant

datasets. Therefore, optimization of these models is necessary for better plant applications.

A similar haplotype-based method, FH-GWAS [19], has been developed which demon-

strates an advantage of using haplotypes over SNP as variables by aggregating local epistatic

effects. In our study, FH-GWAS and HapFM identified more significant loci than conven-

tional SNP-based methods on the same Arabidopsis FT10 GWAS dataset (S2 Table). Overall,

HapFM identified two more significant loci than FH-GWAS in the Arabidopsis FT10 GWAS

dataset. The improved mapping power may be due to the following reasons. HapFM has

benchmarked different block partitioning algorithms and showed the advantages of non-uni-

form LD-based partitioned using BigLD over uniform partitioning and PLINK partitions.

HapFM goes further by performing haplotype clustering instead of using unique haplotypes,

reducing the number of variables in the final model, and increasing the power of low-fre-

quency haplotypes. Finally, HapFM uses the full model instead of marginal regressing haplo-

types methods used in most haplotype-based GWAS methods, such as FH-GWAS and

RAINBOW [18]. The full model doesn’t need to estimate the kinship between individuals, and

the output results from HapFM indicate candidate causal haplotype blocks. Last but not least,

HapFM can use biological-informed priors for different genomic regions, which could further

improve its mapping power.

PLOS GENETICS Prioritized candidate causal blocks in plant GWAS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010437 October 17, 2022 18 / 25

https://doi.org/10.1371/journal.pgen.1010437


One limitation of HapFM is its high computational time. This computational cost is deter-

mined by factors including the number of blocks in the genome, the sensitivity of haplotype

clustering, and the number of MCMC iterations. HapFM uses the full model rather than mar-

ginal regression to infer the causality of each block. The more blocks partitioned, the more var-

iables will be included in the fine-mapping model, which essentially increases resolution at the

expense of computational intensity. Similarly, failing to cluster haplotypes will also increase

the number of variables in the model. HapFM uses MCMC for parameter inference, and the

number of iterations for MCMC to reach convergence is random and highly variable. In addi-

tion, a large number of iterations is necessary to reduce the standard error of the estimates.

These factors all contribute to the high computational time of HapFM.

Future improvements on HapFM include, but are not limited to, optimization in block par-

tition and haplotype clustering algorithms and reducing computation time in the MCMC step.

As more individual being sequenced, the high genetic diversity in the GWAS dataset may

affect the accuracy of block partitioning and haplotype cluster as suggested in the simulation

experiment. Moreover, as more and more plant species now have a pan-genome reference

showing complex structural variations in different individuals [77], a pan-genome compatible

trait mapping algorithm will be in high demand in the near future. The conventional SNP-

based marginal regression models may struggle to be applied to the pan-genome reference

because different reference genomes will output different sets of SNP genotypes as well as

structural variations. HapFM has an advantage in pan-genome-based trait mapping because it

uses haplotype as variables, defined by SNPs and structural variations. In addition, different

reference genomes increase the accuracy and resolution of haplotype identification by provid-

ing extra information. The application of HapFM on pan-genome references is still under

development.

In conclusion, we have developed a novel GWAS algorithm, HapFM, to address specific

issues in plant studies. We demonstrated that HapFM showed advantages in shorter mapping

intervals and higher mapping power than conventional GWAS methods in simulation and

actual plant datasets. These results suggested that HapFM is a reliable alternative GWAS algo-

rithm, and it supplements the current GWAS methods to facilitate the understanding of

genetic architecture of traits.

Supporting information

S1 Fig. Mapping power comparison of different haplotype clustering algorithms. (a) Map-

ping power (FDR < 0.05) of affinity propagation, KNN-spectral clustering, local-spectral clus-

tering and X-means in the low polygenicity simulation. (b) Mapping power (FDR< 0.05) of

affinity propagation, KNN-spectral clustering, local-spectral clustering and X-means in the

high polygenicity simulation.

(TIF)

S2 Fig. True positive rate (TPR) comparison of different haplotype clustering algorithms.

(a) TPR (FDR< 0.05) of affinity propagation, KNN-spectral clustering, local-spectral cluster-

ing and X-means in the low polygenicity simulation. (b) TPR (FDR < 0.05) of affinity propa-

gation, KNN-spectral clustering, local-spectral clustering and X-means in the high

polygenicity simulation.

(TIF)

S3 Fig. Comparison of Block partition algorithms on simulated datasets. Each block parti-

tion algorithm was tested on low haplotype diversity and high haplotype diversity simulations.

The redness indicates the strength of LD between SNP pairs, and the blue line indicates the
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block partition generated by the method.

(TIF)

S4 Fig. Mapping power comparison of different block partition algorithms in the low poly-

genicity simulations. The x-axis indicates the per-locus heritability. (b). Mapping power com-

parison (FDR< 0.05) of block partition algorithms in the low haplotype diversity and low

polygenicity simulations. (c). Mapping power comparison (FDR < 0.05) of block partition

algorithms in the high haplotype diversity and low polygenicity simulations.

(TIF)

S5 Fig. Mapping power comparison of different GWAS algorithms in the low polygenicity

simulations. The x-axis indicates the per-locus heritability. (a). Mapping power comparison

(FDR< 0.05) of different GWAS methods from the Arabidopsis dataset containing 1135 indi-

viduals. (b). Mapping power comparison (FDR< 0.05) of different GWAS methods from the

soybean dataset containing 2898 individuals.

(TIF)

S6 Fig. True positive rate different GWAS algorithms in the low polygenicity simulations.

(a). True positive rate (FDR< 0.05) of different GWAS algorithms from the Arabidopsis simu-

lated dataset. (b). True positive rate (FDR < 0.05) of different GWAS algorithms in the soy-

bean simulated dataset.

(TIF)

S7 Fig. True positive rate different GWAS algorithms in the high polygenicity simulations.

(a). True positive rate (FDR< 0.05) of different GWAS algorithms from the Arabidopsis data-

set. (b). True positive rate (FDR < 0.05) of different GWAS algorithms from the soybean data-

set.

(TIF)

S8 Fig. Manhattan plots of GMMAT and BSLMM GWAS methods on the Arabidopsis

flowering time (FT10) dataset. The red dash line indicates the FDR 0.05 threshold.

(TIF)

S1 Table. Comparison of false positive rate of different GWAS algorithms using simulated

0-heritability phenotypes. The number indicates the total number of false positive signals in

10 replications.

(XLSX)

S2 Table. Comparison of GWAS methods using Arabidopsis FT10 dataset.

(XLSX)
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