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Although the brain has been considered an insulin-insensitive organ, recent reports on the
location of insulin and its receptors in the brain have introduced new ways of considering
this hormone responsible for several functions. The origin of insulin in the brain has been
explained from peripheral or central sources, or both. Regardless of whether insulin is of
peripheral origin or produced in the brain, this hormone may act through its own receptors
present in the brain. The molecular events through which insulin functions in the brain are
the same as those operating in the periphery. However, certain insulin actions are differ-
ent in the central nervous system, such as hormone-induced glucose uptake due to a low
insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and
GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeosta-
sis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory,
and neuroprotective effects. Alterations of these functional activities may contribute to the
manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes
mellitus (T2DM), and Alzheimer’s disease (AD). A close association between T2DM and
AD has been reported, to the extent that AD is twice more frequent in diabetic patients,
and some authors have proposed the name “type 3 diabetes” for this association. There
are links between AD and T2DM through mitochondrial alterations and oxidative stress,
altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein
O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyper-
phosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major
stimulus for the development of treatment for preventing the pathogenic events of these
disorders, mainly those focused on reducing brain insulin resistance, which is seems to be
a common ground for both pathological entities.

Keywords: brain, insulin, receptors, biological actions, pathophysiological implications, central insulin resistance,
type 2 diabetes, Alzheimer’s disease

INTRODUCTION
Although the control of peripheral glucose homeostasis is one
of the main functions of insulin, its action on the brain is now
also being studied carefully, as it is considered an insulin-sensitive
organ because insulin receptors (IR) and their signal transduc-
tion pathways have been identified in several regions of the brain
that mediate important physiological effects on this organ, such
as neuronal development, glucoregulation, feeding behavior, and
body weight, as well as cognitive processes, including attention,
executive functioning, learning, and memory (1).

PRESENCE OF INSULIN IN THE BRAIN: IS INSULIN
SYNTHESIZED IN THE BRAIN?
In the late 1970s, the central nervous system (CNS) was not
considered to be an insulin-dependent tissue, but it is now well
known that insulin plays a major physiologic role in this tissue
and its disturbances, being involved in certain neurodegenerative

states, such as Alzheimer’s disease (AD). The presence of insulin
in the brain was first detected by Havrankova et al. (2), who
used radioimmunoassay to determine high levels of insulin in
brain extracts. Likewise, they reported that insulin content in the
brain was independent of the peripheral insulin, since circulating
insulin levels had no effect on the brain’s insulin concentration (3).
In addition, high insulin concentrations had also been reported
not only in the human brain but also in several experimental
animals (4).

The detection of insulin in cerebrospinal fluid (CSF) should not
be interpreted as a robust indication of blood–brain barrier (BBB)
transport. There is a blood:CSF barrier located at the choroid
plexus, and insulin entering the brain from the blood cannot be
expected rapidly be excreted in CSF (5, 6).

The presence of high concentrations of insulin in brain sam-
ples has raised the question of its origin. This question continues
to be one of the most debated aspects of the research into cerebral
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insulin. Previous findings support the hypothesis that, at least in
part, “brain insulin” is produced in the CNS. However, as posited
by Havrankova et al. (2), other sources for cerebral insulin should
be considered, such as its peripheral origin and then crossing the
BBB, versus a central origin, or both.

PERIPHERAL ORIGIN OF INSULIN
The notion that insulin could cross the BBB was first suggested by
Margolis and Altszuler (7), who showed that insulin levels in the
CSF of rats increased slightly after peripheral infusions of this hor-
mone, suggesting that insulin crossed the BBB possibly by means of
a saturable transport system. These results were later confirmed in
dogs after the iv administration of insulin (8). They found a large,
rapid increase in blood insulin, but a relatively small increase in the
hormone in the CSF. These findings confirmed a non-linear corre-
lation between plasma and CSF levels of insulin, providing the first
evidence for a saturable transport system for insulin from blood
to the brain. Although there is no direct evidence on whether the
insulin transport system and the IR are the same protein, this seems
to be widely assumed (9), as they have similar physicochemical
properties (saturability, specificity, affinity, immunoneutraliza-
tion, cooperative interactions, and kinetics of dissociation) to IRs
(10) in typical target tissues (11). On the other hand, differences
in the activity of the BBB transporter system may be respond-
ing to regional differences in insulin permeability, and also to the
hormone concentration, recording the highest values in the pons,
medulla, and hypothalamus, and the lowest in the occipital cor-
tex and thalamus (12). This insulin transport may be regulated
by multiple factors, such as glucocorticoids (13), or in several
pathophysiological situations, such as fasting and re-feeding (14),
obesity (15), and hibernation (16), as well as during aging and in
patients with diabetes mellitus (DM), and AD (17, 18).

CENTRAL ORIGIN OF INSULIN
The local production of insulin in the CNS has also been widely
studied, and suggestions of possible insulin biosynthesis in the
brain have been based on different experimental evidence, as cited
below.

Detection of C-peptide in the brain
Immunoreactive insulin and C-peptide were found in the brain
from human cadavers (19), recording concentrations that were
much higher in the brain than in the blood, with the highest con-
tent in the hypothalamus. In addition, C-peptide concentration
decreased after 72 h of fasting, and increased after oral glucose
administration in both plasma and hypothalamus (20). On the
other hand, C-peptide was found in the post-mortem brain cor-
tex of elderly and AD subjects, showing for the first time a direct
correlation between C-peptide concentrations and a decrease in
the number of brain IRs (21). These findings led the authors to
conclude that, at least in part, cerebral insulin was a product of the
brain itself.

Detection of insulin mRNA in certain brain regions
Evidence of the presence of insulin mRNA was found in the
periventricular nucleus of the rat hypothalamus by in situ
hybridization (22). Furthermore, the use of RNase-protection
and sensitive reverse transcription-polymerase chain reaction

(RT-PCR) assays led to the detection of insulin II mRNA in the
brains of fetal, neonatal, and adult rats, which suggests that
the ancestral insulin II gene expression in rat brains belongs to
the pre-pancreatic stage of embryonic development (23). Like-
wise, insulin mRNA was located in the CA1 and CA3 regions of
the hippocampus, in the dentate gyrus, and in the granule cell
layer of the olfactory bulbs of the neonatal rabbit brain by in situ
hybridization experiments (24).

Experimental approaches with brain cell cultures
Evidence supporting the synthesis of insulin in the CNS has also
been obtained from brain cell cultures. Thus, incubation with
[3H]valine resulted in the incorporation of radioactivity into
immunoprecipitable insulin, and with cycloheximide caused an
80% decrease in the number of insulin-like immunoreactive neu-
rons from primary cultures of rat brain (25). In addition, two
main forms of the immunoreactive insulin (IRI) were detected in
cultures from fetal mouse brain. The major component resem-
bling pro-insulin was converted by trypsin into the minor form,
which was similar to real pancreatic insulin (26). Likewise, using
immunohistochemical and in situ hybridization techniques it has
been showed the ability of fetal neuron cell cultures to produce
and secrete an insulin-like mRNA and an insulin-like substance
(ILS) that was indistinguishable from real insulin (27). On the
other hand, the novo synthesis and secretion of insulin by central
mammalian neurons in both neuron-enriched and glial-enriched
postnatal rabbit brain cell cultures was studied (24), indicating
that specific neurons, but not astrocytes, produced an extracellular
secretion of immunoprecipitable insulin.

The molecular mechanisms involved in the production and
secretion of insulin in the CNS reveal similarities between beta
cells and neurons, particularly in relation to ATP-sensitive K+

channel depolarization (28). Both beta cells and neurons are elec-
trically excitable and respond to hormonal stimuli and glucose
by depolarization and exocytosis. The depolarization by potas-
sium ions (in the presence of calcium) of primary cultures of
neuronal cells caused a threefold stimulation of insulin release.
This depolarization-induced release of insulin was inhibited by
cycloheximide, and was specific for neurons, but not for astro-
cytes (29). Similarly, insulin was also released from adult rat brain
synaptosomes under depolarizing conditions, and depending on
calcium influx, which suggested that insulin was stored in the
adult rat brain in synaptic vesicles within nerve endings, from
which it can be mobilized by exocytosis related to neural activity
(30). In synaptosomes, it has been shown that insulin secretion
was increased by glucose, and that the addition of the glycolytic
inhibitor, iodoacetic acid (IAA), produced a 50% decrease in the
glucose-induced release of IRI, suggesting that, as occurs in the
pancreas, glucose metabolism is also involved in brain insulin
release (31). These results imply that the brain itself might synthe-
size some portion of the insulin detected locally, which is not an
unusual occurrence (32).

EFFECT OF INSULIN ON BRAIN ENDOTHELIAL CELLS AND
BLOOD–BRAIN BARRIER CELL FUNCTION
The BBB is formed by a type of brain endothelial cell (33) that is
unique, since the cell membranes are exposed both to the blood
stream and to the CNS, whereby these cells receive signals from

Frontiers in Endocrinology | Neuroendocrine Science October 2014 | Volume 5 | Article 161 | 2

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blázquez et al. Relationships between T2DM and AD

both the periphery and the CNS (17). BECs have insulin-binding
sites that appear to have two distinct functions: as transporters
of insulin across the BBB (Figure 1) and as classic receptors
(34), both affecting the function of the barrier cell by activat-
ing intracellular machinery and mediating the effects of insulin
on these cells, such as the increase in the transport of tyro-
sine and tryptophan (35), azidothymidine (36), and leptin (37)
from blood to brain. In addition, insulin modifies the expression
and/or activity of certain efflux transporters. Thus, insulin induces
P-glycoprotein expression (the 170-kDa protein product of the
multidrug resistance one gene), which plays an important role in
the integrity of the BBB, protects the brain from many exoge-
nous toxins (38), and suppresses the expression and function of
the breast cancer resistance protein (39). Likewise, insulin induces
neurochemical modifications in brain microvessels by inhibiting
the activity of alkaline phosphatase (40), and increasing the expres-
sion and activity of the glutamate–cysteine ligase catalytic subunit
by activating the antioxidant response element-4 (41). In addi-
tion, insulin inhibits the activity of the serotonin receptor 5-HT2c

in choroid plexus, showing that this G-protein-coupled receptor
(GPCR) is modulated by the tyrosine-kinase receptor-MAP kinase
pathway (42).

On the other hand, the insulin-degrading enzyme (IDE) is
present in several brain regions, including multiple cortical areas,

FIGURE 1 | Insulin of peripheral origin may pass through the
blood–brain barrier using a receptor-mediated transport system.

hippocampus, cerebellum, and brain stem. At cellular level, IDE
was confined mainly to neurons, but it was also present in oligo-
dendrocytes, choroid plexus, and some blood vessel endothelial
cells (43). IDE is upregulated by exposure to low levels of amyloid-
beta peptide (Abeta), which may be an important therapeutic
target because of its role in the degradation of Abeta and other
substances (44).

MECHANISMS OF INSULIN SIGNAL TRANSDUCTION IN THE
BRAIN
BRAIN INSULIN RECEPTORS
The single gene of the human IR, located on chromosome
19p13.2–19p13.3, has 22 exons (11 each for coding the α and β

subunits). Two isoforms of the precursor protein are generated
by the alternative splicing of +/− exon 11 (IR-B/IR-A, respec-
tively) in a tissue-specific manner. This exon encodes a small amino
acid sequence that is located at the C-terminal of the extracellular
α-subunit (45). In humans, IR-B (the longer isoform) is the most
prominent isoform in classical insulin-sensitive tissues, skeletal
muscle, adipose tissue, and liver, as opposed to IR-A in the brain
(46–48).

The heterotetrameric IR is composed of two ligand-binding
sites, disulfide-linked extracellular α subunits, which are linked
by disulfide bonds to two membrane-spanning β subunits. The
α subunit is predominantly hydrophilic in nature, lacks mem-
brane anchor regions, and contains 15 potential N-glycosylation
sites and 37 cysteine residues. The β subunit contains a portion
that is extracellular, a portion that comprises the transmembrane
region of the receptor, and a portion that is intracellular, and which
possess inherent tyrosine-protein-kinase activity (49).

Although the presence of IRs in many tissues in the periph-
ery, and their main function of mediating glucose transport into
cells, was well known, the existence of IRs within the brain was
poorly understood, and their function sometimes seemed to be
something of an enigma because brain cells are not fully reliant
upon insulin for glucose supply inasmuch as they have insulin-
independent means of obtaining glucose (49). However, we now
know that insulin signaling in the brain affects several important
functions.

Studies on the presence of IRs in the CNS began in the early
1970s with the observation that systemic glucose concentration
decreased after the injection of 500 µU of insulin into the carotid
artery of rats (50), and through the report of specific binding
of radiolabeled 125I-insulin in a crude membrane preparation of
several tissues from monkeys, rats, and pigeons (51). The hepatic
carbohydrate metabolism was thus reported to be under choliner-
gic influence through efferent neural pathways, and not due to a
modification of pancreatic hormone secretion. IR was located and
quantified in the CNS for the first time in 1978 (52), being present
in membrane preparations from the brain at all stages of the devel-
opment studied (53). Since then, a wide but uneven distribution
of IR in the CNS has been reported. Accordingly, it was shown that
membrane preparations from the hypothalami specifically bound
greater [125I]insulin than membranes from the cortex and thala-
mus, and that this binding was higher for preparations from the
anterior rather than the posterior portions of the hypothalamus
(54). Likewise, the binding of [125I]insulin was high not only in
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all olfactory areas and in closely related limbic regions, but also
in the neocortex and accessory motor areas of the basal ganglia,
hippocampus, cerebellum, and choroid plexus, which suggested a
neuromodulatory function for insulin in the brain (55). When IRs
were quantified by autoradiography and computerized densitome-
try, the highest concentrations were detected in regions concerned
with olfaction, appetite, and autonomic functions, all of which
contain dendritic fields receiving rich synaptic input (56). In situ,
hybridization showed that IR mRNA was the most abundant in
the granule cell layers of the olfactory bulb, cerebellum, dentate
gyrus, in the pyramidal cell body layers of the piriform cortex,
hippocampus, in the choroid plexus, and in the arcuate nucleus of
the hypothalamus; these findings were consistent with the distrib-
ution of IR binding (57). Interestingly, the expression of IR mRNA
seems to be higher in the brain from obese (fa/fa) Zucker rats as
compared with lean (Fa/−) age-matched controls (58). However,
brain homogenates from normal and streptozotocin-induced dia-
betic rats showed similar specific insulin-binding, which indicated
the absence of the upregulation of these receptors (59).

As compared with IRs, IGF1 receptors (IGF1R) are also
widespread throughout the rat brain, but they have a distinct
distribution, with a high concentration in regions concerned
with olfaction, autonomy, and sensory processing, as well as in
the pituitary gland, where they are involved in the regulation of
growth hormone release (60). What’s more, the existence has been
reported of a differential expression of both IGF-1R and IR in the
left–right of male–female developing rat hippocampus, which may
be responsible for the etiology of several mental health disorders, as
well as sex differences in hippocampal-associated behaviors such
as spatial learning strategies and stress response (61).

Insulin receptors are also widely distributed in the human brain,
with the highest specific binding of [125I]labeled human insulin
in homogenates prepared from hypothalamus, cerebral cortex,
and cerebellum obtained post-mortem from non-diabetic sub-
jects (62). Iodinated insulin-binding to synaptosomal membranes
within the human cortex was found to be a function of age. Bind-
ing to IR was observed as early as week 14 of gestation, with a slight
decrease around week 30, and a marked decrease after birth (63).

Brain IRs have similar kinetics and pharmacological properties
to those described in peripheral tissues (64), although they differ
in molecular size (as indicated, the α subunits of brain IR, named
IR-A, are smaller than the α subunits of peripheral ones, called
IR-B), degree of glycosylation (being higher in peripheral than in
brain IR), and antigenicity. In addition, regulation by insulin also
occurs in a different way, thus, while peripheral IRs are down-
regulated in response to insulin excess, their counterparts in the
brain do not record such downregulation (65). Receptor hetero-
geneity is a powerful principle that allows the independent and
specific regulation of cellular functions via identical hormones or
second messengers. Furthermore, the presence of different recep-
tor isoforms allows an independent regulation of their expression
by different mechanisms (66). Some regions show a marked differ-
ence in IR density between the embryonic and adult brain, which
may play a developmental role. Thus, high concentrations of IR
are found in the thalamus, caudate–putamen, and some mesen-
cephalic and brainstem nuclei during neurogenesis, but these same
areas have a low IR density in adult rat brains (67).

BRAIN INSULIN RECEPTOR SIGNALING
Insulin-binding to α subunits of the IRs triggers the activation of
the β subunit tyrosine-kinase activity by stimulating the phospho-
rylation of its own receptor in both neuronal and glial cells (68). In
most higher animals, the mechanism of insulin signal transduction
(Figure 2) is modulated through the tyrosine phosphorylation of
cellular substrates, including several insulin receptor substrates
(IRSs) (69), as well as other scaffold proteins (70), which initiate
divergent signal transduction pathways (71). Likewise, following
the binding of insulin, aggregated IRs are rapidly internalized into
the cell by a process that at least in part involves coated pits and
vesicles (72). It has been suggested that aggregation or internaliza-
tion could be essential for insulin signaling (73). The internalized
IRs can then be degraded or recycled back to the cell membrane.

Most insulin responses are mediated by IRS-1 and IRS-2. IRS-1
controls body growth and peripheral insulin action, while IRS-
2 regulates brain growth, body weight control, glucose home-
ostasis, and female fertility (74). IRS proteins are composed of
an NH2-terminal pleckstrin homology (PH) domain adjacent
to a phosphotyrosine-binding (PTB) domain, and followed by
a tail containing numerous tyrosine and Ser/Thr phosphoryla-
tion sites (75). The Tyr phosphorylation sites coordinate down-
stream signaling cascades by binding the SH2 domains present
in common effector proteins, including enzymes (the phospho-
inositide 3-kinase, PI3K; the phosphatase SHP2; or the tyrosine-
kinase Fyn) or adapters (SOCS1, SOCS-3, GRB2, and others)
(70, 74). By contrast, the specific serine phosphorylation of the
IRS-1/2 by the c-Jun N-terminal kinase (JNK1) and other pro-
tein kinases inhibits insulin-stimulated tyrosine phosphorylation,
which correlates closely with insulin resistance (76). Likewise, the
ubiquitin-mediated degradation of IRS-1/2 also promotes insulin
resistance (77). However, the agonists that increase IRS-2 expres-
sion through cAMP production and CREB activation improve
insulin signaling (78).

The synapse is the primary locus of cell–cell communica-
tion in the nervous system. It has been reported that IR was
co-expressed with the insulin receptor tyrosine-kinase substrate
p58/53 (IRSp53) in the synapse-rich molecular layer and in the
granule cell layer of the cerebellum, as well as in the synapses of the
cultured hippocampal neuron, which suggested that these mole-
cules could be part of an insulin-dependent signaling pathway
at the post-synaptic apparatus (79). IRSp53, which is phospho-
rylated upon stimulation with insulin (80, 81), is a key factor in
cytoskeleton reorganization that mediates neurite outgrowth (82),
being also involved in several neurodegenerative disorders (83),
because IRSp53-deficient animals record cognitive deficits in the
contextual fear-conditioning paradigm (84).

The association of IRS proteins and PI3K triggers the activation
of this enzyme, which phosphorylates an inositol phospholipid in
the plasma membrane, named PI (4,5)P2, to PI (3,4,5)P3, which
recruits both the Ser/Thr kinase PDK (3-phosphatidylinositol-
dependent protein kinase) and protein kinase B (PKB or Akt)
to the plasma membrane, where Akt is activated by PDK1- and
PDK2-mediated phosphorylation (85). This signaling pathway is
antagonized by the action of the phospholipid phosphatases PTEN
or SHIP2. Akt phosphorylates several substrates, including TSC2
(tuberous sclerosis complex, tuberin), which finally activates the
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Blázquez et al. Relationships between T2DM and AD

FIGURE 2 |Transduction of signals and biological actions induced by insulin or IGF-1 through their receptor or through their hybrid receptors.

mammalian target of rapamycin (mTOR) and provides a direct
link between insulin signaling and nutrient sensing (70, 86). In
addition to the IRS/PI3K/Akt, a second signaling pathway has
been reported in peripheral tissues for the translocation of the
glucose transporter GLUT-4 by insulin, involving other substrates
of IR such as Cbl and APS. Following the recruitment of sev-
eral proteins, including TC10, into the lipid raft, the trafficking of
GLUT-4 vesicles is stimulated until their fusion with the plasma
membrane (71, 85).

Mitogen-activated protein kinase is another signaling pathway
activated by insulin through tyrosine phosphorylation of certain
prototypical signaling adaptors such as Gab-1/Shp2, Shc/Grb2,
and SOS/Grb2, which activate the small G-protein Ras by stimu-
lating GDP:GTP exchange. Raf activation then takes place through
a multi-step process (87), initiating an activation cascade of
several protein kinases that include MAPK/ERK kinase (MEK)
and extracellular signal-regulated kinase (88). ERK phosphory-
lates and activates several cytosolic proteins including p90rsk (89)
cytoskeletal proteins, phospholipase A2 (PLA2), and signaling pro-
teins, such as tyrosine-kinase receptors, estrogen receptors, SOS,
and STATs (signal transducer and activator of transcription pro-
teins). ERK also enters the nucleus, where it controls gene expres-
sion by phosphorylating transcription factors such as Elk-1 and
other Ets-family proteins (18, 70).

Some brain dysfunction might result not only from an aber-
rant IR expression or function that occurs either during devel-
opment or later, but also from single-point mutations, such as

F382V (delayed transport of IR components to cell surface); R735S
(insulin resistance due to the inhibition of precursor processing);
L1018A (absence of tyrosine-kinase activity); and Y960F (multiple
functional defects) (49).

INSULIN ACTIONS IN THE BRAIN
EFFECTS ON ENERGY EXPENDITURE, GLUCOSE HOMEOSTASIS, AND
FEEDING BEHAVIOR
Although the brain uses ketone bodies during starvation, glucose
is its main fuel, which is needed in a continuous and perma-
nent supply (90). Besides being an energy substrate, glucose is
a signaling molecule involved in glucoregulatory mechanisms of
primary functional concern to provide an uninterrupted glucose
supply to the CNS and meet the metabolic needs of peripheral
tissues. Given the vital importance of the continuous supply of
glucose to the brain and the high prevalence of DM, the possible
lack of insulin-dependent glucose uptake may be considered as an
advantage.

The brain has two groups of glucose-sensitive neurons named
glucose-excited (GE) and glucose-inhibited (GI) by rises and falls
in glucose concentrations, respectively. These neurons are involved
in the control of feeding, energy expenditure, and glucose home-
ostasis (49) and in addition the glucokinase acts as a glucose
sensor in those neurons, facilitating the control of food intake
(91–94). These various glucoregulatory functions are usually sec-
ondary to glucose uptake, a step that in most tissues is controlled
by the level of glucose transporter (Table 1) and glucose sensor
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Table 1 | Main glucose transport (GLUT) isoforms in the brain.

Glucose transport

isoforms

Location Cell types Abundance Control

GLUT-1 Ubiquitous Glia and endothelial Very abundant Hypoglycemia,

insulin

GLUT-2 Hypothalamus Neurons, glia, and tanycytes Limited

GLUT-3 Cerebellum, striatum, cortex, and hippocampus Neurons, glia, and endothelial Very abundant

GLUT-4 Olfactory bulb, hippocampus (dentate gyrus),

and hypothalamus cerebellum

Neurons and glia Selective areas Glucose, insulin and

exercise training

GLUT-8 Hypothalamus, cerebellum, brainstem,

hippocampus, dentate gyrus, amygdala, and

primary olfactory cortex

Neurons: bodies and proximal

apical dendrites

Limited Glucose

expression (95). GLUT-1, the more abundant glucose transporter
in the brain, is expressed as two isoforms that differ in their
degree of glycosylation. The 45-kD isoform expressed in astrocytes
is resistant to both hypoglycemia and hyperglycemia, while the
expression of the 55-kD isoform, originally located in the capillary
endothelial cells, is increased under conditions of hypoglycemia,
but remains unchanged during hyperglycemia. GLUT-1 has a
widespread distribution in the brain (96), where it seems to have
tissue-specialized functions, and some isoforms could be sensitive
to acute insulin regulation (49). GLUT-2 is expressed in several
neuronal populations, including specific neurons in the hypothal-
amus such as the paraventricular nucleus, the arcuate nucleus, and
the lateral region (97, 98), where GLUT-2 is co-expressed with
glucokinase (49, 93) and sulfonylurea receptor-1 (SUR1) (99).
GLUT-3, the major glucose transporter in the neurons of the cere-
bellum, striatum, cortex, and hippocampus (100), has also been
detected in brain glial and endothelial cells (101) operating at lower
glucose levels, which is important given that the glucose concen-
tration in the brain interstitium is relatively low as compared to in
the blood.

In contrast with peripheral tissues, the brain is considered an
insulin-insensitive organ because GLUT-4 is present at low level
and it does not seem to be significantly regulated by insulin. Thus,
GLUT-4 was located in selective areas of the brain, including the
olfactory bulb, dentate gyrus of the hippocampus, hypothalamus,
and cortex, but at low amounts compared to the other isoforms,
GLUT-1 and GLUT-3. As in those tissues, GLUT-4 was also located
in both the plasma membrane and cytoplasm, which could sug-
gest that a readily mobilizable pool was available for translocation
to the plasma membrane (102). Surprisingly, in cerebellar mem-
branes, GLUT-4 was present in significant amounts and its expres-
sion was insulin-dependent (103). In addition, the trafficking of
GLUT-4 to the plasma membrane was modulated in the cere-
bellum, cortex, and hippocampus under conditions that increased
plasma insulin levels (104), such as after peripheral glucose admin-
istration. Also, as GLUT-4, GK, and IR were co-expressed in both
GE and GI hypothalamic neurons, these findings could suggest that
this brain region, may experience stimulation of glucose uptake in
response to insulin (105). However, the observation that GE and
GI neurons respond to alterations of ambient glucose levels in
the complete absence of insulin (97, 98, 106), and that insulin

fails to induce neuronal glucose uptake in hippocampal forma-
tion, and that IR activation with insulin in humans has no effect
on AS160-dependent GLUT-4 translocation (104), it seems possi-
ble to conclude that insulin-mediated glucose transport is at least
not required by glucosensing neurons.

The neuron-specific glucose transporter GLUT-8, which has
limited association with the plasma membrane in the CNS under
physiological settings or in experimental models of type 1 dia-
betes (107), is expressed in bodies and in the most proximal apical
dendrites of several brain areas (108), including both excitatory
and inhibitory neurons in the hippocampus (109). Its functional
role is still little known, but being an insulin-responsive isoform, it
may play a role in augmenting substrate delivery under conditions
of increased demand (110). As GLUT-8 is present in the rough
endoplasmic reticulum and cytosol, a new role for this glucose
transport has been proposed. Thus, since glucose is released from
oligosaccharides during protein glycosylation events that occur
in the rough endoplasmic reticulum, GLUT-8 may transport glu-
cose out of the rough endoplasmic reticulum and into the cytosol,
and thereby contribute to glucose homeostasis in hippocampal
neurons, which is impaired under hyperglycemic/insulinopenic
conditions (111, 112). As with GLUT-4, glucose administration
also stimulates GLUT-8 trafficking from the cytosol to the rough
endoplasmic reticulum, but does not result in GLUT-8 association
with the plasma membrane.

Although insulin does not induce a significant glucose uptake
in the brain as compared with peripheral tissues, it may play other
important roles in glucose homeostasis. Thus, the experimental
inhibition of insulin action in the hypothalamus, or the direct
stimulus of the arcuate nucleus with this hormone, induces a
reduction in insulin’s ability to block the production of liver glu-
cose (113). To produce this effect, insulin acts through its own
receptors in the liver and hypothalamus. Accordingly, a reduction
in insulin sensitivity in the hypothalamus might lead to the dimin-
ished efficiency of this hormone in blocking glucose formation
(114), which might contribute to the hyperglycemia of diabetic
patients (115, 116). The effect of insulin on hypothalamic glucose-
sensitive neurons might be to induce an opening of the ATP-
sensitive K+-channels (117), causing a cell-hyperpolarization that
ameliorates the functional capacity to modify the glucose response
of these glucose-sensitive cells (118). The signals generated in this
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process are transmitted to the motor nucleus of the vagus nerve
that carries this information to the liver,which produces the appro-
priate response. In fact, the resection of the liver branch of the
vagus nerve induces a decrease in the insulin inhibitory effect on
glucose hepatic production (116). All these findings lend support
to the report by Claude Bernard, who in 1855 (119) showed that
puncturing the fourth cerebral ventricle produced glycosuria in
mice, which gives rise to the assumption that the brain is involved
in glucose homeostasis.

We now consider the existence of specific populations of neu-
rons involved in energy homeostasis, located on the so-called
satiety and hunger networks rather than centers. They contain
orexigenic and anorexigenic molecules, and their receptors are
closely interrelated with metabolic sensors such as the glucose
transporter isoform GLUT-2, glucokinase (92–94), AMPK, PASK,
and others. They generate integrated responses to afferent stim-
uli related to modifications in metabolites or in fuel storage. It is
accepted that the cells of several hypothalamic nuclei detect circu-
lating satiety signals and transmit this information to other brain
areas. The interactions among orexigenic and anorexigenic mol-
ecules and transmitters located in different hypothalamic nuclei
may induce a characteristic feeding behavior. The activation of
the PI3K pathway is common to insulin, leptin, and serotonin,
and it is believed that the dialog between these biomolecules is
potentially a major event in the pathophysiology of the brain from
a general perspective, and in the control of food intake in par-
ticular. Insulin is a powerful anabolic hormone in the periphery,
and behaves as a catabolic hormone in the brain because of its
anorexigenic properties (120). Insulin also strengthens the signals
induced by leptin through JAK2 and SHT3 in the hypothalamus
(121). Leptin and insulin resistance has recently been reported in
the hypothalamus of diabetic mice, thereby opening new ways for a
better understanding of insulin resistance and type 2 diabetes (33).

ROLE IN REPRODUCTION
Fertility is closely dependent on energy reserves, since negative
alterations of energy homeostasis produce changes in the con-
trol of reproduction (122) through the hypothalamic–pituitary–
gonadal axis (123). By contrast, an abundance of nutrients enables
the reproductive process and survival of offspring. To control
the relationship between the reproductive function and meta-
bolic activities, several hormones such as insulin are involved.
This hormone acts at several levels in the interplay between the
hypothalamus, pituitary gland, and gonads. Thus, when hypo-
thalamic pieces were perfused with low concentrations of insulin,
a stimulatory effect on LHRH secretion was observed, which was
dependent on the availability of glucose (124). However,high levels
of glucose alone did not modify the release of LHRH (124). In the
same way, the intracerebral infusion of insulin also increased the
luteinizing hormone (LH) pulse frequency, but glucose infusion
did not modify gonadotropin secretion (125). In diabetic animals,
low levels of circulating insulin were accompanied by a reduced
LH release (124), while the central or peripheral insulin admin-
istration restored LH pulse frequency (126). Other authors have
found that low levels of circulating insulin in diabetic rats decrease
both gonadotropin-releasing hormone (GnRH) release from the
hypothalamus and the response of pituitary LH-releasing cells to

GnRH (126). These results led Tanaka et al. (127) to propose that
intracerebral insulin is a key regulator of pulsatile GnRH secretion
in diabetic sheep. However, other authors have not ruled out the
effects of glucose in the process, indicating that LH secretion is not
wholly dependent on insulin activity because specialized glucode-
tectors in the hypothalamus can also modulate GnRH secretion,
depending or not on insulin (128).

EFFECT ON CELL PROLIFERATION AND DIFFERENTIATION
Although the role of insulin as a neurotrophic agent in the adult
brain is little known, the trophic function of insulin referred
to proliferation, differentiation, and neurite growth has been
reported in developing nervous systems. In fact, the systemic
administration of insulin increases the ornithine decarboxylase
activity in the brain of neonatal rats, which is an indicator
of growth stimulation, indicating in this case that insulin was
involved in the regulation of brain development (129). In addi-
tion, with the observation that the number of IRs increases during
cell differentiation in the developing brain (130), IR signaling was
suggested to play an important role in neuronal proliferation dur-
ing development, which was confirmed when it was shown that
IRS-2 mediated the effects of insulin on brain growth (131), as
well as on the outgrowth, maturation, and regeneration of axons
(132), as well as on neurite growth (18).

Nevertheless, the most abundant evidence on the neurotrophic
effects of insulin has been obtained by in vitro studies using
different neural cell cultures. Thus, it was determined that
insulin-stimulated nucleotide incorporation in rat brain (133) and
induced the growth and differentiation of a fraction of neurons
isolated from the chick forebrain (134). The effects of insulin on
growth and development mediated by IRs have been reported in
both neurons and glial cells (135, 136), where both the number
and the activity of the IRs may be regulated oppositely depending
on cell type. On the other hand, insulin and IGF2 are necessary
for NGF to stimulate neurite formation (137), while this effect is
not observed in their absence. It has been also reported that these
actions were dependent on the presence of astrocytes (138). In
fact, astrocytes are known to modulate neuronal functions, and
they may contribute to the cerebral actions of insulin, including
cell growth. Thus, it has been reported that insulin induces the
proliferation of both cultured rat (139) and human (140) astro-
cytes, in which the expression of several key proteins of insulin
signaling was shown to increase.

In cultured fetal neurons, insulin increased both ribosomal
protein S6 phosphorylation (136) and PKC-epsilon activity via a
mechanism that does not involve the translocation of the enzyme
from cytosol to the membrane (141),which could be closely related
to neurite outgrowth (142, 143). This hormone also modulates the
growth of neuronal cells by activating other protein kinases, such
as phosphatidylinositol 3-kinase (PI3K) (144). Likewise, insulin
increased the protein expression of the dendritic scaffolding pro-
tein post-synaptic density-95 (PSD-95) in hippocampal area CA1
through the activation of the PI3K/mTOR pathway, providing a
molecular mechanism that could explain the effect of insulin on
synaptogenesis and on the modulation of the synaptic function
in area CA1 (145), as well as on the regulation of dendritic spine
formation and excitatory synapse development in hippocampal
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neurons (146). Other proposed mechanisms for explaining the
effect of insulin on neurite formation could be the upregulation of
tau protein, the main microtubule-associated protein in the CNS
that participates in the axon/neurite growth, which also involves
the activation of the PI3K/mTOR pathway, or the upregulation or
stabilization of tubulin mRNA followed by an increase in protein
levels (147). It has also been reported that endogenous insulin
synthesized by neurons was capable of promoting neurofilament
distribution, which was abolished in the presence of IR inhibitors
or antibodies against insulin (148).

On the other hand, both the proliferation and differentiation
of multipotent neural stem cells are regulated by insulin, while the
withdrawal of this hormone causes non-apoptotic autophagic cell
death (130). Likewise, a reduction in the activation of the PI3K/Akt
pathway has proven to be critical to the cell survival signaling of
differentiated human neurons and human-derived neural stem
cells (hNSC), which unlike the NSCs of rodent origin are extremely
sensitive to insulin, and growth healthily in a narrow range of rel-
atively low insulin concentrations (149). It is now accepted that IR
pathways function as an integrating factor that correlate neuronal
differentiation with nutritional information, to the extent that the
degree of differentiation adapts to modifications of the nutritional
state (150).

NEUROPROTECTIVE EFFECTS
Insulin is a potent neuroprotective agent that acts mainly against
apoptosis, beta amyloid toxicity, oxidative stress, and ischemia.
It has been reported that the antiapoptotic effect of insulin is
dependent on the PI3K pathway, but not on the mitogen-activated
protein kinase (MAPK) route, because the inhibition of mTOR
activity by rapamycin avoids the antiapoptotic effects of insulin,
suggesting that the protein p70SK, one of the downstream targets
of the PI3K/Akt/mTOR pathway, may be one of the mechanisms
through which insulin prevents apoptosis (151). Several authors
have reported that insulin protects against beta amyloid-induced
cell death. They have shown that the formation of Aβ fibrils is
prevented by insulin, and suggest that Aβ damage may be caused
through the regulation of Aβ fibrillation (152).

Insulin antagonizes the deleterious effects of oxidative stress
in the CNS. Lipid and protein oxidation occur as a consequence
of oxidative stress, which may alter proteins such as GLUT-3,
modifying glucose uptake and then lactate accumulation, acido-
sis, and mitochondrial dysfunction (153). By stimulating glucose
uptake and pyruvate formation, insulin restores intracellular ATP
formation as well as reduces oxidative stress (154). Likewise,
GABA and glutamate uptake are decreased under oxidative stress,
which induces the accumulation of these neurotransmitters in the
extrasynaptosomal space, while the addition of insulin reverses
these changes (155). On the other hand, under situations of severe
oxidative stress, the elevation of uric acid by insulin might provide
some antioxidant benefit because uric acid, glutathione (GSH),
and vitamins C and E are important as components of a neuronal
antioxidant pool (156).

Two mechanisms have been proposed as being involved in
insulin protection against ischemia; one by the direct effect of
insulin on the brain tissue and the other one by an indirect
mechanism in which insulin reduces peripheral glucose levels

(157). As regards the former, it has been reported that insulin treat-
ment increases the extracellular GABA during transient ischemia,
independent of hypoglycemia, which can inhibit pyramidal neu-
rons and protect them against ischemia (158). Another explana-
tion is based on alterations of glucose metabolism and decreased
lactic acidosis (159). Thus, insulin has a stimulatory effect on the
Na+/K+ ATP pump, reducing both extracellular K+ and intra-
cellular Na+, which may change the neuronal firing rate and its
metabolic demands, while preventing water accumulation and the
subsequent post-ischemic edema (160). On the other hand, as
cerebral ischemia-reperfusion induces JNK1/2 phosphorylation,
Bcl-2 expression, and caspase-3 cleavage in the rat hippocampus,
and insulin reverses all the changes mentioned, it should be con-
cluded that a cross-talk exists between Akt and JNK1/2 that could
play a role in the anti-ischemic effects of insulin.

NEUROMODULATORY EFFECTS
It is now widely recognized that insulin has neuromodulatory
effects on mammalian CNS by acting both at electrophysiological
levels, as well as on the concentration and function of certain neu-
rotransmitters. Thus, it has been shown that insulin has direct and
reversible electrophysiological effects on all of the recorded neu-
rons in vivo, and these effects are highly dependent with respect
to GABA pretreatment, being blocked by the co-administration
of IR inhibitors (161). In addition, as the GABA receptor is a
substrate of Akt phosphorylation, insulin may play an important
role in the control of GABA receptor density in the post-synaptic
domain (162). Insulin also affects intracellular ion concentrations
by modulating the activity of certain ion channels. Thus, insulin
in hypothalamic neurons activates K+ ATP channels producing
membrane hyperpolarization, which has an inhibiting effect (163).
In addition, insulin has stimulatory effects on Na+/K+ ATPase,
producing an acute rise in intracellular Ca2+ concentration that
triggers the release of neuropeptides (164).

Insulin may modulate neurotransmitter concentration through
different mechanisms. Thus, insulin induces both the inhibition
of norepinephrine and the stimulation of serotonin reuptake in
neuronal cells (165, 166), which may increase glucose homeostasis
through the interrelationship between brain IRs and the neuro-
transmitter function (130). Insulin also has modulatory effects
on neurotransmitter receptor density. Thus, insulin reduced the
increased number of dopamine receptors in striatal membranes
from rats that were rendered diabetic with alloxan or streptozo-
tocin (167),and in rats treated with haloperidol (168),but it had no
effect on binding in normal rats. However, systemic insulin admin-
istration produced an increase in dopamine and serotonin levels
in the CSF, while this hormone downregulated the α2-adrenergic
receptors in hypothalamic neurons (169). On the other hand,
insulin has a stimulatory effect on the uptake of amino acids by
the neurons required for neurotransmitter synthesis (170).

INSULIN EFFECTS ON COGNITION AND MEMORY
It has been widely reported that the peripheral or central admin-
istration of insulin by icv or intrahippocampal routes to exper-
imental animals has positive effects on memory and learning
processes (171). The improvement in these activities is related with
an increase in both the IR expression and its signal transduction
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pathways in the hippocampus (172), and the loss of memory due
to ischemic lesions in this structure can be avoided by insulin
administration (173). Streptozotocin has been used to develop
experimental models of type 1 diabetes. However, when injected
directly at low doses into the brain, it produced a central resistance
to insulin by interfering with the binding of the hormone to its
own receptor and blocking insulin actions, which was related to
deficits in memory and altered behavior (174). Besides, epidemi-
ological studies have shown that both type 1 and type 2 diabetic
patients have cognitive impairment and an increased risk of AD,
mainly in older patients, and also that insulin administered to AD
patients to keep glycemic levels constant can improve memory
formation (175). Likewise, the systemic administration to healthy
humans of insulin under euglycemic hyperinsulinemic conditions
yields a significant improvement in verbal memory and selective
attention.

It is believed that an event is fixed in the memory by mod-
ifications of the neuron networks based on the processes called
long-term potentiation (LTP) and long-term depression (LTD)
(176). The LTP process occurs when the presynaptic neuron excites
the post-synaptic ones in a repetitive and prolonged manner, and
then the depolarization of the post-synaptic neuron is reinforced
and maintained for a long time. Accordingly, there is a significant
increase in Ca2+ input, and the metabolic activities for this cation
are prolonged, and as a result the memory is consolidated. The
LTD is a compensatory process that in the post-synaptic neuron,
still under the effect of a LTP, facilitates a decrease in transmis-
sion efficiency, permitting cell activity to return to the previous
excitatory level, and then get ready to store new information.
Memory and learning functions need LTP and LTD processes,
but also the remodeling of the dendritic spine morphology and
modifications in the cytoskeleton produced during synaptic trans-
mission. These processes, involve the glutamate, as well as two
of its receptors, AMPA and NMDA, in which neurotransmission
is regulated by changing the amount of receptors present in the
membrane, or by covalent modification of their subunit compo-
nents. Thus, whereas LTP increases the post-synaptic density of
the AMPA receptors, LTD is associated to a decrease. Likewise, the
phosphorylation of these receptors increases the efficiency of the
ionic channel during LTP, while dephosphorylation during LTD
decreases it (177).

Insulin modulates glutamatergic neurotransmission at the
synapses. This hormone induces the LTD process by decreasing
the amount of AMPA receptors in the post-synaptic membrane.
Besides, this process depends on the phosphorylation of the hor-
mone receptor, PI3-kinase activation, and on a process of protein
synthesis (178). Other authors reported that insulin also induces
the phosphorylation of the GluR2 subunit in the AMPA receptors
of hippocampal neurons, producing endocytosis and a decrease
in the post-synaptic excitatory ability (179). There is also experi-
mental evidence that insulin affects learning and memory through
GABA receptors by stimulating the translocation of these recep-
tors to the plasma membrane. This effect is abolished by the
action of a PI3K inhibitor. Insulin also increases the functional
GABA receptor expression on the post-synaptic and dendritic
membranes of the CNS neurons (18). Likewise, NO has also been
reported to be involved in insulin-induced memory improvement,

since the administration of the NOS inhibitor L-NAME avoids
insulin-induced memory improvement (180).

IGF1 increases the synaptic transmission in the rat hippocam-
pus through a mechanism in which AMPA receptors and PI3K
activity are involved (181). Furthermore, GH increases the expres-
sion of the subunits of the NMDA in the hippocampus, thereby
facilitating LTP induction and improving the memory (182).

INFLAMMATION, INSULIN RESISTANCE, AND THE BRAIN
There is experimental evidence to indicate that inflammatory
responses are closely associated with the development of insulin
resistance in peripheral and central tissues, as well as to show
that these processes are present in obesity and in type 2 dia-
betes, which may increase the risk or incidence of AD (183).
Thus, high concentrations of interleukin IL-6 have been deter-
mined in the CSF of patients with AD (184), while studies in
animals suggest that inflammation interacts with the processing
and deposit of β-amyloid peptide (Aβ) (185), with low amounts
of insulin producing anti-inflammatory effects (186). The admin-
istration of lipopolysaccharide increases in plasma concentrations
of the C-reactive protein and pro-inflammatory cytokines IL-1β,
IL-6, and TNF (187). TNFα and IL-6 also induce the activation
on NFkβ and subsequent transcription of the pro-inflammatory
genes TNFα, IL-6, and IL-1b (188). Increased levels of inflamma-
tory cytokines alter hippocampal synaptic plasticity and the com-
ponents of spatial learning (189). Furthermore, obesity induces a
peripheral insulin resistance that is related with a marked eleva-
tion of pro-inflammatory cytokines and of free fatty acids. Chronic
inflammation may contribute to the appearance of insulin resis-
tance and type 2 diabetes, as well as to the association of AD and
type 2 diabetes mellitus (T2DM) (190). In addition, the increased
concentrations of TNFα and Aβ within the brain of obese hyper-
insulinemic persons facilitates the formation of amyloid plaques
(191). Obese and AD patients have CSF insulin concentrations
lower than in control subjects, suggesting a reduction in both
insulin transport across the BBB and hormone sensitivity (192).

TNF-α has both neurotoxic and neuroprotective effects,
depending on the receptor subtypes TNF-R1 and TNF-R2. Thus,
TNF-R1 is involved in pro-apoptotic actions, while TNF-R2 pro-
motes cell survival. High levels of TNF-R1 and decreased con-
centrations of TNF-R2 have been described in the brain of AD
patients (193). Altered levels of TNF-R1 and TNF-R2 have been
reported in persons with diabetes and impaired glucose tolerance
(194), which was normalized after a 3-week low calorie diet (195).
The accumulation of glycation end products, oxidative stress, and
the resulting brain cellular and molecular damage may contribute
to diabetes-induced brain aging (196).

Alterations of some of the insulin signaling pathways such as
PI3K/Akt and GSK-3 are recorded in central inflammation and
insulin resistance (197). It is known that the PI3K pathway has a
negative effect on IL-12 formation by dendritic cells, while GSK-
3 is a tau kinase involved in hyperphosphorylation and in the
modulation of Aβ metabolism (198). There are some connections
between the insulin signaling pathway and this protein, as IR acti-
vation phosphorylates and inhibits GSK-3β (199), while in AD,
GSK-3β activity is increased as well as in T2DM, and this process
enables it to phosphorylate the IR and IRS-1, which decrease the
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phosphorylation of tyrosine residues of the IR and IRS-1 (200).
In addition, the activation of STAT-3 in astrocytes and microglia
depends on GSK-3β activity (201), while the inhibition of GSK-
3 stimulates the production of anti-inflammatory cytokines such
as IL-10, and decreases pro-inflammatory cytokines such as IL-
1β, IL-6, and IFN-γ in response to toil receptors (202). These
findings suggest that PI3K/Akt/GSK-3 play an important role in
controlling inflammation, and that the inhibitory effect of insulin
on GSK-3 activity shows how insulin controls inflammatory
responses.

It is well accepted that neuroinflammation occurs in AD, with
infiltrates of T-lymphocytes and monocytes that are responsi-
ble, together with microglia cells, for the increase in a num-
ber cytokines in the CNS (203, 204). Inflammation is needed
for the expression of insulin resistance, as demonstrated by the
inhibition of inflammatory pathways, which avoid diet-induced
insulin resistance in experimental animals (205). In fact, the ini-
tial part of high-fat diet-induced insulin resistance is independent
of inflammation (206), while the chronic states are dependent
on inflammatory processes (207). Accordingly, TNF-α reduces
the tyrosine-kinase of the IR, resulting in insulin resistance, and
the reduction in other mediators such as SOCS-3 inhibits IRS-1
(208). In addition, the activation of JNK by cytokines, inflamma-
tory mediators, and fatty acids phosphorylate IRS-1, modifying
insulin signaling. Thus, animals lacking JNK are protected against
the high-fat diet (209). On the other hand, JNK inhibitors improve
the neuroinflammatory response, while JNK activation promotes
neuroinflammation and facilitates insulin resistance (210). Sarto-
rius et al. (211) suggest that the activation of neuroinflammatory
reactions may be responsible for the high-fat diet-induced insulin
resistance in the brain, since the prevention of a neuroinflamma-
tory response blocks this resistance (211, 212). In the same way,
the icv administration of TNF-α produces hypothalamic inflam-
mation, as well as the expression of the phenotype present in type
2 diabetic patients with high insulin levels and altered insulin sig-
naling in peripheral tissues. It is accepted that central insulin resis-
tance can favor an adaptive increase in food intake that facilitates
the peripheral alteration of glucose homeostasis. Alternatively, the
elevation of free fatty acids is a signal to increase the release of
pro-inflammatory cytokines, which then activates the inflamma-
tory signaling pathways responsible for insulin inhibition signaling
and the promotion of insulin resistance (213).

Impaired insulin signal transduction with reduced tyrosine-
kinase activity of the IR has been reported in the brain cells of
AD patients. Moreover, the expression of insulin and IGF1 mRNA
and protein levels, their own receptors, and the downstream sig-
naling elements are decreased in the brain of AD patients (214).
Insulin resistance is thus associated with reduced responses to
insulin signaling in the IR/IRS-1/PI3K and greatly with IGF1 in the
IGF1R/IRS-2/PI3K signaling pathways. Reduced insulin responses
peaked at the level of IRS-1, and were consistently associated with
basal elevations of IRS-1 phosphorylated at serine 616 (IRS-1
pS616) and IRS-1 pS636/639. These potential biomarkers of insulin
resistance increased significantly from normal cases, through mild
cognitively impaired cases, to frank AD cases, regardless of APOE-
4 status (104). Related with this insulin insensitivity, the protective
role of this hormone against Aβ accumulation is reduced, at the

same time as the expression and function of insulin are downreg-
ulated by Aβ deposits (215). Thus, Aβ peptides inhibit the binding
of insulin to its receptors (216), reduce receptor autophosphory-
lation, and impair insulin-induced signaling pathways (217). The
alterations of these effects in AD and T2DM patients interfere
with the neuroprotective actions of insulin, facilitating the brain’s
susceptibility to neurodegeneration (218). Both brain insulin and
IGF1 resistance are considered an early and common feature of
AD, which seem to be closely associated with the IRS-I dysfunction
triggered by Aβ oligomers that promote cognitive decline (104).

RELATIONSHIP BETWEEN DIABETES AND ALZHEIMER’S
DISEASE
There is sound evidence about the role of insulin in brain func-
tions, as well as of the close relationships between AD and T2DM
(219), two highly prevalent nosological entities (Figure 3). AD is
a neurological disorder that causes profound memory loss and
progressive dementia, with histological manifestations of amyloid
plaques, neurofibrillary tangles, and amyloid angiopathy, accom-
panied by widespread loss of neurons and synapses (220). There
are more than 30 million people suffering from AD, with this num-
ber increasing very quickly and expected to exceed 120 million by
2040 (197). T2DM is characterized by impaired insulin secretion
and by a resistance to the action of this hormone. It has been esti-
mated that there were 250 million diabetic patients worldwide in
2010, with 90% of the patients having T2DM (221). Aging is a
high-risk factor for both AD and T2DM. Accordingly, T2DM is
a disease that seriously affects the quality of life and longevity of
elderly people, although in recent years it also affects obese young
people.

Both disturbances share many pathophysiological features,
such as insulin resistance, amyloid aggregation, inflammatory
stress, and cognitive disturbances that suggest common or related
pathogenic processes. Insulin resistance is a risk factor for AD,
being a common feature of AD patients with or without T2DM.
Besides peripheral insulin resistance, this alteration may be present
in the brain accompanied by IGF1 resistance, and IRS-1 and IRS-2
dysfunction, potentially triggered by Aβ oligomers and cognitive
decline.

Interestingly, peripheral insulin resistance begins a long period
of time before the appearance of a frank T2DM, which might per-
mit a preventive therapeutic treatment during this period (222).
To know whether peripheral or central insulin resistance are com-
ponents of the same disease or are expressed independently of one
another is a matter of potential interest. What’s more, the existence
of AD in patients without T2DM could be related to a lack of time
to develop the diabetic process, or be the consequence of differ-
ent nosological entities. AD is a progressive neurodegenerative
disease, and when the symptoms and signs of cognitive dysfunc-
tion appear, the disease has already been present for many years.
Accordingly, four stages for AD (223) have been proposed: a pre-
disease stage without detectable pathophysiological alterations, a
preclinical stage with pathophysiological alterations but without
cognitive alterations, a stage of pre-dementia or mild cognitive
impairment (224), and the dementia stage. It would be of great
interest to know whether these stages coincide in time with the
predicted stage in the peripheral tissues during the long period of
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FIGURE 3 | Relationships between alterations of insulin signaling and Alzheimer disease pathogenesis. Aβ, beta amyloid-peptide; GLUT-3, glucose
transporter isoform-3; GSK-3β, glycogen synthase kinase 3-β; NFT, neurofibrillary tangles; PI3K, phosphatidyl inositol 3-kinases.

insulin resistance. This period of time during prediabetes or the
four stages of AD may constitute an opening for the development
of preventive programs or new therapeutic approaches.

Many authors have suggested that insulin alterations and
changes in glucose metabolism may condition the risk of develop-
ing dementia (225, 226). A recent study indicates that the altered
expression of genes related to T2DM and AD brains (227) is a result
of AD pathology, which may be exacerbated by insulin resistance
or DM (227). This statement can be stressed because cognitive
deficits are associated with insulin signaling abnormalities. The
close relationship between these two pathological disturbances,
because of the common presence of insulin resistance, has led to
the use of the term type 3 diabetes, which means it is considered a
neuropathogenic expression of AD. However, this entity cannot be
included (228) within the classic concept of diabetes, because AD
patients are not hyperglycemic, as happens with both T1DM and
T2DM, nor does insulin stimulate glucose uptake in the brain,
by contrast with the strong stimulatory effect observed in mus-
cle, fat, and the liver. Nevertheless, an insulin-resistant brain state
(229) exists as a variant of the hormone manifestations in several
peripheral tissues, with different properties as corresponds to the
brain functions. Insulin resistance in the peripheral tissues could

facilitate insulin resistance in the brain by reducing brain insulin
uptake and by increasing levels of Aβ (230). It seems that insulin
resistance is a prior and common manifestation of these diseases,
which over a long period of time deteriorate central or periph-
eral tissues before the appearance of diabetes and AD. This period,
which lasts around 10–15 years, and is referred to as prediabetes,
is more frequent in older people at a time when the incidence of
AD is increasing significantly. The prevalence of prediabetes and
diabetes in AD is of 81% in the USA (226), in which peripheral
insulin resistance was accompanied with or without T2DM. The
long duration of prediabetes might explain why brain insulin resis-
tance in some cases of AD may be found without diabetes and/or
the high prevalence of both prediabetes and AD in the elderly.

Both experimental and epidemiological studies provide evi-
dence to show that the risk of AD dementia or vascular dementia
is increased in diabetic patients (231). Thus, large epidemiological
series have reported the association between insulin resistance or
DM and the risk of AD, albeit independent of the APOE-4 phe-
notype (232). Furthermore, hyperinsulinemia and hyperglycemia
caused by insulin resistance accelerate the formation of neurite
plaques (233). The results from a nationwide case-control study
in Finland (234) show that individuals with AD are more likely to
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have a history of medically treated diabetes than the older popula-
tion in general, and that the association is independent of vascular
diseases.

Most studies have focused on the role of type 2 diabetes, while
the association between type 1 diabetes and alterations of CNS has
received less attention (235). Then,T2DM is clearly associated with
AD, while T1DM is more related to other brain alterations (235–
240). However, learning and memory impairments and deficits
in mental flexibility and problem-solving are more frequent in
patients with type 1 diabetes than in the general population (241,
242). Interestingly, these alterations improve after the establish-
ment of insulin therapy,when the glycemia is controlled (243,244).
These alterations may have a morphological explanation, since
patients with type 1 diabetes have a reduced number of dendrites
in the gray matter (245). Accordingly, intranasal insulin admin-
istration in diabetic mice reverses morphological and cognitive
alterations (246). In addition, type 1 diabetes and type 2 dia-
betes are associated with brain atrophy and cognitive impairments,
which are prevented by insulin and IGF1 (247).

Besides the studies cited above establishing a risk of AD devel-
opment in diabetic patients, there are other reports with opposite
findings in which they have stated that although diabetes pro-
duces alterations in cognitive performance or increases the risk of
dementia, there is no association between DM and AD (248, 249).

In AD patients, the CSF concentrations of insulin are decreased,
while the blood plasma concentrations are raised, which is more
evident in advanced stages of AD and in patients without APOE-4
allele (197). High levels of circulating insulin may be the conse-
quence of hormone resistance, while the reduction in CSF insulin
may be related to a decrease in insulin clearance and/or to a
reduction in insulin uptake from a peripheral source through
the BBB.

Several experimental evidences support the link between AD
and DM through mitochondrial alterations and oxidative stress,
altered energy and glucose metabolism, cholesterol modifications,
and dysfunctional protein O-GlcNAcylation (197). Since insulin
avoids the reduction in mitochondrial oxidative phosphorylation
and any increase in oxidative stress that protects against Aβ-
protein toxicity, we can infer that diabetes is a risk factor for AD
development. In fact, diabetes induces alterations in the mito-
chondrial antioxidant defense, facilitating brain susceptibility to
Aβ toxicity (250).

Impairments in energy and glucose metabolism, manifested
as reduced cerebral glucose and oxygen utilization, are present
both in non-diabetic and diabetic patients with AD, indicating
another link between these two nosological entities (223). PET
technology has been used to find a depressed glucose metabolism
in the temporal–parietal cortex, posterior cingulate cortex, and
the frontal areas of AD patients. The administration of glucose to
these patients therefore improves memory alterations (251, 252),
although this effect seems to be due more to insulin than to hexose.
At this point, it is important to remember that glucose metabo-
lism dysfunction increases the risk of cognitive disturbances in the
elderly.

Contributions to cerebral glucose hypometabolism may be
related to glucose transportation abnormalities, intracellular
glucose metabolic disturbances, and the altered functional status

of thiamine metabolism. AD patients have decreased GLUT-1
and GLUT-3 expressions (253), especially in the cerebral cortex.
The dentate gyrus of the hippocampus also has reduced GLUT-3
expression. Liu et al. (254) have explained that glucose hypome-
tabolism results in both reduced glucose transporter expression
and the decreased O-GlcNAcylation of tau. They proposed that
hypometabolism in the brain reduces the O-GlcNAcylation of tau
that conversely increases its phosphorylation, which induces the
NFTs that underlie the cognitive deficits of AD subjects. Three key
enzymes in the Krebs cycle and pentose phosphate pathway (PPP)-
pyruvate dehydrogenase complex, α-ketoglutarate dehydrogenase
complex, and transketolase, and their common coenzyme thi-
amine diphosphate (255), recorded altered levels in the brain of
AD patients. These findings suggest the relevant roles of mitochon-
drial dysfunction and impaired thiamine-dependent processes in
the cerebral glucose hypometabolism of AD.

Impaired cerebral glucose metabolism is a pathophysiological
feature that may even precede pathological alterations by decades
(222). Accordingly, Chen and Zhong proposed the hypothesis that
impaired cerebral glucose metabolism, mainly thiamine metabo-
lism and insulin resistance, could promote Aβ accumulation and
tau hyperphosphorylation, as well as many other pathogenic fac-
tors that might contribute to the pathological dysfunction of the
brain in AD. These pathophysiological cascades include inflam-
matory factors, mitochondrial dysfunction, and oxidative stress,
Advances Glycation End products (AGEs), apoptosis, excitotoxi-
city, and the hyper-activation of protein kinases. All these factors
are involved in cognitive dysfunction (223).

In addition, changes in brain cholesterol metabolism facili-
tate the interactions between DM and AD pathogenesis. Thus,
cholesterol accumulation alters beta cell functions and insulin
secretion (256), as well as insulin-stimulated cholesterol biosyn-
thesis, and controls its circulating levels (257), which form a
strong bond between hypercholesterolemia and T2DM. In addi-
tion, elevated levels of circulating cholesterol increase the risk of
AD (88) because it modulates Aβ synthesis, inhibits the clear-
ance of Aβ, and potentiates the interaction of Aβ with neuronal
membranes (10). Furthermore, Aβ binds to cholesterol to cat-
alyze the formation of oxysterols, products with highly neurotoxic
properties, which alter the insulin signaling pathway by inhibit-
ing the phosphorylation of the ERK/Akt route (258, 259). It has
been reported that hyperglycemia and hyperinsulinemia activate
the O-GlcNAcylation of proteins included in the insulin signal-
ing pathway, facilitating insulin resistance (260, 261). Studies
on autopsied frontal cortices have found that the protein con-
tent and activity of the brain insulin/PI3K/Akt signaling path-
way are decreased in T2DM and AD patients, and more so in
AD-T2DM patients (262). The reduced brain insulin/PI3K/Akt
pathway leads to the overactivation of GSK-3β calpain-1 and
downregulation of O-GlcNAcylation, which promoted altered tau
hyperphosphorylation and neurodegeneration (262). These data
suggest that the alteration of GlcNAcylation may be another
mechanism by which the predisposition for AD is increased
by DM.

Other situations, such as the formation of amyloid plaques,
altered Aβ metabolism, and tau hyperphosphorylation, are favored
by the interactions of AD and DM. Aβ are the components of the
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amyloid deposits in the AD brain, while the protein deposited in
the islets of Langerhans is the islet amyloid polypeptide IAPP. Both
proteins are able to form amyloid aggregates (263), with the Aβ

protein being toxic for neurons, and IAPP toxic for pancreatic islet
cells (224). These two proteins have a high sequence similarity,
where the chaperone protein pathway preventing IAPP and Aβ

aggregation may be common and act on both of them. It has been
suggested that the decreased capacity of this shared chaperone pro-
tein is responsible for the development of AD and T2DM (226).
This means that islet amylogenesis is increased in patients with
AD, and that the density of neurite plaques and their diffusion are
positively related to the duration of diabetes (226).

Aβ is degraded and cleared by several proteases that avoid the
accumulation of Aβ. IDE is a metalloendopeptidase that inacti-
vates peptides such as insulin, IGFs, glucagon, and others. The
alterations in insulin signaling also affect the Aβ metabolism, with
Aβ and phosphorylated tau accumulation associated to neuronal
loss and neurite degeneration. These effects are more significant in
T2DM (264). Some data show that the activation of insulin signal-
ing in CNS can upregulate IDE activity, and may correct the IDE
defects present in AD (265, 266). Insulin also stimulates the inter-
nalization of Aβ oligomers and inhibits their binding to neurons,
and thereby protects synapses against Aβ oligomers.

Neurofibrillary tangles are mainly composed of hyperphospho-
rylated tau molecules (267), which may be cleavaged by several
proteases such as caspases and calpains, which play an impor-
tant role in AD pathology (268). Alterations of insulin signaling in
types 1 or 2 diabetes increase tau phosphorylation and tau cleavage,
promoting AD pathology (235). Insulin resistance in T2DM, and
the corresponding peripheral hyperinsulinemia, reduces insulin
transport through the BBB, and the systemic insulin deficiency in
T1DM increases tau phosphorylation (235).

Besides in AD, there are several mental diseases such as Hunt-
ington’s disease, depression, and schizophrenia in which insulin
disturbances play a pathogenic role (197).

We should propose that resistance to the central action of
insulin may be a meeting point between T2DM and AD and the
slow pathological progression of both nosological entities should
facilitates the deterioration of neurons mainly in the hippocam-
pus and the cerebral cortex. Further studies are needed to accept
or refuse this hypothesis, as well as with the possibility that AD
may be caused though a slow deteriorating effect by microbial
infection (269) by some viruses and bacteria; recently has been
also proposed that fungal infections may represent a risk factor or
possibly the cause of AD (270, 271). All the entities cited above
have in common a slow deteriorating effect on CNS and represent
an interesting matter to be further investigated. It should be also
interesting to know whether patients with AD and cerebral infec-
tion with some viruses, bacteria, or fungus have central resistance
to the action of insulin.

THERAPEUTIC APPROACHES
Scientific advances in cognitive functions, brain metabolic, and
energy control, have provided new openings for trials on insulin
resistance and on therapeutic approaches associated to nosologi-
cal entities such as AD and DM. Therapeutics for AD treatment
based on amyloid hypothesis (272) and tau hyperphosphorylation

hypothesis (273) have been developed, but they perform poorly.
Likewise, antioxidants, anti-inflammatory, and neuroprotective
agents have been used with negative results (274, 275).

As thiamine deficiency is frequent in AD patients, drugs tar-
geting altered thiamine metabolism have been used with con-
flicting results. Based on the hypothesis of multiple pathogenic
cascades induced by glucose metabolism dysfunction, “cocktail
therapies,” or drugs acting at multiple pathogenic cascades have
been developed for AD (276).

Advances in the knowledge of preclinical AD and T2DM have
provided a major stimulus for the development of treatments
for preventing the pathogenic events of these disorders, focusing
mainly on reducing brain insulin resistance.

At present, the main therapeutics available are insulin-
sensitizing agents, metformin and the peroxisome proliferator-
activated receptor gamma (PPARγ) agonists, and the incretin
insulin mimetics molecules, glucagon-like peptide-1 (GLP-1), and
gastric inhibitory peptide (GIP), which are insulin secretagogues.
In addition, the beneficial effects of intranasal insulin or GLP-1
administration to patients with mild cognitive impairment (224)
or T2DM have to be considered.

The biguanide metformin is one of the more used agents in
T2DM that improves fasting insulin levels and the control of
insulin on hepatic glucose production. Considering that its major
action is on the liver, it has been reported in recent years that it
can also cross the BBB (277), which given its insulin-sensitizing
properties suggests that it may play a role in insulin resistance
and dementia. In fact, an epidemiological study reported that
treatment with metformin reduces the incidence of dementia in
diabetic patients (278).

In addition, PPAR gamma agonists have been used in the treat-
ment of T2DM because they improve insulin sensitivity (279),
increasing the function of adipose tissue, and moving triglyc-
erides and fatty acids away from the liver and muscle. Furthermore,
they reduce both Aβ accumulation and neuroinflammation (280,
281), which may improve pathologies related with AD and T2DM,
such as MCI (Mild Cognitive Impairment) associated with insulin
resistance. Treatment with the PPAR gamma agonist rosiglitazone
improved attention and memory, reducing fasting insulin levels
in patients in the first stages of AD (282). However, the increased
incidence of heart failure in patients treated with PPARγ agonists
has reduced their use in diabetic patients, which has forced the
development of new procedures and drugs.

Glucagon-like peptide-1 is an incretin that works as an insulin
secretagogue in a glucose-dependent manner. Gliptins that delay
the degradation of GLP-1 or exenatide and liraglutide or GLP-1
mimetics, with a more stable structure, reduce the degradation of
GLP-1, and are therefore very useful in diabetes therapy. As met-
formin, GLP-1 mimetics readily cross the BBB and they induce
several actions through GLP-1 brain receptors. Both exenatide
and liraglutide were found to antagonize processes related to neu-
rodegeneration and AD progression in mouse models (283). This
may be because these agents are neuroprotectants (284, 285) that
decrease oligomeric Aβ, neuritic plaque load, and microglial acti-
vation (283, 286). Furthermore, they stimulate neurogenesis and
improve object recognition and spatial memory (283, 287). These
GLP-1 mimetics reduce insulin resistance in MCI and AD, which
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suggests they could be used in the treatment of dementia with or
without diabetes.

Intranasal insulin administration has a beneficial effect on
patients with MCI or T2DM. Excellent scientific contributions
have been done in human patients and others in animal models
(240, 288–290). This procedure has the advantage of avoiding cer-
tain shortcomings in insulin transport through the BBB, added to
the fact it does not produce hypoglycemia, as sometimes happens
after peripheral insulin administration. This kind of treatment
should be of interest for attenuating central insulin resistance, but
it was abandoned because of secondary complications. In addi-
tion, GLP-1 analogs through intranasal administration could be
potential therapeutics for AD (291).

Certain molecules involved in the transduction of sig-
nals induced by insulin might be targets for new therapeutic
approaches in the future. The desensitization of insulin signaling
by IRS-1 Ser/Tht phosphorylation should play an important role
in insulin resistance. As only phospho-Ser/Thr on IRS-1 can have
negative or positive effects on the insulin signaling of healthy and
diseased tissues, those molecules might play an important patho-
physiological role (292). Whether or not IRSs constitute a drug
target for the treatment of insulin resistance and gaining a com-
prehensive understanding of Ser/Thr phosphorylation will help
to explain the pathophysiological processes that facilitate insulin
resistance.
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