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A B S T R A C T

Background: Phase I and/or I/II oncology trials are conducted to find the maximum tolerated dose (MTD)
and/or optimal biological dose (OBD) of a new drug or treatment. In these trials, for cytotoxic agents, the
primary aim of the single-agent or drug-combination is to find the MTD with a certain target toxicity rate,
while for the cytostatic agents, a more appropriate target is the OBD, which is often defined by considering
of toxicity and efficacy simultaneously. Accessible software packages to achieve both these aims are needed.
Results: The objective of this study is to develop a software package that can provide tools for both MTD-
and OBD-finding trials, which implements the Keyboard design for single-agent MTD-finding trials as reported
by Yan et al. (2017), the Keyboard design for drug-combination MTD-finding trials by Pan et al. (2020), and
a phase I/II OBD-finding method by Li et al. (2017) in a single R package, called Keyboard. For each of the
designs, the Keyboard package provides corresponding functions such as get.boundary(⋯) for deriving
the optimal dose escalation and de-escalation boundaries, select.mtd(⋯) for selecting the MTD when the
trial is completed, select.obd(⋯) for selecting the OBD at the end of a trial, and get.oc(⋯) for generating
the operating characteristics.
Conclusion: The Keyboard R package developed herein provides convenient tools for designing, conducting
and analyzing single-agent, drug-combination, phase I/II OBD-finding trials.
1. Introduction

Phase I dose-finding clinical trials are critical in new drug/treatment
development because they determine the dose that will be further in-
vestigated in the subsequent phase II or III trials. For the cytotoxic agent,
one of the primary objectives is to find the maximum tolerated dose
(MTD), which is defined as the highest dose that has a dose-limiting
toxicity (DLT) rate less than or close to a prespecified target rate.
The identified MTD will then be examined in later phases, e.g., phase
II clinical trials. Statistical methods for the single-agent MTD-finding
designs include algorithm-based designs, such as the 3 + 3 design [1],
and the biased-coin design [2–4], the model-based designs, such as
the continual reassessment method (CRM) [5,6], and model-assisted
designs, such as mTPI [7], BOIN [8], and Keyboard [9] designs.

It should be noted that all the above methods were developed for
the cytotoxic agent to identify the MTD. Cytotoxic drug development,
however, rests on the premise that agents must be cytotoxic to be
effective. By equating efficacy with toxicity, the traditional drug devel-
opment, and progressing from phase I through phase III clinical studies,
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has allowed us to find the highest effective dose that does not induce
intolerable levels of toxicity. This essentially justifies the goal of finding
the MTD for phase I dose-finding trials. This assumption, while reason-
able for cytotoxic agents, however, may not hold true for cytostatic or
molecularly targeted agents. For example, the chimeric antigen receptor
(CAR) 𝑇 therapies require a balance of a boosting of the immune
system to combat cancer while avoiding over-stimulation. In this case,
preliminary dose exploration should aim to capture effective biological
activity rather than DLT alone. Therefore, the optimal biological dose
(OBD), which usually refers to a safe dose with acceptable efficacy is
more appropriate than the MTD since it considers both the toxicity and
efficacy. In the literature, the associated methods for finding OBD are
termed as phase I/II dose-finding designs. These include many designs,
for example, the model-based methods [10–14] and model-assisted
methods [15–20]. In addition to these designs, Li et al. [15] proposed
a toxicity and efficacy probability interval (TEPI) design, which was
shown to have desirable operating characteristics and was simple and
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transparent to practitioners with a physician-elicited decision table
that maps the two-dimensional probability intervals to a set of dosing
decisions. The Keyboard package develops multiple R functions to
implement this design since the method behind this design is also
interval based which is the core of the Keyboard design. Noted that
recently another method uTPI has been proposed [20], which uses
approaches similar to that for the TEPI design [15]. Since the uTPI
has provided the R code in their paper, we are not incorporating this
method into the Keyboard package.

In modern clinical trials, it is common to treat patients with a
combination of agents. This is especially true in case of cancer patients,
as they are more effective and less susceptible to drug resistance than
those undergoing single-agent trials. Trial designs for drug-combination
studies involve several distinct features that are beyond the scope of
the methods for single-agent studies. A major challenge in designing
combination trials is that dose combinations are only partially ordered
in terms of toxicity probability. For instance, consider a trial combining
𝑚 doses of agent A and 𝑛 doses of agent B, that is, we now have
an 𝑛 × 𝑚 dose matrix. A major challenge in designing combination
trials is that dose combinations are only partially ordered in terms of
toxicity probability. That is, a priori, we cannot fully rank the 𝑛 × 𝑚
dose matrix from low to high based on their toxicity probabilities.
Various designs have been proposed for the drug-combination MTD-
finding trials: a design based on the order of the restricted inference [4],
a copula-type regression model [19], latent contingency tables [20], the
partial order CRM method (POCRM) [21], the sequential dose-finding
strategy [22,23], a Bayesian optimal interval design [24], the Keyboard
combination design [25], and Bayesian data augmentation for late-
onset toxicity [26], among others. The Keyboard package implements
the Keyboard combination design proposed by Pan et al. [25].

In summary, we have developed an R package, Keyboard, that in-
cludes three methods [9,15,25] for practitioners and these methods can
be easily accessed. All these methods use the Bayesian interval-based
method, which is the underlying theoretical basis for the Keyboard
design. Therefore, we will incorporate these three methods in one
package.

The paper is organized as follows. We will first concisely introduce
the three designs, Keyboard single-agent method [9], Keyboard combi-
nation design [25], and Keyboard phase I/II design [15] in Section 2.
Section 3 gives three exemplary trials and demonstrates how to use
the Keyboard package to design trials for single-agent, drug combi-
nations of MTD- or OBD-dose finding. Section 4 gives the conclusion.
The appendix provides detailed step-by-step implementations of these
methods using the Keyboard R package.

2. Material and methods

2.1. Design for the MTD dose-finding single-agent trials

The design of this package for the single-agent MTD-finding was
proposed by Yan et al. [9], and its theoretical properties were further
explored by Pan et al. [25]. We have termed this as the single-agent
Keyboard design, or simply, the Keyboard design. This design uses the
toxicity probability’s posterior distribution to guide dose transitions.
To decide whether to escalate or de-escalate the dose, by using the
Keyboard design, we first need to specify a target key, which is an
equivalence interval also used in the mTPI design, and then identify
the strongest key, which is defined as the interval with the maximum
posterior probability in terms of the toxicity rate, based on the current
information. If the strongest key is to the left of the target key, we
escalate the dose because data suggest that current dose is likely to
be low. If the strongest key is to the right of the target key, then we
de-escalate the dose because the observed data suggest that the current
dose is likely to be over-toxic, and if the strongest key is the target key,
then we stay at the current dose because the observed data support the
2

Fig. 1. Dose transition schema of the Keyboard design.

notion that the current dose is likely to be in the right dose interval
(See Fig. 1).

Let 𝜙 be the target toxicity rate specified by the investigator and
𝑝𝑖 ∈ (0, 1) denote the toxicity probability of dose level 𝑖 ∈ {1,… , 𝐷}. 𝑛𝑖
refers to the number of patients treated at dose 𝑖, and 𝑦𝑖 is the number
of patients with DLT among the 𝑛𝑑 treated patients. In this case, data
can be denoted as 𝐷𝑖 = (𝑛𝑖, 𝑦𝑖). The beta-binomial model is used in the
Keyboard design: 𝑦𝑖 ∣ 𝑝𝑖 ∼ Binomial(𝑝𝑖, 𝑛𝑖), 𝑝𝑖 ∼ Uniform(0, 1). Given 𝐷𝑖,
posterior distribution of the toxicity rate at dose 𝑖 is 𝑝𝑖|𝐷𝑖 ∼ Beta(𝑦𝑖 +
1, 𝑛𝑖 − 𝑦𝑖 + 1). Here we denote the target key as target = (𝜙− 𝜖1, 𝜙+ 𝜖2),
with 𝜖1 and 𝜖2 being small positive values, for instance, both are 0.05.
Then, a unit probability interval of [0,1] can be partitioned into a series
of equally-wide keys/intervals, denoted by 𝑘. To decide whether to
escalate or de-escalate the dose, the Keyboard design calculates the
strongest key max:

max = argmax
𝑘∈{1,…,𝐾}

{Pr(𝑝𝑖 ∈ 𝑘 ∣ 𝐷𝑖)}.

Dose-transition rules for the Keyboard design are as follows:

• If 𝑚𝑎𝑥 ≻ target , 𝑝𝑖 is most likely to be overdosing, de-escalation
to a lower dose will be applied.

• If 𝑚𝑎𝑥 ≺ target , 𝑝𝑖 is most likely to be underdosing, escalation to
a higher dose will be applied.

• If 𝑚𝑎𝑥 ≡ target , 𝑝𝑖 is most likely to be the proper dose, stay at the
current dose will be applied.

A desirable feature of the Keyboard design is that the dose-transition
rules can be provided before the start of the trial and no real-time
computation is required during the trial. Practitioners only need the
total number of patients and number of patients experiencing DLT at
various dose levels to make the dose-transition rules. Table 1 below
presents an example.

For the safety of patients, in practice, the following safety rules are
applied to the Keyboard design:

• (i) If 𝑛𝑖 ≥ 3 and Pr(𝑝𝑖 > 𝜙|𝐷𝑖) > 95%, we eliminate the current
dose 𝑖 and any higher doses from the trial to avoid exposing future
patients to unacceptably toxic doses.

• (ii) If current dose 𝑖 is the lowest dose in (i), the trial is terminated
and no dose is selected as the MTD.

2.2. Keyboard design for drug-combination phase I dose-finding trials

Recent advances in drug discovery have intensified the interest in
using dual agents in phase I clinical trials. The design and conduct of
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Table 1
Pre-tabulated decision rules of the Keyboard design for single-agent.

Number of patients treated at the current dose

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝜙 = 0.2 with the target key = (0.17, 0.23)
Escalate if number of DLTs ≤ 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2
De-escalate if number of DLTs ≥ 1 1 1 1 2 2 2 2 3 3 3 3 3 4 4 4

𝜙 = 0.3 with the target key=(0.25, 0.35)
Escalate if number of DLTs ≤ 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
De-escalate if number of DLTs ≥ 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6
Fig. 2. Two dimensional drug-combination trial.

the phase 1 combination trial present specific challenges. A fundamen-
tal assumption for cytotoxic/biologic agents is monotonicity between
toxicity and doses, For single agents, this assumption induces a com-
plete ordering of the doses. However, in the case of drug combination
treatment where the two agents are allowed to vary, it induces a partial
ordering constraint on the probabilities of toxicities (see Fig. 2). The
monotonicity assumption coupled with the small sample size in phase I
clinical trials and higher dimension of the dose space, makes the design
of combination trials challenging [25,27].

Herein, we list some of the proposed combination designs in litera-
ture [12,20,25,27]. Among these methods, the Keyboard combination
design proposed by Pan et al. [25] is one method that has empirically
and theoretically demonstrated to have desirable properties.

Let 𝑝𝑗𝑘 be the toxicity probability of the dual agents agent 𝐴 at
level 𝑗 and agent B at level 𝑘, 𝑛𝑗𝑘 be the number of patients treated
at the dose combination (𝑗, 𝑘) and 𝑦𝑗𝑘 be the number of patients who
experienced DLT at the dose combination (𝑗, 𝑘).

The algorithm of the Keyboard combination design is given as
below:

Step 1. Treat the first cohort of patients at the dose combination (1, 1)
or a specified dose combination.

Step 2. At the dose combination (𝑗, 𝑘), given the observed data 𝐷𝑗𝑘 =
(𝑛𝑗𝑘, 𝑦𝑗𝑘), find the strongest key max based on the updated
posterior distribution of 𝑝𝑗𝑘:

• If max ≺ target , then we escalate the dose.
• If max ≻ target , then we deescalate the dose.
• Otherwise, if max ≡ target , then we stay at the current

dose.

Step 3. Continue this process until the pre-specified maximum sample
size 𝑁 is achieved.

Note: Here, 1 ≺ (≻)2 means that 1 is at the left (right) of the 2,
and ≡ means that the two intervals overlap.

However, in the above algorithm, it is not clear how to decide to
escalate/de-escalate, since for combination trials with dual-agents, if
the decision is, for example, to escalate, there exist more than one
directions. For example, we can escalate only agent 𝐴, only agent 𝐵, or
both simultaneously.

The Keyboard design uses the admissible dose escalation/
de-escalation sets to derive the dose-transition path explicitly. The
3

admissible sets are defined as:

A𝐸 = {(𝑗 + 1, 𝑘), (𝑗, 𝑘 + 1)}

and

A𝐷 = {(𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1)}

For instance, A𝐸 means that escalation can be only allowed to move
agent A from 𝑗 to 𝑗+1, or move agent B from 𝑘 to 𝑘+1. That is, diagonal
movement is prohibited in escalation/de-escalation in A𝐸1

if there are
safety concerns. The admissible set A𝐷 can be interpreted similarly.

The dose-transition algorithm is then given as follows:

• Escalation: Escalate to the dose combination that belongs to A𝐸
and has the highest value of Pr(𝑝𝑗′𝑘′ ∈ target |𝐷𝑗𝑘) where (𝑗′, 𝑘′) ∈
A𝐸 .

• De-escalation: De-escalate to the dose combination that belongs
to A𝐷 and has the highest value of Pr(𝑝𝑗′𝑘′ ∈ target |𝐷𝑗𝑘) where
(𝑗′, 𝑘′) ∈ A𝐷.

If there are multiple optimal dose combinations with the same value
of Pr(𝑝𝑗′𝑘′ ∈ target |𝐷𝑗𝑘), we will randomly choose one. The trial is
completed when the maximum sample size is reached. After seeing
all observed data at the completion of the trial, the matrix isotonic
regression will be used to obtain the estimates of 𝑝𝑗𝑘’s value and select
the MTD as the combination with a estimated toxicity probability that
is closest to the target. The same set of safety rules for the single-agent
Keyboard design are also used here.

2.3. Design for the single-agent OBD-finding trials

Traditionally, the purpose of having a phase I dose-finding design
in cancer has been to find the MTD based solely on the toxicity
and traditional designs considering the DLT data implicitly assumes a
monotonically increasing relationship between dose and response effi-
cacy. Monotone efficacy may be a reasonable assumption for cytotoxic
agents. However, for molecular targeted agents, little toxicity may arise
within the therapeutic dose range and the dose–response curves may
not be strictly monotone. This challenges the conventional principle of
more is better. Instead, the OBD, which is defined as the lowest dose with
the highest rate of efficacy while safe, is a more appropriate endpoint. A
study by Corbaux et al. [28] showed that the dose approved by the Food
and Drug Administration (FDA) is consistent with an OBD of 83% of
drugs in a total of 87 completed trials for evaluating molecular targeted
agents.

Li et al. [15] proposed a TEPI phase I design for finding the OBD.
This approach incorporates efficacy outcomes to inform dosing deci-
sions to optimize efficacy and safety simultaneously, with the purpose
of finding the dose with the most desirable outcome for safety and
efficacy. The key features of TEPI are its simplicity, flexibility, and
transparency, because all decision rules can be prespecified prior to
trial initiation.

Assume that there are 𝐷 doses in a trial. We still assume that the
toxicity probability 𝑝𝑖 increases with dose level 𝑖. However, the efficacy
probability 𝑞𝑖 may increase initially and then reach a plateau from
which minimal improvement or even decreasing efficacy may be seen
with increasing dose. For this reason, 𝑞 is assumed to be not monotone
𝑖
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Table 2
An example of a pre-specified decision table for the OBD-finding design.

Efficacy.low Efficacy.moderate Efficacy.high Efficacy.superb
(0,0.25) (0.25,0.45) (0.45,0.65) (0.65,1)

Toxicity.low (0,0.15) E E E E
Toxicity.moderate (0.15,0.25) E E E S
Toxicity.high (0.25,0.35) D S S S
Toxicity.unacceptable (0.35,1.0) D D D D
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with 𝑖. In the TEPI design, 𝑝𝑖 and 𝑞𝑖 are assumed to be independent for
implicity. Suppose that the current dose is 𝑖, number of patients treated
t this dose level is 𝑛𝑖, number of patients who experienced toxicity is
𝑖, and the number of responses is 𝑦𝑖. The trial data can be represented
s Data = (𝑛𝑖, 𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… , 𝐷.

Similar to Keyboard design in Section 2.1, in TEPI design, we
artition the unit intervals (0, 1) for 𝑝𝑖 and 𝑞𝑖 into subintervals by using

(𝑎, 𝑏) and (𝑐, 𝑑) as generic subintervals in the partition for 𝑝𝑖 and 𝑞𝑖
respectively. The interval combination (a, b) × (c, d) forms the basis
for dose-finding decisions. A dose-finding decision table should firstly
be elicited by investigators for all interval combinations. Li et al. call
this a ‘‘preset table’’ for the TEPI design, which is fixed and elicited
prior to the trial. An example of such a two-dimensional table is given
in Table 2. We can see from this table there are four subintervals for
toxicity (rows) and efficacy (columns), the intersection of which forms
sixteen interval combinations. Each of the 16 combinations corresponds
to a specific decision. Decision ‘‘E’’ denotes escalation (i.e., treating
the next cohort of patients at the next higher dose). Decision ‘‘S’’
denotes staying at the current dose for treating the next cohort of
patients. Decision ‘‘D’’ denotes de-escalation (i.e., treating the next
cohort of patients at the next lower dose). These reflect the practical
clinical actions needed when a particular combination of toxicity and
efficacy data are observed at a certain dose level. For example, Table 2
shows that the interval combination (0.15, 0.25) × (0, 0.25) for 𝑝𝑖 and
𝑞𝑖 corresponds to an action of ‘‘E’’-escalation. This means that if the
observed toxicity rate for a dose falls in (0.15, 0.25) and the observed
efficacy rate is in (0, 0.25) with a high probability, the next patient
cohort would be recommended to be treated at the next higher dose
level. In order to formulate this table, we should have determined the
following: (i) the maximum tolerated toxicity rate, 𝑝𝑇 , and (ii) the
minimum acceptable efficacy rate, 𝑞𝐸 , at which the clinician is willing
to treat future patients at the current dose level but should not be lower.
For example, in Table 2, the values elicited by the clinical team for this
trial are based on 𝑝𝑇 = 0.35 and 𝑞𝐸 = 0.25.

Based on the preset table, Li et al. proposed a ‘‘local’’ decision-
theoretic framework and derived a Bayes rule, which is equivalent to
computing the joint unit probability mass (JUPM) for the TEPI. For a
given region A, the JUPM is defined as the ratio of probability of the
region versus the size of the region . Considering the two-dimensional
unit square (0, 1)×(0, 1), the JUPM for each interval combination (𝑎, 𝑏)×
𝑐, 𝑑) is

UPM(𝑐,𝑑)
(𝑎,𝑏) =

Pr(𝑝𝑖 ∈ (𝑎, 𝑏), 𝑞𝑖 ∈ (𝑐, 𝑑)|Data)
(𝑏 − 𝑎) × (𝑑 − 𝑐)

, 0 < 𝑎 < 𝑏 < 1, 0 < 𝑐 < 𝑑 < 1

Here, Pr(𝑝𝑖 ∈ (𝑎, 𝑏), 𝑞𝑖 ∈ (𝑐, 𝑑)|𝐷) is the posterior probability of 𝑝𝑖
nd 𝑞𝑖 falling in the subinterval (a,b) and (c,d). Assume the priors for
oth 𝑝𝑖 and 𝑞𝑖 follow independent beta distributions Beta(𝛼𝑝, 𝛽𝑝) and
eta(𝛼𝑞 , 𝛽𝑞) independently. The posterior distributions for 𝑝𝑖 and 𝑞𝑖 are
eta(𝛼𝑝+𝑥𝑖, 𝛽𝑝+𝑛𝑖−𝑥𝑖) and Beta(𝛼𝑞+𝑦𝑖, 𝛽𝑞+𝑛𝑖−𝑦𝑖). Using these posterior
istributions to update the JUPMs for all sixteen combination rectan-
ular areas, we can find the highest JUPM value and its corresponding
ombination rectangular area (a*, b*) and (c*, d*), which can be used
o guide the dose-transition to treat the next cohort of patients.

The basic dose-finding concept of TEPI is as follows. We assume that
he current patient cohort is treated at dose 𝑖. After the current cohort

completes DLT and response evaluation, we compute the JUPMs for all
the interval combinations in Table 2 . The TEPI design recommends
‘‘E’’, ’’S’’, or ‘‘D’’ corresponding to the combination with the highest
4

𝑞

JUPM value. Because for a given trial there are a finite number of
possible toxicity and efficacy outcomes as binomial counts, for any
toxicity and efficacy counts that can be observed in the trial, the
TEPI dose-finding decisions can be precalculated. For example, if given
the current computation, the combination rectangular area (0.15,0.25)
× (0.25,0.45) has the largest JUPM, in Table 2, the corresponding
decision is ‘‘E’’, that is, then we should escalate the dose.

To address ethical constraints, the Safety rule and futility rule are
used as shown below.

• Safety rule: If Pr(𝑝𝑖 > 𝑝𝑇 |Data) > 𝜂 for a 𝜂 close to 1 (say, 0.95),
exclude dose 𝑖, 𝑖+1,… , 𝐷 from future use for this trial (i.e., these
doses will never be tested again in the trial) and the next cohort of
patients will be treated at dose 𝑖−1. This corresponds to a dosing
action of ‘‘DU𝑇 ’’ to de-escalate due to unacceptably high toxicity.

• Futility rules: If Pr(𝑞𝑖 > 𝑞𝐸 |Data) < 𝜖 for a small 𝜖 (say 0.3),
then exclude dose 𝑖 from future use in the trial. This corresponds
to a dosing action of ‘‘EU’’ - escalate and never return due to
unacceptable low efficacy – or ‘‘DUE’’ – de-escalate and never
return this dose due to unacceptable low efficacy.

A dose level is considered ‘‘available’’ if it satisfies both the safety
and futility rules. Only these doses can be used to treat subsequent
patients.

At the end of the trial, we select the most desirable dose based on
a utility score to balance between the toxicity and efficacy tradeoff.
Utility-based decision criteria have been adopted widely in recent dose-
finding trials An elicited utility function for safety and efficacy should
be constructed based on 𝑝𝑇 and 𝑞𝐸 by discussing with clinicians. In the
developed Keyboard package, we provide the following three utility
function options.

The first utility function is a function of the toxicity 𝑓1(𝑝) and the
fficacy 𝑓2(𝑞), where 𝑝 and 𝑞 denote the toxicity and efficacy rate. Both
1(⋅) and 𝑓2(⋅) are truncated linear functions, given by

1(𝑝) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑝 ∈ [0, 𝑝∗1)

1 −
𝑝−𝑝∗1
𝑝∗2−𝑝

∗
1

𝑝 ∈ [𝑝∗1 , 𝑝
∗
2),

0 𝑝 ∈ [𝑝∗2 , 1]

(1)

𝑓2(𝑞) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑞 ∈ [0, 𝑞∗1 )

1 −
𝑞−𝑞∗1
𝑞∗2−𝑞

∗
1

𝑝 ∈ [𝑞∗1 , 𝑞
∗
2 ),

1 𝑞 ∈ [𝑞∗2 , 1]

(2)

here the 𝑝∗’s and 𝑞∗’s are prespecified cutoff values. From the above,
e can see that utility 𝑓1(𝑝) is 1 if 𝑝 ≤ 𝑝∗1, and 0 if 𝑝 > 𝑝∗2, and linearly
ecreasing with 𝑝 if 𝑝 ∈ [𝑝∗1 , 𝑝

∗
2). Utility 𝑓2(𝑞) is set in a similar manner.

By assuming that the toxicity and efficacy are independent, the
tility function that quantifies the benefit-risk trade-off at the current
ose 𝑗 that is defined as follows:

(𝑝𝑖, 𝑞𝑖) = 𝑓1(𝑝𝑖) × 𝑓2(𝑞𝑖) (3)

or each dose 𝑖, we can use a numerical approximation approach to
ompute the posterior expected utility, E[U(𝑝𝑖, 𝑞𝑖)|Data]. For example,
e can generate a total of 𝑇 random samples from the posterior
istributions. For each sample 𝑡, we generate 𝑝𝑡 = (𝑝𝑡1,… , 𝑝𝑡𝐷) and
𝑡 = (𝑞𝑡 ,… , 𝑞𝑡 ) as a random sample of 𝐷 probabilities of toxicity
1 𝐷
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Table 3
Dose escalation and de-escalation rules for the Keyboard design.

Number of patients treated

3 6 9 12 15 18 21 24 27 30

Escalate if number of DLT <= 0 1 2 2 3 4 5 5 6 7
De-escalate if number of DLT >= 2 3 4 5 6 7 8 9 10 11
Eliminate if number of DLT >= 3 4 5 7 8 9 10 11 12 14
and efficacy, respectively. We perform the isotonic transformation on
𝑝𝑡 to obtain �̂�𝑡 = (�̂�𝑡1,… , �̂�𝑡𝐷), where �̂�𝑡𝑖 ≤ �̂�𝑡𝑗 if 𝑖 < 𝑗, which ensures
the non-decreasing toxicity with the increased dose. For each dose
𝑖, based on the samples �̂�𝑡𝑖 and 𝑞𝑡𝑖 , the corresponding utility score is
U𝑡(�̂�𝑡𝑖, 𝑞

𝑡
𝑖 ) = 𝑓1(�̂�𝑡𝑖) ×𝑓2(𝑞𝑡𝑖 ). Thus, the estimated posterior expected utility

is given by Ê[U(𝑝𝑖, 𝑞𝑖)|Data] =
1
𝑇
∑𝑇

𝑡=1 U
𝑡(�̂�𝑡𝑖, 𝑞

𝑡
𝑖 ).

Finally, the selected the optimal dose 𝑑 is given by

𝑑 = {𝑖 ∶ argmax𝑖∈{1,…,𝐷}Ê[U(𝑝𝑖, 𝑞𝑖)|Data]}.

Another utility function depends on a marginal toxicity probability
𝜋𝑇 ,𝑖 = Pr(𝑌𝑇 = 1|𝑖 = 𝑑) and a marginal efficacy probability 𝜋𝐸,𝑖 =
Pr(𝑌𝐸 = 1|𝑖 = 𝑑), which is defined as follows:

U(𝑝𝑖, 𝑞𝑖) = 𝜋𝐸,𝑖 −𝑤1 × 𝜋𝑇 ,𝑖 (4)

where, 𝑤1 is a pre-specified weight. This trade-off function describes
how many patients are willing to trade an increase of 𝑤1 in the DLT
rate for a unit increase in the efficacy rate. If 𝑤1 = 0, we have a special
case in which the dose with the highest efficacy is the most desirable.

The third utility function also depends on the marginal toxicity
probability 𝜋𝑇 ,𝑖 = Pr(𝑌𝑇 = 1|𝑖 = 𝑑) and the efficacy probability 𝜋𝐸,𝑖 =
Pr(𝑌𝐸 = 1|𝑖 = 𝑑), but it puts an additional penalty for over-toxicity and
is defined as follows:

U(𝑝𝑖, 𝑞𝑖) = 𝜋𝐸,𝑖 −𝑤1 × 𝜋𝑇 ,𝑖 −𝑤2 ∗ 𝜋𝑇 ,𝑖 ∗ I(𝜋𝑇 ,𝑖 > 𝜌) (5)

where 𝑤1 and 𝑤2 are pre-specified weights, 𝐼(⋅) is an indicator function,
and 𝜌 is a pre-specified toxicity threshold deemed of substantial concern
and can be chosen as the target toxicity rate. Compared to the above
second utility function of (4), this trade-off function is more flexible
and allows for imposing a higher penalty (i.e., 𝑤1 +𝑤2) when the true
DLT rate 𝜋𝑇 ,𝑖 exceeds the threshold 𝜌.

Once the utility score is computed for all the doses, then the OBD
can be identified by:

𝑑OBD = {𝑖 ∶ argmax𝑖∈𝐷 [𝑈 (𝑝𝑖, 𝑞𝑖)|Data]}

3. Trial examples

In this section, we demonstrate how to design various phase I dose-
finding trials with examples. Detailed steps of how to implement the
Keyboard R package are included in Appendix.

3.1. Single-agent phase I trial

Consider a single-agent phase I trial with five dose levels, in which
the objective is to find the MTD with a target DLT rate of 0.3. The
maximum sample size is 30 patients with a cohort size of 3. To design
and conduct this trial, we first use the function get.boundary.kb
(target = 0.3, ncohort = 10, cohortsize = 3) to yield the
dose escalation and de-escalation decision rules shown in Table 3.

If we assume that the trial starts by treating the first cohort of three
patients at dose 1, based on Table 3, none of the patients have the
DLT (0/3). Therefore, we should escalate to dose 2 to treat the next
cohort of patients. If at dose level 2, none of the patients experience
the DLT (0/3), we should escalate to dose 3. If at dose level 3, two of
three patients experience the DLT (2/3), based on Table 3, we should
de-escalate from dose 3 to dose 2. Note that as of now, 6 patients will
5

Fig. 3. Dose-transition path of a single-agent phase I dose-finding trial using the
Keyboard design.

be treated at dose 2. If one of the patients among these six has DLT
(1/6), we will escalate to dose 3 again. Currently, we have 6 patients
at dose 3. If among these 3 newly enrolled patients, none has DLT,
that is, at dose 3, there are a total of 2 DLTs among 6 (2/6), based on
Table 3, we should stay. That is, we continue to treat the next cohort
of patients at dose 3. Note that the number of patients at dose 3 will
finally be 9 in total. This process will continue to make dose transitions
until exhausting the maximum sample size or meeting early stopping
criteria. In Fig. 3, we show the complete path of dose-transition from
this trial.

Upon finishing the trial, we would have selected the MTD. We
assume that the observed number of patients and DLTs across five
doses are n = c(3, 6, 12, 3, 0) and y = c(0, 1, 3, 2, 0),
respectively, that is, this study finally stopped with a total of sample
size 24 instead of 30 pre-planned in the protocol. We can use the
function select.mtd.kb(target = 0.3, ntox = y, npts = n),
which recommends dose 3 as the MTD, with an estimated DLT rate of
25.0% with 95% CI of (6%, 52%).

3.2. Drug-combination trial

Consider a drug-combination trial, there are 3 doses for agent A and
5 doses for agent B. The objective is to find the MTD with a target DLT
rate of 0.3. The maximum sample size is 30 patients, treated in cohorts
with the size of 3. We assume that the trial starts by treating the first
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Fig. 4. Illustration of a 3 × 5 combination trial with the cohort size of three to find the MTD. Open circle indicates patients without the DLT, and solid circle denotes patients
with the DLT.
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cohort of 3 patients at the lowest dose combination (1,1), which means
dose level 1 is combination of agent A and B. If no DLT was observed,
the observed data can be described in the following matrices.

𝑛 =
⎛

⎜

⎜

⎝

3 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

, 𝑦 =
⎛

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

,

here 𝑛 records the number of patients treated at each dose combi-
ation, and 𝑦 records the number of patients who experience DLT at
ach dose combination. In matrices 𝑛 and 𝑦, each entry (𝑗, 𝑘) records
he observed data associated with combination (𝑗, 𝑘).

To determine the dose for the second cohort of patients, we use the
unction next.comb.kb(target = 0.3, npts = n, ntox = y,
ose.curr = c(1, 1)), which recommends escalating the dose to
ombination (2,1). If after treating the second cohort of patients, none
xperiences the DLT, the updated data matrices are

=
⎛

⎜

⎜

⎝

3 0 0 0 0
3 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

, 𝑦 =
⎛

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

.

To determine the dose f or the third cohort of patients, we use
ext.comb.kb(target = 0.3, npts = n, ntox = y,
ose.curr = c(2,1)) with updated y, n and dose.curr and
ecommends escalating the dose from (2,1) to (3,1) to treat the third
ohort of patients. We repeat this procedure until the maximum sample
ize was reached. Fig. 4 shows the dose assignments path for all
6

0 patients. For example, at dose combination (3,2), there were 0
LTs; the function recommends escalating the dose to combination
3,3). When the trial is completed, the number of patients treated at
ach dose combination and the corresponding number of patients who
xperienced toxicity at each dose combination are

=
⎛

⎜

⎜

⎝

3 0 0 0 0
3 0 0 0 0
3 3 12 6 0

⎞

⎟

⎟

⎠

, 𝑦 =
⎛

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 3 3 0

⎞

⎟

⎟

⎠

.

We use the function select.mtd.comb.kb(target = 0.3,
pts = n, ntox = y), which recommends the dose combination (3,
) as the MTD.

.3. Phase I/II trial to find the optimal biological dose (OBD)

Consider a single-agent phase I trial with five dose levels, the
rimary objective is to find the OBD. The maximum sample size is 30
atients, treated in cohorts with the size of 3. Clinical team determines
hat the maximum tolerated toxicity rate 𝑝𝑇 is 0.20 and the minimum
cceptable efficacy rate 𝑞𝐸 is 0.40.

To design and show how to conduct this trial, we use the following
unction in the first place to set up the ‘‘preset table’’ shown in Table 2
Partial outputs of decision rules are presented in Table 4, which can
e generated by executing the following code.

R> oc . obd2 . kb <−get . dec i s ion . obd . kb
( t o x i c i t y . low =0.15 , t o x i c i t y . moderate = 0.25 ,
+ t o x i c i t y . high = 0.35 ,
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Table 4
Dose escalation and de-escalation table for the phase
I/II OBD-finding design (partial outputs).

N T R Decision

1 3 0 0 EUE
2 3 0 1 E
3 3 0 2 E
4 3 0 3 E
5 3 1 0 DUE
6 3 1 1 S
7 3 1 2 S
8 3 1 3 S
9 3 2 0 DUE
10 3 2 1 D
11 3 2 2 D
12 3 2 3 D
13 3 3 0 DUT
14 3 3 1 DUT
15 3 3 2 DUT
16 3 3 3 DUT
17 6 0 0 EUE
18 6 0 1 EUE
19 6 0 2 E
20 6 0 3 E
21 6 0 4 E
22 6 0 5 E
23 6 0 6 E
24 6 1 0 EUE
25 6 1 1 EUE
26 6 1 2 E
27 6 1 3 E
28 6 1 4 E
29 6 1 5 S
30 6 1 6 S
31 6 2 0 DUE
32 6 2 1 DUE
33 6 2 2 S
⋮ ⋮ ⋮ ⋮ ⋮
99 9 3 3 S
⋮ ⋮ ⋮ ⋮ ⋮
210 12 3 5 S
⋮ ⋮ ⋮ ⋮ ⋮

+ e f f i c a c y . low = 0.25 ,
+ e f f i c a c y . moderate = 0.45 ,
+ e f f i c a c y . high =0.65 ,
+ t a r ge t . t o x i c i t y =0.20 ,
+ t a r ge t . e f f i c a c y =0.40 ,
+ ncohort=10, cohor t s i z e =3)

To show how to use the above decision table, for example, if a
rial starts by treating the first cohort of 3 patients at dose level 1
ith none of the patients having the DLT and one patient showing

esponse, according to the second row - (N = 3, T = 0, R = 1), the
Decision’ is ’E’’, that is, we should escalate the dose to level 2 to
reat the second cohort of 3 patients. We also can run the function
ecision.finding(out.matrix = output.matrix, n = 3, t
0,r = 1) to guide the next recommend dose level.
If currently at dose 2, one of three patients experienced DLT and

wo have responses, by using the decision table of looking at the
ixth row - (N = 3, T = 1, R = 1) or by using the command de-
ision.finding(out.matrix = output.matrix, n = 3, t =
,r = 1), the ‘Decision’ is ‘S’, that is, to continue to treat the next
ohort of patients at dose 2. If at dose 2, among the newly enrolled
hree patients, none has the DLT and one has the responses, that is,
urrently, (N = 6, T = 1, R = 2), the ‘Decision’ is ‘E’, that is, we should
scalate to treat next cohort of patients at dose 3. We repeat this process
ntil maximum sample size reached or stopping rules are satisfied. The
omplete dose-transition path is shown in Fig. 5.

t a r ge t . t o x i c i t y<−0.2
7

t a r ge t . e f f i c a c y<−0.4 B
npts <− c (3 ,6 ,12 ,3 ,0)
ntox <− c (0 ,1 ,3 ,2 ,0)
ne f f <− c (1 ,2 ,5 ,2 ,0)
obd <− s e l e c t . obd . kb

( t a r ge t . t o x i c i t y=ta rge t . t o x i c i t y ,
t a r g e t . e f f i c a c y= ta rge t . e f f i c a cy ,
npts = npts ,
ntox = ntox , ne f f = ne f f )

print ( obd )
$name
[1] " s e l e c t . obd . kb "

$obd1
[1] 3

$obd2
[1] 3

$obd3
[1] 3

For the above trial path plot, we can see that, at the end of the
rial, at dose 1, there were 3 patients with 0 DLT and 1 responses,
t dose 2, there were 6 patients with 1 DLT and 2 responses, at
ose 3, there were 12 patients with 3 DLTs and 5 responses, and at
ose 4, there were 3 patients with 2 DLTs and 2 responses. These
umbers can be in the format of n = c(3,6,12,3,0), and t =
(0,1,3,2,0), and r = c(1,2,5,2,0) and we use function se-
ect.obd.kb(target.toxicity = 0.2, target,efficacy
0.4, npts = n,ntox = t, neff=r) to select the OBD. The

ecommended dose level using utility functions of (3) as an example
s dose 3.

. Conclusion

In this paper, we review three interval-based Bayesian design meth-
ds, the keyboard single- and dual-agent phase I dose-finding design for
he MTD and the TEPI design for identifying the OBD. These designs
ave been demonstrated to have desirable performances and their
sages are simple and transparent due to pre-tabulated decision tables.
e developed an R package Keyboard, which can assist practitioners

o design, conduct, and analyze trials by using these methods. We also
se examples to demonstrate how to use this package and step-by-step
odes are included in Appendix.

. Availability and requirements

Project name: Keyboard
Project home page:

https://cran.r-project.org/web/packages/Keyboard/index.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R 3.4.0 or above
License: GPL-2
Any restrictions to use by non-academics: none

. Abbreviations

MTD: maximum tolerated dose; OBD: optimal biological dose; DLT:
ose-limiting toxicity; CRM: continual reassessment method; TEPI: toxi-
ity and efficacy probability interval; JUPM: joint unit probability mass;

OIN: Bayesian optimal interval design.

https://cran.r-project.org/web/packages/Keyboard/index.html
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Fig. 5. Illustration of a single-agent phase I/II trial for finding the optimal biology dose (OBD).
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Appendix

R package Keyboard contains functions that implement the de-
igns introduced in the main paper. In this Appendix, we show how
o implement these methods step-by-step by using the Keyboard R
ackage. We firstly list the corresponding functions for the three design
ethods introduced in the main paper in the following.
8

Single-agent MTD-finding design
• get.boundary.kb(⋯): This function is used to generate the
optimal dose-escalation and de-escalation boundaries for conduct-
ing a single-agent trial with the Keyboard design.

• select.mtd.kb(⋯): This function is used to select the MTD
after the single-agent trial is completed.

• get.oc.kb(⋯): This function is used to generate the operating
characteristics of the Keyboard design for single-agent trials.

Drug-combination MTD-finding design

• get.boundary.comb.kb(⋯): This function is used to gener-
ate the optimal dose escalation and de-escalation boundaries for
conducting a drug-combination trial with the Keyboard design.

• next.comb.kb(⋯): This function is used to determine the dose
combination for the next cohort of patients in drug-combination
trials that aim to find one MTD.

• select.mtd.comb.kb(⋯): This function is used to select the
MTD after the drug-combination trial is completed.

• get.oc.comb.kb(⋯): This function is used to generate
the operating characteristics of the Keyboard design for drug-
combination trials.

Phase I/II trial OBD-finding design

• get.decision.obd.kb(⋯): This function is used to generate
the boundary table and decision matrix for single-agent phase I/II
trials designed to find the OBD.

• select.obd.kb(⋯): This function is used to select the OBD at
the end of a trial.

• get.oc.obd.kb(⋯): This function is used to generate operat-

ing characteristics.
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Fig. 6. Boundary table of a phase I dose-finding example for the single-agent.
Phase I/II trial-automatically generating decision tables
Different from the above, the following functions do not rely on pre-

specified decision tables (Details and example are introduced shortly).

• get.decision.obd2.kb(⋯): This function is used to provide
the boundary table and decision matrix for the phase I/II trials
automatically.

• select.obd.kb(⋯): This function is used to select the optimal
biological dose (OBD) at the end of a single-agent phase I/II trial.

• get.oc.obd2.kb(⋯): This function is used to generate the
operating characteristics, and the decision tables is generated
automatically.

A.1. Phase I dose-finding trial with a single agent

To design a phase I dose-finding trial with a single agent, we can use
the function get.boundary.kb(⋅) to obtain the dose escalation and
de-escalation boundaries. This function has the following arguments:

• target The target dose-limiting toxicity (DLT) rate.
• ncohort The total number of cohorts.
• cohortsize The number of patients in the cohort.
• marginL The difference between the target and the lower bound

of the ‘‘target key’’ (proper dosing interval) to be defined — the
default value is 0.05.

• marginR The difference between the target and the upper bound
of the ‘‘target key’’ (proper dosing interval) to be defined — the
default value is 0.05.

• n.earlystop The early stopping parameter. If the number of
patients treated at the current dose reaches n.earlystop, then
stop the trial and select the MTD based on the observed data.

• cutoff.eli The cutoff value to eliminate the over-toxic dose
and all higher doses for safety — the default value is 0.95.

• extrasafe Set extrasafe = TRUE to impose a stricter stop-
ping rule for extra safety, expressed as the stopping boundary
value in the result.

For the extrasafe, it means that a dose 𝑑 will be eliminated due
to toxicity if Pr(𝑝𝑑 > 𝜙|𝐷𝑑 = (𝑛𝑑 , 𝑦𝑑 )) > cutoff.eli - offset. For
instance, the default value offset = 0.05.

Here we show an example. Assuming we want to conduct a phase
I trial with 𝐷 = 5 dose levels and the target toxicity rate of 𝜙 = 0.3.
The maximum sample size is 30 patients, and patients are treated in
cohorts of size 3. Using the default values of marginL, marginR,
and cutoff.eli, we can obtain the decision boundary by applying
get.boundary.kb(⋅) with the outputs shown as in Fig. 6

For developing the trial protocol, we need to provide operating
characteristics (OCs) of scenarios interested by the clinical team. There
is a get.oc.kb(⋅) can be used by simulations to provide the empirical
OCs. For example, if we want to explore the OC of a scenario with
assumed true toxicity rates of (0.05, 0.15, 0.3, 0.45, 0.6) for five doses. For
this scenario, we assume that dose 3 is the true MTD. We can use the
Fig. 7 code to get the empirical OCs for this scenario.
9

From the above outputs, many results are reported. For instance,
there is 54.3% chance to select dose 3 to be the MTD if using the
keyboard design, among 30 patients, on average, there will have 10.995
patients being treated at dose 3. All the other outputs can be found
detailed explanations in the R package manual.

When a trial completes, we should select the MTD based on the
data. For example, assuming that observed number of patients and DLTs
across five doses are n = c(3, 6, 12, 3, 0) and y = c(0, 1, 3,
2, 0), respectively, that is, this study finally stopped with a total of
sample size 24 instead of 30 pre-planned in the protocol. We can use
the function select.mtd.kb(target = 0.3, ntox = y, npts =
n), which recommends dose 3 as the MTD, with the estimated DLT rate
of 25.0% with 95% CI of (6%, 52%) (see Fig. 8).

A.2. Phase I dose-finding drug combination trial

We are now showing how to use the Keyboard R package to design
a drug combination phase I dose-finding trial (see Fig. 9).

Conduct the trial
The function next.comb.kb(⋅) can be used to find which dose

should be assigned to new cohort of patients based on the updated
data. This function shares a similar set of arguments with the function
get.boundary.kb(⋅) described previously:

• npts A matrix recording the number of patients treated at each
dose combination.

• ntox A matrix recording the number of patients who experienced
toxicity at each dose combination.

• dose.curr The current dose combination (the dose combina-
tion that was used to treat the most recently enrolled cohort of
patients).

Suppose that we have a 3 × 4 drug-combination trial with 3 dose
levels of agent A and 4 dose levels of agent B, aiming to find a MTD that
has a target toxicity rate of 0.3. The maximum sample size is assumed
to be 48 patients, and patients are treated in cohort sizes of 3. Let (𝑗, 𝑘)
denote the combination of the 𝑗th dose level of agent A and the 𝑘th
dose level of agent B. The trial can be conducted as follows. We start
the trial by treating the first cohort of 3 patients at the lowest dose
(2, 2). Assuming that none of the patients experienced DLT, the data
from the first cohort of patients are given by

𝑛 =
⎛

⎜

⎜

⎝

3 0 0 0 0
7 6 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

𝑦 =
⎛

⎜

⎜

⎝

0 0 0 0 0
1 1 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

,

where 𝑛 records the number of patients treated at each dose combina-
tion, and 𝑦 records the number of patients who experienced toxicity
at each dose combination. In matrixes 𝑦 and 𝑛, entry (𝑗, 𝑘) records the
data associated with combination (𝑗, 𝑘). To determine the dose for the
second cohort of patients, we call function next.comb.kb(⋅):

From the above output, the recommended dose combination for
next cohort of patients is (3, 2). Therefore, we should escalate to dose
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Fig. 7. Empirical operating characteristics (OCs) of a phase I dose-finding example for the single-agent.
Fig. 8. Selecting the MTD of a phase I dose-finding example for the single-agent.

3 for agent A and still at dose 2 for agent B. We repeat this procedure
until the maximum sample size is reached.

Obtain the operating characteristics

The function get.oc.comb.kb(⋅) can be used to obtain the
operating characteristics of the Keyboard drug-combination design.
This function also shares the same set of arguments as the function
get.oc.kb(⋅), except that p.true is now a matrix (rather than a
vector) and startdose is a vector of length 2 (rather than a scalar)
(see Fig. 11)
10
Consider a 3 × 5 combination trial scenario with the true toxicity
probabilities

𝚙.𝚝𝚛𝚞𝚎 =
⎛

⎜

⎜

⎝

0.01 0.03 0.10 0.20 0.30
0.03 0.05 0.15 0.30 0.60
0.08 0.10 0.30 0.60 0.75

⎞

⎟

⎟

⎠

,

and the target toxicity rate of 0.30. Here, we show how to obtain the
operating characteristics (OCs) based on 1000 simulated trials with a
maximum sample size of 45 by a cohort size of 3. Partial outputs are
shown as in Fig. 10.

Select a MTD when the trial is completed
When the trial is completed, based on the observed data, we can

select a MTD using the function select.mtd.comb.kb(⋅). This func-
tion has seven arguments: target, npts, ntox, cutoff.eli, ex-
trasafe, and offset, where the descriptions of cutoff.eli,
extrasafe, and offset are the same as those in get.boundary.
kb(⋅). Assume that the number of patients treated at each dose com-
bination and the corresponding number of patients who experienced
toxicity at each dose combination are

𝑛 =
⎛

⎜

⎜

⎝

6 3 0 0 0
6 24 9 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

𝑦 =
⎛

⎜

⎜

⎝

0 0 0 0 0
1 5 4 0 0
0 0 0 0 0

⎞

⎟

⎟

⎠

.

From the above output, we can see that dose combination (2, 2),
that is, combination of agent A of dose 2 and agent B of dose 2 is
selected as the MTD.

A.3. Phase I trial for the optimal biological dose (OBD)

Design and conduct the trial To design a phase I/II trial for finding
the OBD, we need to run the function get.decision.obd.kb(⋅) to
obtain the boundary table and decision table. This function needs the
following arguments to input:
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Fig. 9. Recommend a next dose for a phase I drug combination trial.
Fig. 10. Empirical operating characteristics (OCs) of a phase I drug combination trial.
• toxicity.low The upper boundary for the low toxicity inter-
val.

• toxicity.moderate The upper boundary for the moderate
toxicity interval.

• toxicity.high The upper boundary for the high toxicity
interval.
11
• efficacy.low The upper boundary for the low efficacy inter-
val.

• efficacy.moderate The upper boundary for the moderate
efficacy interval.

• efficacy.high The upper boundary for the high efficacy
interval.
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Fig. 11. Selecting the MTD for a phase I drug combination trial.
Fig. 12. Code to drive the decision table of a phase I trial to find the optimal biological dose (OBD).
• target.toxicity The target DLT rate.
• target.efficacy The target efficacy rate.
• ncohort The total number of cohorts.
• cohortsize The number of patients in the cohort.
• cutoff.eli.toxicity The cutoff value to eliminate a dose

with an unacceptably high toxicity for safety — the default value
is 0.95.

• cutoff.eli.efficacy The cutoff value to eliminate a dose
with unacceptably low efficacy — the default value is 0.3.

As an example, suppose we want to conduct a phase trial for finding
the OBD with 𝐷 = 5 dose levels with a target toxicity rate of 0.20 and
a target efficacy rate of 0.40. Maximum number of patients is 30 and
patients are treated by the cohort size of 3. We can use the function
get.decision.obd.kb(⋅) to derive the decision table (see Fig. 12).

The ‘‘preset’’ table of 4-by-4 can be obtained by applying deci-
sion.obd$boundary.table (see Fig. 13).

Detailed decision lists can be obtained by applying
decision.obd$decision.matrix and part of outputs are shown
in Fig. 14.

Here are explanations for the above decision actions. Assuming the
current does is 𝑗,

• D: deescalate to a previous dose 𝑗 − 1.
• E: escalate to a next dose 𝑗 + 1.
• S: stay at the current dose 𝑗.
• EUE: escalate to a higher dose 𝑗 + 1 due to the unacceptable low

efficacy.
12
• DUE: deescalate to a lower dose 𝑗−1 due to the unacceptable low
efficacy.

• DUT: deescalate to a lower dose 𝑗−1 due to the unacceptable high
toxicity.

• Safety stopping rule: if Pr(𝑝𝑗 > 𝑝𝑇 |Data) > 𝜂, the default value of
𝜂 is 0.95, then any dose ≥ 𝑗 will be excluded from the trial.

• Default futility rule: if Pr(𝑞𝑗 > 𝑞𝐸 |Data) < 𝜖, the default value of 𝜖
is 0.3, then dose 𝑗 will be excluded from the trial.

From the above output, for example, we can see that if there are
3 patients on a specific dose level with 1 toxicity and 1 response,
the decision would be ‘‘S’’ (the sixth row in Fig. 14), that is, we will
continue to administer the current dose to the next cohort of patients.

Obtain the operating characteristics
The function get.oc.obd.kb(⋅) can be used to obtain the oper-

ating characteristics (OCs) for the phase I trial to find the OBD. This
function needs the following arguments to input:

• toxicity.low The upper boundary for the low toxicity inter-
val.

• toxicity.moderate The upper boundary for the moderate
toxicity interval.

• toxicity.high The upper boundary for the high toxicity in-
terval.

• efficacy.low The upper boundary for the low efficacy inter-
val.

• efficacy.moderate The upper boundary for the moderate
efficacy interval.
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Fig. 13. Code to generate the ‘‘preset’’ table of a phase I trial to find the optimal biological dose (OBD).
Fig. 14. Decision lists (part) of a phase I trial to find the optimal biological dose
(OBD).
13
• efficacy.high The upper boundary for the high efficacy in-
terval.

• target.toxicity The target DLT rate.
• target.efficacy The target efficacy rate.
• ncohort The total number of cohorts.
• cohortsize The number of patients in a cohort.
• n.early The early stopping parameter. If the number of patients

treated at the current dose reaches n.early, then we stop the
trial and select the MTD based on the observed data.

• startdose The starting dose level.
• p.true A vector containing the true toxicity probabilities of the

investigational dose levels.
• q.true A vector containing the true efficacy probabilities of the

investigational dose levels.
• ntrial The total number of trials to be simulated.
• seed The random seed for simulation.
• p1 The cutoff lower limit for safety utility function (3): 𝑈 =
𝑓 (𝑝)×𝑓 (𝑞). f(p) is the function for toxicity probability, and f(q) is
the function for efficacy probability.

• p2 The cutoff upper limit for safety utility function (3).
• q1 The cutoff lower limit for efficacy utility function (3).
• q2 The cutoff upper limit for efficacy utility function (3).
• cutoff.eli.toxicity The cutoff value to eliminate a dose

with unacceptably high toxicity for safety. The default value is
0.95.

• cutoff.eli.efficacy The cutoff value for the futility rule,
the acceptably lower efficacy. The default value is 0.30.

• w1.toxicity The weight for toxicity utility function (4) and
(5) The recommended 𝜌 is the target toxicity rate.

• w2.toxicity The weight for toxicity utility function (5).
• indicator The indicator cutoff value for utility function (5).

Using the same setting as above and by assuming a scenario in
which the true toxicity rates are p.true = (0.08, 0.20, 0.60, 0.7, 0.80)
and the true responses are q.true = (0.25, 0.40, 0.45, 0.50, 0.52); we can
use the function get.oc.obd.kb(⋅) to obtain the operating charac-
teristics. Fig. 15 are outputs based on 1000 simulated trials.

The outputs show that dose 3 is recommended as the OBD by
simulations for this scenario irrespective of which utility function is
employed.

Select the OBD when the trial is completed
When a trial is completed, we can select the OBD based on the

observed data using the function select.obd.kb(⋯). This function
needs the following arguments to input:

• target.toxicity The target DLT rate.
• target.efficacy The target efficacy rate.
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Fig. 15. Empirical operating characteristics (OCs) of a phase I trial to find the optimal biological dose (OBD).

Fig. 16. Selecting an OBD of a phase I trial to find the optimal biological dose (OBD).

Fig. 17. A 3-by-3 ‘‘preset’’ table.
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Fig. 18. A part of decision lists.

• npts The vector containing the total number of patients treated
at each dose level.

• ntox The vector containing the number of subjects at each dose
level who have the toxicities.

• neff The vector containing the number of subjects at each dose
level who have the responses.

• p1 The cutoff lower limit for safety utility function (3): 𝑈 =
𝑓 (𝑝)×𝑓 (𝑞). f(p) is the function for toxicity probability, and f(q) is
the function for efficacy probability.

• p2 The cutoff upper limit for safety utility function (3).
• q1 The cutoff lower limit for efficacy utility function (3).
• q2 The cutoff upper limit for efficacy utility function (3).
• cutoff.eli.toxicity The cutoff value to eliminate a dose

with unacceptable high toxicity for safety — the default value is
0.95.

• cutoff.eli.efficacy The cutoff value for the futility rule,
the acceptable lowest efficacy — the default value is 0.30.
15
• w1.toxicity The weight for toxicity utility function (4) and
(5) — the recommended 𝜌 is the target toxicity rate as the default
value.

• w2.toxicity The weight for toxicity utility function (5).
• indicator The indicator cutoff for utility function (5).

Assume that the number of patients treated at four doses is npts
= (3, 6, 12, 3, 3), the corresponding number of patients who experienced
toxicity is ntox= (1, 2, 4, 2, 3), and the corresponding number of pa-
tients who experienced efficacy is neff= (0, 0, 5, 1, 1). From the Fig. 16
outputs, we can see the dose 3 is selected as the OBD based on these
data irrespective of which utility functions being used.

A.4. Option 2: Alternative approach to partition the toxicity and efficacy
intervals

We provide another function which can partition the toxicity and
efficacy intervals without pre-specifying the parameters of toxic-
ity.low, toxicity.moderate, ⋯, efficacy.high in the last
section. We use the Bayesian optimal interval design(BOIN) as a tool
to automatically partition the toxicity and efficacy intervals but with
‘‘clinical’’ rationales. To be specific, given the target toxicity rate, the
BOIN algorithm will produce two cutoffs, which can be use to divide the
toxicity interval into toxicity.low, toxicity-acceptable,
toxicity-high sub-intervals. For example, if the target toxicity
rate is 0.2, by executing the following code of using the function
get.boundary(⋅) from the BOIN R package, the toxicity unit prob-
ability interval can be divided into three sub-intervals, (0, 0.16),
(0.16, 0.24), and (0.24, 1), which correspond to the toxicity.low,
toxicity-acceptable, toxicity-high sub-intervals.

> > l ibrary (BOIN)
bound <− get . boundary ( t a r ge t =0.2 ,

ncohort=10, cohor t s i z e =3)
bound$lambda _ e

[1] 0.1572423
bound$lambda _d

[1] 0.2384624

In a similar vein, to generate the sub-intervals for the efficacy, we
would firstly input the target failure rate to the above get.boundary
(.) function from BOIN R package to get the two cutoffs. The target
failure rate is defined as 1-target efficacy rate, that is, if the tar-
get efficacy rate is 0.4, then, the target failure rate is 0.6. Then,
we can use find two cutoffs by using the target failure rate
as the value for the target parameter in the get.boundary(.)
function. Since the BOIN algorithm is for finding the MTD with as-
sumption of the monotone increasing in terms of toxicity with the dose,
we firstly reverse the two cutoffs and then subtract the two cutoffs
by 1 to generate the sub-intervals in terms of the efficacy outcome.
In literature, a similar strategy was adopted by Zohar et al. [29] in
which the continual reassessment method (CRM) was adapted to find
the minimal effective dose (MinED) in a phase II trial.

Here is an example. Ff the target efficacy rate is 0.4, by executing
the following code, we get two original cutoffs of 0.48 and 0.73.

> bound <− get . boundary ( t a r ge t =0.6 ,
ncohort=10, cohor t s i z e =3)

bound$lambda _ e
[1] 0.4791901

bound$lambda _d
[1] 0.7314159

Then, the efficacy interval can be obtained as: (0, 1-0.73), (1-
0.73, 1-0.48), (1-0.48, 1), that is, (0, 0.27), (0.27, 0.52), and (0.52,
1) correspond to the efficacy.low, efficacy-acceptable,
efficacy-high sub-intervals.

From the above, we can generate the following sub-intervals for
toxicity:
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• The low interval for toxicity is (0, toxicity.lower.boundary).
• The acceptable interval for toxicity is (toxicity.lower.boundary,

toxicity.upper.boundary).
• The high interval for toxicity is (toxicity.upper.boundary, 1).

and the sub-intervals for efficacy:

• The low interval for efficacy is (0, efficacy.lower.boundary).
• The acceptable interval for efficacy is (efficacy.lower.boundary,

efficacy.upper.boundary).
• The high interval for efficacy is (efficacy.upper.boundary, 1).
If a ‘‘preset’’ table is given (an example shown below), we can then

se the corresponding functions to design a trial.

Efficacy.low Efficacy.moderate Efficacy.high
(0,0.27) (0.27,0.52) (0.52,1)

Toxicity.low (0,0.16) E E S
Toxicity.moderate (0.16,0.24) S S S
Toxicity. high (0.24,1) D D D

For example, in the above ‘‘preset’’ table, the interval combination
(0, 0.16) × (0.27,0.52) corresponds to a decision ‘‘S’’.

We develop a function get.decision.obd2.kb(⋅), which can
automatically generate the sub-intervals based on the procedures we
described above and provide the decision table.

For example, for a trial, there are 5 doses with the target toxicity
rate of 0.2 and target efficacy rate of 0.4. Patients are assumed to be
treated in cohorts size of 3 and the number of cohorts is 10. We can
see from the following code that we are only needed to input tar-
get.toxicity and target.efficacy without requiring to input
a set of parameters toxicity.low, toxicity.moderate, ⋯,
efficacy.high if using the function get.decision.obd.kb(⋅)
n the last section.

The 3-by-3 ‘‘preset’’ table can be obtained (see Fig. 17).
A part of the decision lists are shown as Fig. 18.
We also develop the function get.oc.obd2.kb(⋅) to conduct

simulations to get the operating characteristics and the function se-
ect.obd.kb(⋯) to select the OBD in this context. Detailed examples
an be found in Keyboard R package manual.
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