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Comprehensive biodiversity 
analysis via ultra-deep patterned 
flow cell technology: a case study of 
eDNA metabarcoding seawater
G. A. C. Singer  1, N. A. Fahner1, J. G. Barnes1, A. McCarthy1 & M. Hajibabaei1,2

The characterization of biodiversity is a crucial element of ecological investigations as well as 
environmental assessment and monitoring activities. Increasingly, amplicon-based environmental DNA 
metabarcoding (alternatively, marker gene metagenomics) is used for such studies given its ability to 
provide biodiversity data from various groups of organisms simply from analysis of bulk environmental 
samples such as water, soil or sediments. The Illumina MiSeq is currently the most popular tool for 
carrying out this work, but we set out to determine whether typical studies were reading enough DNA 
to detect rare organisms (i.e., those that may be of greatest interest such as endangered or invasive 
species) present in the environment. We collected sea water samples along two transects in Conception 
Bay, Newfoundland and analyzed them on the MiSeq with a sequencing depth of 100,000 reads per 
sample (exceeding the 60,000 per sample that is typical of similar studies). We then analyzed these 
same samples on Illumina’s newest high-capacity platform, the NovaSeq, at a depth of 7 million reads 
per sample. Not surprisingly, the NovaSeq detected many more taxa than the MiSeq thanks to its 
much greater sequencing depth. However, contrary to our expectations this pattern was true even in 
depth-for-depth comparisons. In other words, the NovaSeq can detect more DNA sequence diversity 
within samples than the MiSeq, even at the exact same sequencing depth. Even when samples were 
reanalyzed on the MiSeq with a sequencing depth of 1 million reads each, the MiSeq’s ability to detect 
new sequences plateaued while the NovaSeq continued to detect new sequence variants. These 
results have important biological implications. The NovaSeq found 40% more metazoan families in 
this environment than the MiSeq, including some of interest such as marine mammals and bony fish 
so the real-world implications of these findings are significant. These results are most likely associated 
to the advances incorporated in the NovaSeq, especially a patterned flow cell, which prevents similar 
sequences that are neighbours on the flow cell (common in metabarcoding studies) from being 
erroneously merged into single spots by the sequencing instrument. This study sets the stage for 
incorporating eDNA metabarcoding in comprehensive analysis of oceanic samples in a wide range of 
ecological and environmental investigations.

The inventorying and monitoring of biological diversity is a fundamental component of ecological and envi-
ronmental studies. Additionally, characterizing biodiversity is part of the environmental impact assessments 
and ongoing environmental monitoring that are required by industry operating in environmentally sensitive 
locations1. Stakeholders are increasingly becoming more concerned about environmental stewardship, and this 
applies equally to the terrestrial2, freshwater3, and marine environments4 and covers all major taxonomic groups. 
A recent United Nations conference (UN Biodiversity Conference, Egypt, November 2018), highlighted the need 
for monitoring and protecting biodiversity with the key message of “investing in biodiversity for people and 
planet”. Despite the extreme importance of these efforts, the technology for carrying out biodiversity assess-
ments has remained static for decades, relying heavily on observational data and capturing whole organisms from 
their environment for morphological analysis. Unfortunately, these procedures are error-prone, time-consuming, 
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expensive, and tend to ignore small but ecologically important flora and fauna simply because they are difficult 
to identify visually2,5.

Over the past decade, increasing attention has been paid to the analysis of environmental DNA (eDNA)—a 
combination of DNA from whole cellular material or that is shed from organisms as they move through their 
environment. The existence of large reference databases (especially the common “DNA barcode” marker, 
cytochrome oxidase c subunit 1, or COI6,7) with the power of modern DNA sequencing instruments, enables 
environmental metabarcoding—the identification of many individual species from a simple water or sediment 
sample. Environmental metabarcoding is much faster than conventional techniques, is less labour-intensive, does 
not rely on the expertise of taxonomists, and produces orders of magnitude more information8.

Many side-by-side comparisons have been made between traditional morphological assessments and 
eDNA-based assessments. In all cases, eDNA is capable of detecting far more taxa overall. However, many of 
these studies also find that some organisms detected by traditional methods in the environment fail to be detected 
through metabarcoding1,4,9–13. There are a number of potential reasons for this discrepancy: the use of “univer-
sal” primers that don’t amplify some taxa as well as others5; employing markers that have biased representation 
in reference databases14; or an inadequate depth of sequencing to detect eDNA that is in low abundance. These 
factors are especially important when eDNA analyses are performed to track specific target organisms that might 
be present in low abundance in complex settings such as the oceans (e.g., endangered species or invasive species).

The goal of the present study was to investigate the influence of sequencing depth and more advanced work-
flow, including a patterned flowcell, offered by illumina’s NovaSeq platform on the ability to detect biological 
diversity present in a sample. To carry out this work, we analyzed samples on an Illumina MiSeq instrument 
at a sequencing depth that is typical of similar studies (Table 1), then analyzed those same PCR products on an 
Illumina NovaSeq 6000—the most advanced HTS instrument available today—with a sequencing depth approx-
imately 700 times greater than that of the MiSeq. Not surprisingly, the NovaSeq detected many more taxa than 
the MiSeq: specifically, with one marker the NovaSeq detected 200% more metazoan families than the MiSeq. 
Contrary to our expectations, the NovaSeq still outperformed the MiSeq even when we subsampled the data to 
make depth-for-depth comparisons, suggesting that the NovaSeq has superior qualities beyond its much greater 
sequencing capacity.

Results
The Illumina MiSeq is currently the most popular metabarcoding platform. Twenty of the most- 
recently indexed papers in Google Scholar featuring the “metabarcoding” keyword were obtained in early 
November 2018 to perform a mini-metanalysis of the instrument most such studies are favouriting at the 

Reference Publication type Substrate Type of study
Sequencing 
platform

Average raw reads per 
amplicon per sample

31 Pre-print Leech gut contents Targeted (vertebrates) Illumina MiSeq Unknown
32 Peer-reviewed Herbivore feces General biodiversity IonTorrent PGM 4,156 (post-filtering)
33 Peer-reviewed Soil Targeted (Phytophthora) Roche GS Junior Unknown
34 Peer-reviewed Freshwater ecosystem Targeted: planktonic protists Illumina MiSeq 150,000*
35 Peer-reviewed Turbid freshwater Targeted (vertebrates) Illumina MiSeq 7,181 (post-filtering)
36 Peer-reviewed Sea water General biodiversity Roche GS-FLX 21,192* (post-filtering)
37 Pre-print Brackish water General biodiversity Illumina MiSeq 200,185 (post-filtering)

38 Peer-reviewed High-salinity lake General biodiversity Illumina HiSeq 
2500

124,779 for bacteria ~37,000 
for archaea and eukaryota 
(post-fitlering)

39 Pre-print Wheat and oilseed 
rape residues General biodiversity Illumina MiSeq 80,000* (raw)

40 Peer-reviewed Scat Targeted (truffle fungi) Illumina MiSeq <60,000*
41 Peer-reviewed Marine sediment Targeted (microbial) Illumina MiSeq 35,663
42 Pre-print Mock community Targeted (Symbiodiniaceae) Illumina MiSeq 6,309* (raw)
43 Peer-reviewed Plant leaves Targeted (fungi) Illumina MiSeq 112,931*
44 Peer-reviewed Freshwater General diversity IonTorrent PGM 3,978 (post-filtering)

45 Peer-reviewed Shrimp stomach 
contents General biodiversity Illumina MiSeq 350,000*

46 Peer-reviewed Soil General biodiversity Illumina MiSeq 61,256 (raw)
47 Peer-reviewed Bat guano General biodiversity Illumina MiSeq 106,858
48 Peer-reviewed Bee nest chambers General biodiversity Illumina MiSeq 4,736 (post-filtering)
49 Peer-reviewed Sea water Targeted (dinoflagellates) Roche GS Junior 252,086* (raw)

50 Peer-reviewed Soil General biodiversity Illumina MiSeq 
and HiSeq 880,000* (raw)

Table 1. A survey of recently published metabarcoding studies shows that the Illumina MiSeq is the most 
commonly used instrument to analyze these data, and that sequencing depth per sample varies widely but has a 
median of approximately 60,000 reads. Cases where the sequencing depth was not directly reported and had to 
be inferred indirectly are indicated with an asterisk.
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moment, as well as the depth of sequencing per sample that is generally employed. As shown in Table 1, the 
Illumina MiSeq is by far the instrument of choice presently, having been used by 14 (70%) of these studies. 
Sampling depth was not always reported clearly but was inferred where possible. Among these studies there 
was an extremely wide variance in sequencing depth, ranging from less than 10,000 reads per sample to nearly 
900,000. However, the median was 60,000 (with a median absolute deviation of 55,000).

The NovaSeq finds more ESVs per sample than the MiSeq, even at the same sequencing depth.  
Based on our literature survey (Table 1), we decided to analyze our own samples on the MiSeq with a targeted 
sequencing depth of 100,000 reads per amplicon per sample—approximately 50% greater than the median 
sequencing depth of those studies. Two amplicons were analyzed, FishE and F230, both located with the standard 
barcode region of the mitochondrial gene cytochrome oxidase C subunit 1 (COI). Post-filtering, the mean depth 
per sample was 118,290 reads for the FishE marker and 84,500 for the F230 marker. We then analyzed these same 
PCR products on the Illumina NovaSeq 6000 at much greater depth, averaging 7 million reads per amplicon per 
sample. The resulting reads were processed using the DADA2 pipeline as described in the Methods. Perhaps not 
surprisingly given the ~700x greater sequencing depth, the NovaSeq was able to find more exact sequence var-
iants (ESVs) in each sample than the MiSeq. To our surprise, however, even after rarefying the NovaSeq data to 
match the sequencing depth of the MiSeq, we still found greater diversity (i.e., more ESVs) within the NovaSeq 
data for the FishE (Fig. 1) and F230 (Supplementary Fig. 1) amplicons. Moreover, while there was substantial 
overlap between the ESVs found between the two platforms, the MiSeq had very few ESVs unique to itself while 
the NovaSeq found many ESVs that the MiSeq missed. We highlight that the exact same PCR products were used 
for both instruments, so these results cannot be the consequence of stochastic PCR biases. The two sites with 
higher diversity—7 and 8—are located close to shore and site 7 in particular is close to a wastewater outlet (see 
Methods).

This trend is even more pronounced when plotted as an accumulation curve. When we com-
bined all samples and then performed subsampling experiments to generate accumulation curves, the ability of 
the NovaSeq to detect new ESVs becomes even more stark: at each simulated sequencing depth, the NovaSeq 
detects greater biological diversity (i.e., ESVs) than the MiSeq (Fig. 2 for the FishE amplicon; see Supplementary 
Fig. 2 for the F230 amplicon). Curiously, while greater depth seems to reveal increasing numbers of ESVs on the 
NovaSeq (even beyond 2.5 million reads/sample), it is not clear that greater depth adds any new information for 
the MiSeq: the number of ESVs detected appears to level off at approximately 5,000. This strongly suggests that 
the NovaSeq outperforms the MiSeq in a depth-independent manner.

This trend is not an artefact of the DADA2 error-correcting model. DADA2 generates ESVs by 
applying an error correction model to raw FASTQ files, attempting to fix errors that were introduced through 
PCR or sequencing15. However, while the MiSeq reports base call qualities using pseudo-continuous Phred scores 
that can range from 0–40, the NovaSeq’s FASTQ files bin qualities into just four levels16. We therefore suspected 
that the phenomenon we were observing might be an artefact of the DADA2 program. Specifically, we hypoth-
esized that the algorithm might be under-correcting errors in the NovaSeq data leading to a spurious increase 
in the number of ESVs. For this reason we repeated our analysis with simple OTU clustering at a 97% similarity 
threshold (described in greater detail in the Methods). OTU clustering applies no error correction model at 
all and is simply based on sequence similarity measures, and should therefore have the same performance on 
NovaSeq data as it does on MiSeq data. To our surprise, when accumulation curves were generated to compare 
the two instruments depth-for-depth, the NovaSeq once again outperformed the MiSeq (Fig. 3).

Figure 1. For each biological replicate (A–C) within each sampling site (1 to 8), the NovaSeq (light bars) was 
able to find a greater number of ESVs than the MiSeq (dark bars) even when the NovaSeq data are subsampled 
to match the sequencing depth of the MiSeq. Sites 7 and 8 are very close to shore, and site 7 in particular is near 
a wastewater outlet.

https://doi.org/10.1038/s41598-019-42455-9


4Scientific RepoRts |          (2019) 9:5991  | https://doi.org/10.1038/s41598-019-42455-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

We note that Fig. 2 and Fig. 3 look quite different from each other in two ways: (1) the number of OTUs 
detected is far greater than the number of ESVs; and (2) while the number of new ESVs levels out for the MiSeq 
in Fig. 2, the trajectory continues upward for the OTUs in Fig. 3. This is due to the very different methodologies 
employed to generate ESVs versus OTUs. Because OTU clustering makes no attempt to model and correct for 
PCR and sequencing errors, the raw number of OTUs is expected to be much greater than the number of ESVs 
detected—many OTUs are simply the product of the accumulation of errors. By similar reasoning, both the 
MiSeq and NovaSeq OTU curves continue to rise with greater sequencing depth because additional sequencing 
errors will be encountered with that greater depth.

Greater sequencing depth on the MiSeq cannot achieve the level of diversity detected on the 
NovaSeq. The MiSeq’s accumulation curve in Fig. 2 suggests that additional sequencing depth would not 
increase the number of ESVs detected, but to thoroughly test this point we re-ran three samples (sites 1, 3, and 6, 
each with three biological replicates for a total of 9 samples) on the MiSeq at much greater sequencing depth—
approximately 1 million reads per amplicon per sample—and then compared these data to the NovaSeq data. As 
illustrated for the FishE amplicon in Fig. 4, adding this greater sequencing depth to the MiSeq only marginally 
improves its detection of diversity from the samples. Conversely, the NovaSeq continues to detect new ESVs 
with greater sequencing depth. Note that the total number of ESVs detected is lower than that of Fig. 2, but this 
is because of the smaller number of samples analyzed in this experiment (three sites versus eight). Again, we 
repeated this experiment with the F230 amplicon and found the same trend (see Supplementary Fig. 3).

Figure 2. Accumulation curves generated by subsampling the MiSeq (dark curve) and NovaSeq data (light 
curve) for the FIshE amplicon shows that depth-for-depth the NovaSeq detects greater biological diversity than 
the MiSeq.

Figure 3. Accumulation curves of MiSeq (dark curve) and NovaSeq data (light curve) based on OTU clustering 
with a 97% identity threshold. At each sequencing depth, the NovaSeq finds more OTUs than the MiSeq, similar 
to the ESV data.
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Figure 4 shows that even beyond 5 million reads the NovaSeq was still finding new ESVs with no sign of pla-
teauing. As before, we suspected this might be the result of the DADA2 algorithm under-correcting sequencing 
errors in the NovaSeq data. To examine this possibility, we ran the accumulation curve out to its maximum and 
found that the curve does indeed hit a plateau of just over 9,000 ESVs at a sequencing depth of approximately 
10 million reads (Fig. 5). This result indicates that the pattern observed for NovaSeq data are not likely to be an 
artefact of the DADA2 analysis. Moreover, it indicates that extremely deep sequencing is required if one wants to 
have a comprehensive survey of biodiversity in a region.

The MiSeq is less capable of sequencing low-abundance eDNA. Our NovaSeq results indicate that 
in the locations in which we sampled, approximately 9,300 FishE ESVs are present (Fig. 5). However, the MiSeq 
was only able to obtain approximately 3,500 ESVs even at an unrealistically-high sequencing depth (Fig. 4). This 
suggests that the MiSeq could not identify approximately 60% of the diversity present in the environment. In 
order to determine taxonomic/biological breadth of these ESVs we performed taxonomic assignment on all the 
ESVs from both instruments—i.e., we combined the results of both MiSeq runs to give that platform the best 
possible chance of finding all the taxa present—and found that the MiSeq data contained 80 identifiable fam-
ilies. The NovaSeq also identified these same 80 families but was also able to identify an additional 32—a 40% 
increase. Those families unique to the NovaSeq analysis are listed in Table 2. Some of the taxa missing from the 
MiSeq data are of significant interest, including marine mammals (Delphinidae) and several fish. Other taxa 
include those that are clearly not marine organisms (e.g., cow and moose) but this is not surprising given the sam-
pling sites’ close proximity to a human-populated shore, and still demonstrates that organisms with presumably 
low-abundance eDNA are less likely to be detected by the MiSeq than the NovaSeq.

Figure 4. Re-running a subset of our samples on the MiSeq (dark curve) with much greater sequencing depth 
only added a very small number of new ESVs. Conversely, greater sequencing depth continues to add new ESVs 
to the NovaSeq data (light curve).

Figure 5. Accumulation curve of pooled NovaSeq data. The NovaSeq does eventually reach a plateau where no 
new ESVs are detected, albeit at an extreme sequencing depth of ~10 million reads.
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Interestingly, when these taxa are plotted on a circular dendrogram we do not observe any obvious phyloge-
netic pattern to the distribution of missing taxa on the MiSeq (Fig. 6). Rather, it appears that the NovaSeq was 
generally able to detect more families within each order than the MiSeq.

Although we have no quantitative measurements of the abundance of taxa present in the locations we sam-
pled, we note that many of the taxa missing from the MiSeq analysis are likely to have a very low abundance of 
eDNA (e.g., marine mammals, terrestrial organisms) compared to taxa where whole organisms or gametes may 
be present in the water samples (e.g., zooplankton). We can approximate this by looking at read abundances 
(Fig. 7). If we assume that read abundances roughly correlate with the original biomass present17 then it does 
indeed seem that the MiSeq is less capable of sequencing this low abundance eDNA than the NovaSeq, even at 
very high sequencing depths.

Whether or not this phenomenon will have a significant impact on a particular experiment depends strongly 
on the purpose of the experiment. Those that are attempting to detect or catalogue rare or endangered species 
may be strongly impacted, since these are precisely the organisms that the MiSeq is likely to miss. On the other 
hand, general biodiversity assays or comparative studies in community composition will be less impacted by 
missing these low-abundance taxa. To illustrate the point, we generated NMDS plots for genera identified within 
the 9 samples (3 sites) that were deep-sequenced on the MiSeq and NovaSeq. Even though the NovaSeq detected 
more genera overall, qualitatively both instruments pick up a gradient change from coastal to deeper waters along 
the primary axis (Fig. 8).

Discussion
Most environmental metabarcoding studies are not sequencing deep enough. Our results sug-
gest that using seawater as the source of environmental DNA at a typical sequencing depth of 60,000 reads per 
sample, only half of the diversity detectable by the MiSeq will be captured (Fig. 2). To reach the MiSeq’s detection 
limits for analysis of seawater one would have to aim for 0.8–1 million reads per sample per marker—more than 
ten times the typical depth of sequencing currently performed in most metabarcoding studies. We further note 

Kingdom Phylum Class Order Family Common name

Metazoa Annelida Polychaeta Capitellida Capitellidae Bristleworm

Metazoa Annelida Polychaeta Capitellida Maldanidae Bristleworm

Metazoa Annelida Polychaeta Eunicida Dorvilleidae Bristleworm

Metazoa Annelida Polychaeta Phyllodocida Glyceridae Bloodworm

Metazoa Annelida Polychaeta Terebellida Terebellidae Marine bristleworm

Metazoa Arthropoda Collembola Entomobryomorpha Entomobryidae Springtail

Metazoa Arthropoda Collembola Entomobryomorpha Isotomidae Springtail

Metazoa Arthropoda Hexanauplia Cyclopoida Cyclopidae Copepodcdon

Metazoa Arthropoda Hexanauplia Harpacticoida Ameiridae Copepod

Metazoa Arthropoda Hexanauplia Harpacticoida Normanellidae Copepod

Metazoa Arthropoda Insecta Diptera Pediciidae Cranefly

Metazoa Arthropoda Insecta Hymenoptera Ichneumonidae Wasp

Metazoa Arthropoda Insecta Lepidoptera Noctuidae Moth

Metazoa Arthropoda Insecta Odonata Coenagrionidae Damselfly

Metazoa Arthropoda Malacostraca Euphausiacea Euphausiidae Krill

Metazoa Arthropoda Ostracoda Podocopida Trachyleberididae Seed shrimp

Metazoa Bryozoa Gymnolaemata Cheilostomatida Hippothoidae Moss

Metazoa Bryozoa Stenolaemata Cyclostomatida Crisiidae Moss

Metazoa Chordata Actinopteri Beloniformes Adrianichthyidae Ricefish

Metazoa Chordata Actinopteri Clupeiformes Clupeidae Herring

Metazoa Chordata Actinopteri Cypriniformes Cyprinidae Carp

Metazoa Chordata Actinopteri Pleuronectiformes Scophthalmidae Turbots

Metazoa Chordata Mammalia Cetacea Delphinidae Atlantic white-sided dolphin

Metazoa Chordata Mammalia Artiodactyla Bovidae Cow

Metazoa Chordata Mammalia Artiodactyla Cervidae Moose

Metazoa Cnidaria Hydrozoa Anthoathecata Tubulariidae Tubular hydroid

Metazoa Cnidaria Hydrozoa Leptothecata Campanulariidae Jellyfish

Metazoa Mollusca Bivalvia Pectinoida Pectinidae Scallop

Metazoa Mollusca Gastropoda Littorinimorpha Rissoidae Minute sea snails

Metazoa Mollusca Gastropoda Trochida Margaritidae Sea snails

Metazoa Nemertea Palaeonemertea Cephalothricidae Ribbon worm

Metazoa Porifera Demospongiae Dendroceratida Halisarcidae Skeletonless sponge

Table 2. List of families detected with the NovaSeq but not with the MiSeq. Many are biologically significant 
taxa, including dolphins and several fish.
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that the samples from our study were obtained from the North Atlantic Ocean where biodiversity is presuma-
bly far less than that which might be found in tropical regions. For this reason, even deeper sequencing may be 
required in regions or substrates that have very high biodiversity.

Even when matched for depth, the NovaSeq can detect greater diversity than the MiSeq. The 
most remarkable finding in this study is that the NovaSeq can detect many taxa that the MiSeq cannot—even 
when the depth of sequencing is matched. This is true on a PCR -by-PCR basis (Fig. 1), and even greater depth of 
sequencing on the MiSeq cannot overcome this obstacle (Fig. 4). The outcome is that there may be a great deal of 
missing biodiversity in MiSeq analyses (Fig. 6).

Whether or not this has a significant impact on a study will depend on the nature of that study. The inability to 
detect low-abundance taxa is unlikely to have a large impact on comparative community composition analyses. 
On the other hand, studies that have an interest in low-abundance taxa (e.g., those that are rare or endangered) 

Figure 6. Radial dendrogram of taxa identified in our experiments. The leaves of the tree represent family-level 
taxa. Grey edges on the tree indicate taxa that both the NovaSeq and MiSeq platforms detected. Edges in red 
were only detected on the NovaSeq; there were no taxa unique to the MiSeq.
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could be very significantly impacted. We also note that many studies comparing eDNA-based approaches to tra-
ditional morphological methods frequently show eDNA-based methods missing taxa that were observed visually. 
We wonder if some of these cases could be explained through the lower sensitivity of the MiSeq to low-abundance 
eDNA.

Possible causes for the difference between platforms. The NovaSeq has many differences from the 
MiSeq, including: a 2-colour chemistry rather than 4-colour used by the MiSeq; greatly improved hardware (pre-
sumably including better image capture abilities); different signal processing software; and a flow cell that has 
pre-defined binding spots for target DNA instead of the random lawn used by previous Illumina instruments. We 
suspect but cannot be certain that this last factor—the flow cell—is a significant cause for the NovaSeq’s superior 
performance. In the MiSeq and most previous Illumina instruments, DNA binds to the flow cell in a random 
fashion. Therefore, to distinguish one spot on the flow cell where DNA has bound from another, the spots are 
observed by the instrument for the first 25 rounds of sequencing and at that point clusters are determined18. 
This works well when performing shotgun sequencing (the primary use of Illumina’s instruments) because the 
spots can be clearly distinguished from each other thanks to the high level of sequence diversity. However, when 
performing amplicon-based sequencing the variability from one spot to the next—especially within the first 25 
bases which likely covers primer regions—is minimal and this can cause two distinct spots to be merged together. 
To prevent this from happening, Illumina recommends spiking in PhiX genome18, but unless the proportion of 
PhiX is very high it’s nearly impossible to prevent similar sequences from sitting near each other on the flow cell. 
Conversely, the spots that DNA anneal to on the NovaSeq flow cell are pre-defined and known by the instrument’s 
base calling software, so inferring their location is not necessary and this largely prevents the “over-clustering” of 
low diversity reads.

Figure 7. Families detected on the NovaSeq ranked by read count (note the y-axis has a logarithmic scale). The 
white bars indicate taxa that were detected by both the NovaSeq and the MiSeq, while black bars indicate taxa 
detected solely by the NovaSeq. We note that most of the taxa missed by the MiSeq have low read abundance.

Figure 8. NMDS plots of genera from the MiSeq data (left) and the NovaSeq data (right) show that there is little 
qualitative difference between the two.
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Notably, the MiSeq runs that we performed for this project used the recommended levels of PhiX and 
the sequencing run statistics all matched Illumina recommendations. Nevertheless, we still suspect that 
over-clustering is at least partially responsible for the MiSeq missing out on diversity that the NovaSeq was able 
to detect.

Our results suggest that the NovaSeq 6000 may be a superior instrument for environmental metabarcoding 
studies especially in complex biodiversity-rich substrates where heterogenous abundance of taxonomic groups 
may confound detection. However, while the MiSeq is a relatively inexpensive instrument that could plausibly 
be obtained by many labs, the NovaSeq is expensive—roughly ten times the cost of the MiSeq. Moreover, while 
it produces hundreds of times more data per run, each run is also significantly more expensive: the smallest 
currently available NovaSeq flow cell and sequencing kit is approximately ten times more expensive than the 
popular MiSeq v3 600-cycle kit. For these reasons, the NovaSeq may be out of reach for many laboratories in the 
near term and we therefore suggest a few approaches that may aid obtaining more comprehensive biodiversity 
from the MiSeq.

Multiplex different markers together on the same flow cell. This is already quite a common practice, albeit fre-
quently for money-saving purposes rather than to prevent over-clustering. In theory, multiplexing several mark-
ers (while still maintaining adequate sequencing depth per sample), will lead to greater sequence diversity on the 
flow cell and will reduce the probability of over-clustering.

Use dual-indices on the sequencing primers. It is common practice to add short (e.g., 8mer) oligonucleotide indi-
ces to the sequencing primers for the purposes of multiplexing, but this has the added benefit of contributing to 
additional base composition diversity on the flow cell. It should be noted that we did employ a dual-index strategy 
in the present paper (see the Methods), so this strategy alone does not seem sufficient to close the gap between the 
MiSeq and NovaSeq instruments.

Use large amounts of PhiX spike-in. PhiX genome fragments also serve to increase the complexity on the flow 
cell, but many labs try to minimize the amount of PhiX they use because it takes up precious sequencing capacity. 
Paradoxically though, increasing PhiX may in fact increase the number of quality reads generated. Illumina’s own 
recommendations range from 5–50%19 although in practice most experiments end up at the lower end of this 
range.

Use phased amplicons. Another approach was suggested by20, who designed overlapping 16 s amplicons that they 
described as “phased amplicon sequencing”. Despite covering the same region of interest, the different sequence 
composition at the 5′ end of the read reduced over-clustering by the MiSeq—so much so that the number of reads 
passing quality filters increased by 9–47% in their experiments.

Conclusions
Biodiversity analysis through genomics has enabled widespread applications from human microbiome studies 
to environmental assessment and monitoring. With rapid advances in sequencing hardware and computational 
approaches for data analysis, it is important to determine the impact that sequencing technology and strategy 
have on the data generated, especially where it may influence biological interpretations and their socio-economic 
implications. Here, we tackled the issue of sequencing technology and depth on an analysis of biodiversity in 
seawater through eDNA metabarcoding. Our analysis provides direct evidence of the superior utility of the newly 
introduced NovaSeq platform for elucidating a more comprehensive biodiversity measurement as compared to 
the current workhorse, the MiSeq platform. Our results strongly suggest that comprehensive detection of biota 
from eDNA in a complex environment such as the ocean is possible and will aid supporting scientific/societal 
endeavours for enhanced biodiversity analysis for people and the planet.

Methods
Sample collection. Triplicate 250 mL water samples were taken from surface water simultaneously. Samples 
were taken from eight locations along two transects in Conception Bay, Newfoundland and Labrador, Canada, on 
October 13–14, 2017 (Fig. 9). These samples cover a range from near-shore to approximately 10 km offshore (with 
a sea bottom depth ranging from a few metres nearshore to approximately 200 metres in the middle of the bay).

Laboratory procedures. DNA extraction. Filtration and DNA extraction was done in PCR clean laminar 
flow hoods (AirClean Systems) thoroughly decontaminated with ELIMINase (Decon Labs) and 70% EtOH prior 
to each set of three sample replicates. Water samples were thawed at 4 °C and immediately filtered with 0.22 µm 
PVDF Sterivex filters (MilliporeSigma). The DNeasy PowerWater Kit (Qiagen) was used to extract DNA with the 
automated QIAcube platform (Qiagen), following the DNeasy PowerWater IRT protocol. For lysis, bead tubes 
were heated for five minutes at 65 °C and then vortexed for ten minutes. Negative controls were generated during 
filtration and extraction to screen for contamination and cross-contamination. Filtration and extraction were 
done in a pre-PCR room isolated from post-PCR rooms.

DNA library preparation. Two fragments were amplified by PCR from the 5′ end of the standard COI bar-
code region: the 235 bp F230 fragment10, and the 232 bp Mini_SH-E fragment21. Illumina-tailed PCR primers 
(tails underlined) were used to amplify targets: The F230 forward primer (LCO1490; 5′-TCG TCG GCA GCG 
TCA GAT GTG TAT AAG AGA CAG GGT CAA CAA ATC ATA AAG ATA TTG G-3′;22), the Mini_SH-E 
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forward primer (Fish_miniE_F_t; 5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG ACY AAI 
CAY AAA GAY ATI GGC AC-3′), and the reverse primer (230_R/Fish_miniE_R_t; 5′-GTC TCG TGG GCT 
CGG AGA TGT GTA TAA GAG ACA GCT TAT RTT RTT TAT ICG IGG RAA IGC-3′) was used for both F230 
and Mini_SH-E fragments. Each amplification reaction contained 0.6 µL DNA, 1.5 µL 10X reaction buffer, 0.6 µL 
MgCl2 (50 mM), 0.3 µL dNTPs mix (10 mM), 0.3 µL of each Illumina-tailed primer (10 µM), and 0.3 µL Platinum 
Taq (0.5 U/µL; Invitrogen) in a total volume of 15 µL. PCR conditions were initiated with a heated lid at 95 °C for 
3 mins, followed by 35 cycles of 94 °C for 30 s, 46 °C for 40 s, and 72 °C for 1 min, and a final extension at 72 °C for 
10 mins. Three PCR replicates were amplified from each sample with the ProFlex thermocycler (Thermo Fisher) 
and then pooled for a single PCR cleanup with the QIAquick 96 PCR purification kit (Qiagen; 60 µL elution vol-
ume). Agarose (1.5% w/v) gel electrophoresis was used to verify amplification of samples, and for quality control 
of negative controls from PCR, extraction, filtration, and field collection. Each indexing reaction contained 2 µL 
amplicon DNA, 2.5 µL 10X reaction buffer, 1 µL MgCl2 (50 mM), 0.5 µL dNTPs mix (10 mM), 1 µL of F indexing 
primer (5 µM), 1 µL R indexing primer (5 µM), and 0.5 µL Platinum Taq (0.5U/µL; Invitrogen) in a total volume 
of 25 µL. Unique dual Nextera indexes were used to mitigate index misassignment (IDT; 8-bp index codes). PCR 
conditions were initiated with a heated lid at 95 °C for 3 mins, followed by 12 cycles of 95 °C for 30 s, 55 °C for 
30 s, and 72 °C for 30 s, and a final extension at 72 °C for 5 mins. Indexing success was verified on the Bioanalyzer 
(Agilent) with the DNA 7500 kit. Samples were quantified with Quant-iT PicoGreen dsDNA assay with a Synergy 
HTX plate fluorometer (BioTek) and pooled to normalize DNA concentration. Libraries were cleaned with three 
successive AMPure XP cleanups: Left side selection with bead:DNA ratios of 1×, then 0.9×, and a right-side 
selection with 0.5×. Libraries were quantified with a Qubit fluorometer (Thermo Fisher) and the size distribution 
was checked with the DNA 7500 kit on the Agilent 2100 Bioanalyzer. Two libraries containing F230 or FishE 
amplicons from nine samples were sequenced on the Illumina MiSeq with two 600-cycle v3 kits. Two libraries 
containing F230 or FishE amplicons from 24 samples were pooled with other libraries and sequenced with two 
MiSeq. 600-cycle v3 kits. Field, filtration and extraction negatives were also sequenced in these MiSeq runs. Two 
libraries containing F230 and FishE amplicons were sequenced with a 300-cycle S4 kit on the NovaSeq 6000 fol-
lowing the NovaSeq XP workflow.

Bioinformatics. We employed two different workflows to analyze our data in order to reduce the possibility 
that our results were an artefact of the method used. In both workflows, base calling and demultiplexing were 
performed using Illumina’s bcl2fastq software (version 2.20.0.422). Primers were then trimmed from the forward 
and reverse reads using cutadapt v1.1623 with the default error tolerance and a minimum overlap equal to half 
the primer length. We discarded read pairs in which the primer was missing from either the forward or reverse 
read. We note that both amplicons studied in this paper are very short (~230 bases) and therefore there is ample 
overlap between the forward and reverse reads in both the MiSeq (300 cycle forward and reverse) and NovaSeq 
(150 cycle forward and reverse) data. We saw no significant difference in the rate of successful paired-end joining 
between the two instruments.

After this stage the two methodologies diverged and are described separately below.
DADA2 workflow: DADA2 v1.8.015 was used to perform quality filtering and joining of paired reads 

(maxEE = 2, minQ = 2, truncQ = 2, maxN = 0), and denoising (using default parameters) to produce exact 
sequence variants (ESVs). This was performed independently on the MiSeq and NovaSeq data since their error 
patters are presumed to be different and therefore they require different models to be trained. Singleton ESVs 

Figure 9. Location of the eight sampling sites from Conception Bay, Newfoundland and Labrador, Canada.
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were discarded. To rapidly evaluate the overlap in ESVs between the two instruments, MD5 hashes24 were gen-
erated for each of the ESV sequences and then these sets of hashes were compared between the MiSeq and the 
NovaSeq.

OTU clustering workflow: Vsearch v2.8.225 was first used to join the paired ends of the reads (using default 
parameters), and perform quality filtering (using default parameters). The reads for the NovaSeq and MiSeq were 
then dereplicated, and these reads were combined into a single file so that OTU clustering (using the cluster_fast 
setting) could be performed on the entire set using an identity threshold of 97%. As with the ESVs, singleton 
OTUs were discarded.

Taxonomic assignment: NCBI’s blastn tool v2.6.026 was used to compare ESV sequences against the nt data-
base (downloaded August 2018), using an e-value cut-off of 0.001. We filtered the resulting hits with the require-
ment of having at least 90% identities across at least 90% of the query sequence. In cases where there was not a 
single unambiguous best hit, we used a majority consensus threshold of 80% to assign taxonomy27.

Accumulation curves: Original read memberships were tracked through the various analytical steps: derep-
lication followed by OTU clustering, or ESV generation using DADA2. Subsamples were then generated using 
sampling proportional to the original read abundances with the “choices” function within the Python program-
ming language’s “random” module28. These reads were then mapped to their respective ESVs/OTUs for compari-
son between the two DNA sequencing platforms.

NMDS plots: NMDS plots were generated using the default settings of the metaMDS function, part of the 
vegan library29 in the statistical package R30. Data were based on genera in both rarefied NovaSeq and whole 
MiSeq data that could be identified with 95% or better identity across 95% or more of the read.

Data Availability
All data have been deposited into NCBI’s Sequence Read Archive under accession number PRJNA513845.
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