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Abstract: Laboratory-scale experiments for the modification of Al2O3 inclusions by calcium treatment
in high-carbon hard wire steel were performed and the compositions and morphological evolution
of inclusions were studied. The kinetics of the modification of Al2O3 inclusions by calcium treatment
were studied in high-carbon hard wire steel based on the unreacted shrinking core model, considering
the transfer of Ca and Al through the boundary layer and within the product layer, coupled with
thermodynamic equilibrium at the interfaces. The diffusion of Al in the inclusion layer was the
limiting link in the inclusion modification process. The Ca concentration in molten steel had the
greatest influence on the inclusion modification time. The modification time for inclusions tended
to be longer in the transformation of higher CaO-containing calcium aluminate. The modification
of Al2O3 into CA6 was fastest, while the most time was needed to modify CA into C12A7. It took
about six times time longer at the later stage of inclusion modification than at the early stage. The
complete modification time for inclusions increased with the square of their radii. The changes of
CaO contents with melting time were estimated based on a kinetic model and was consistent with
experimental results.

Keywords: high-carbon hard wire steels; inclusions; calcium treatment; unreacted shrinking core model

1. Introduction

High-carbon hard wire steels are mainly applied in massive engineering projects
such as bridges, cables, airports, power stations, and dams [1–3]. High-carbon hard wire
products are drawn into filaments with a diameter of about 5 mm [4,5]. The hard inclusions
with large sizes affect the steel yield and performance. Al2O3 inclusions are brittle with high
melting temperatures, which are the major factors believed to impact the performance of
high-carbon hard wire steels [6]. Therefore, Ca is usually used to modify Al2O3 inclusions
to improve the performance of high-carbon hard wire steels.

Calcium treatment is one of the most commonly used and effective methods for modi-
fying non-metallic inclusions into liquid ones [7–10]. The solid alumina can be converted
into calcium aluminate inclusions partially or completely during calcium treatment [11,12],
reducing the blockage of the immersion nozzle during continuous casting [10,13]. Since
the 1990s, many studies have been conducted to understand the modification mechanism
for alumina inclusions using calcium treatment [9,14–16]. Research studies on the modifi-
cation kinetics for Al2O3 inclusions have been conducted in order to evaluate the accurate
addition amounts for calcium and to understand the modification evolution process. Lu
et al. [17] first established the kinetic model for oxide and sulfide inclusions in the calcium
treatment process. They assumed that the internal diffusion rate of the inclusions is ex-
tremely fast and the interface reaction is rapid, and they developed an inclusion evolution
model. Higuchi et al. [18] revised the kinetic model for modification of Al2O3 inclusions
by using a first-order reaction equation. They studied the gasification rate of calcium
from the melt and the reaction rate between the melt and inclusions. In this model, they
assumed that the size and number of inclusions remained constant. Visseret al. [19] divided
the ladle into two reaction zones: one is a high-calcium and low-oxygen zone, while the
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other is a low-calcium and low-oxygen zone. The kinetics of calcium treatment in the
ladle stage was simulated, in which the results were in agreement with the experimen-
tal results. Ito et al. [20] studied the factors affecting the kinetics of calcium treatment
using laboratory experiments. The modification of inclusions by calcium treatment was
improved by shortening the aluminum deoxidation time, increasing the gas stirring, and
increasing the reaction time after calcium treatment. They compared the calculated results
based on the unreacted nucleus model and experimental results, and then proposed that
the limiting link for the inclusion modification reaction is the mass transfer process in
the product layer. Han et al. [21] believed that the decisive step is the chemical reaction
rate between alumina and liquid calcium aluminate. Park et al. [22] believed that Al2O3
inclusions can be treated as unreacted nuclei at the beginning of modification and that
the limiting link of the modification process is the diffusion of Al in the inclusion layer.
However, they only discussed the rationality of the model, while a complete dynamic
model has not yet been established. Zhang et al. [12] proposed a kinetic model of inclusion
modification, considering the reduction of calcium in slag, the calcium dissolution rate in
steel, mass transfer in the boundary layer, and solute diffusion in the product layer. The
transformation model for alumina to magnesia–alumina spinel inclusions was established
by Galindo et al. [23], and it was found that the transformation of inclusions was affected
by the reaction at the slag–metal interface. Tabatabaei et al. [24] developed a kinetic model
of inclusion transformation, which was applied to study the slag–steel reaction in a ladle
furnace and to predict the composition changes for steel and slag and the evolution of
inclusions during Ca treatment. Turkdogan et al. [25] found that the size of inclusions
affected the modification rate, whereby large-sized inclusions were more difficult to modify
than small-sized inclusions. Ye et al. [26] and Zheng et al. [14] proposed that with the
increase in the calcium content in molten steel, the modification route was:

Al2O3 → CaO · 6Al2O3(CA6) → CaO · 2Al2O3(CA2) → CaO ·Al2O3(CA) → 12CaO · 7Al2O3(C12A7) → 3CaO ·Al2O3(C3A) (1)

Numerical simulation has many advantages, such as operating at low temperatures,
having good reproducibility, being low cost, and detailed experimental data being available.
Therefore, more metallurgical workers are using numerical simulation methods to study
the behavior of inclusions in steel, and then to obtain the variation law for each parameter
in the process and the quantitative relationships between each parameter [27].

On the basis of the multilayer unreacted core model for alumina inclusions, a step-by-
step reaction kinetic model for the modification of Al2O3 inclusions by calcium treatment
in high-carbon hard wire steel was established. The effects of Al, Ca, and O contents on the
modification of high-carbon hard wire steel was studied during calcium treatment. The
conversion ratio, radii of inclusions, calcium oxide contents in inclusions, and modification
times were predicted. This work is helpful for understanding the inclusion modification
process and for improving calcium treatment technology.

2. Experiment
2.1. Experimental Procedure

The tested steels were produced based on the chemical compositions of SWRH62A
steel. Two heat experiments with different amount of deoxidants (A and B) were carried
out in a tubular resistance furnace, as shown in Figure 1. The corundum crucible containing
about 400 g pure iron, ferrosilicon alloy, and electrolytic manganese was placed in the
furnace. Table 1 lists the compositions of raw materials used in the study. The temperature
was increased to 1600 ◦C using electric heating. The added alloys and sampling procedures
used in the experiments are shown in Figure 2. The aluminum alloy and Si–Ca alloy were
added to the liquid steel for deoxidation at certain times. Calcium treatment was carried
out after Al deoxidization. Four samples were sucked out using a quartz tube (φ 5 mm)
and then quenched by insertion into a sodium chloride solution at different times after
calcium addition (60, 180, 600, and 720 s). During the steel smelting process, the argon gas
flow rate was maintained at 5 min/L.
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Figure 1. Schematic of tube furnace used in experiments. Reprinted with permission from [28]

Table 1. Compositions of raw materials (mass%).

Raw material Fe Si Mn S C Ca Al Others

Industrial pure iron 99.7 0.02 0.03 0.0002 0.0018 - 0.001 0.2445
Electrolytic
manganese - - 99.999 - - - - 0.001

Si–Fe alloy 21 78 0.4 0.02 0.1 - - 0.48
Al alloy 0.7 0.8 0.15 - - - 96.94 1.41

Si–Ca alloy - 57.13 20.44 - 0.83 19.56 2.02 0.02
QT400 95.8 0.17 0.5 0.01 3.45 - - 0.07
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Figure 2. Addition of alloys and sampling procedure used in current experiments.

2.2. Composition Analysis for Steels and Inclusions

The contents of calcium and aluminum in experimental steels were assessed using
inductively coupled plasma–mass spectrometry (ICP–MS, Su Zhou, China) The contents of
C, Si, Mn, and S in experimental steels were assessed using a direct-reading spectrometer
(Q4-TASMAN, Brooke, Germany). The O contents in experimental steels were assessed
using an inorganic oxygen–hydrogen tester.

The metallographic samples were ground using abrasive papers and then polished.
The two-dimensional morphologies and compositions of inclusions in a cross section of
each sample were analyzed using scanning election microscopy (ZeissΣIGMA+ X-Max20,
Baden-Wurttemberg, Germany) and energy-dispersive spectrometry. About 30 inclusions
were detected in each sample.

3. Results
3.1. Chemical Compositions of Steels

Table 2 lists the measured compositions of steels. A significant difference was found
in the mass fractions of calcium between the two experiments due to the different amounts
of Si-Ca alloy added. This showed that steel A had a high calcium content of 0.0025 mass%,
while steel B had a low calcium content of 0.0017 mass%.
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Table 2. Chemical compositions of steels used in different experiments (mass%).

Number C Si Mn S O Al Ca

A 0.652 0.183 0.312 0.0021 0.0051 0.0042 0.0025
B 0.652 0.183 0.300 0.0017 0.0061 0.0038 0.0017

3.2. Compositions and Morphologies of Inclusions

The compositions of inclusions detected at 60, 180, 600, and 720 s after calcium addition
are shown in Figure 3. The mass fractions of CaO in calcium aluminate inclusions were in
the range of 7.75–29.23% at 60 s after calcium addition and the average mass fraction of
CaO was 19.22% in steel A. This indicates that the main types of inclusions were CA6 and
CA2 in steel A. The average mass fractions of CaO in calcium aluminate inclusions in steel
A increased to 40.17%, 50.05%, and 60.43% after adding calcium for 180, 600, and 720 s,
respectively. This indicates that the inclusions were modified into CA + C12A7, C12A7,
and C12A7 + C3A gradually with the prolonging of the calcium treatment time. The mass
fraction of CaO in calcium aluminate inclusions for steel B was less than that in steel A. The
average mass fractions of CaO in calcium aluminate inclusions in steel B increased to 9.09%,
20.04%, 32.53%, and 40.12% after adding calcium for 60, 180, 600, and 720 s, respectively.
This indicates that the inclusions were modified into CA6, CA6 + CA2, CA2 + CA, and CA
+ C12A7 gradually with the prolonging of the calcium treatment time.
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Figure 3. Compositions of inclusions detected in experiment steels (A and B) after calcium addition.

The compositions, morphologies, and elemental mappings of typical inclusions de-
tected in samples after calcium addition are shown in Figure 4 (steel A) and Figure 5
(steel B). Figure 4a shows that the typical inclusion CaO·2Al2O3 that formed after calcium
treatment for 60 s was irregular in steel A. The CaO·Al2O3 that formed after calcium
treatment for 180 s was similar to a hexagon, of which the edges tended to be smooth.
Typical inclusions 12CaO·7Al2O3 and 3CaO·Al2O3 occurred in steel A at later stages of
deoxidation and their morphologies tended to be spherical. Figure 4a shows the typical
inclusions of CaO·6Al2O3, 3CaO·8Al2O3, CaO·2Al2O3, and CaO·Al2O3 formed in steel B
after calcium treatment for 60, 180, 600, and 720 s, respectively. Their morphologies were
irregular and their sharp corners tended to be disappeared.
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4. Discussion
4.1. Dynamic Model

The mass transfer process and modification of Al2O3 inclusions in high-carbon hard
wire steels can be described by the unreacted core model shown in Figure 6 based on
experimental results. The modification process of Al2O3 inclusions can be described as
shown in Figure 6 based on experimental results. The Al2O3 inclusion wrapped in the
CA6 layer formed at the start of calcium treatment and Ca transferred into the unreacted
core of Al2O3 through the CA6 layer. Therefore, the unreacted core of Al2O3 gradually
decreased and the CA6 layer gradually thickened, then Al2O3 inclusions transformed into
CA6 completely. With the diffusion of Ca and its increasing content, a complex inclusion
with a core of CA6 wrapped in a CA2 layer formed and Ca transferred from the product
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layer (CA6 layer) to boundary layer (the interface between CA2 and CA6), resulting in the
formation of a spherical inclusion with CA2. Similarly, the CA2 was transformed into CA,
C12A7, and C3A step-by-step with the transfer of Ca and the chemical reaction between
calcium aluminates. The assumptions in the current model are as follows:

1. All inclusions in molten steel are spherical before and during the calcium treat-
ment process;

2. The temperature of molten steel is very high at 1600 ◦C, so the interfacial reaction is
assumed to be in equilibrium;

3. To simplify the discussion of the model, the concentrations of calcium, aluminum,
and oxygen in molten steel are assumed to be constant;

4. The diffusion of all substances in the liquid calcium aluminate layer is steady, which
is in accordance with Fick’s first law.
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Taking the transformation of CA inclusions into C12A7 as an example, the process is
divided into the following three steps.

1. Ca in molten steel diffuses to the C12A7 layer–molten steel interface, for which the
reaction formula is:

Ca(s) → [Ca](l) (2)

Ca passes through the C12A7 liquid phase, diffuses to the CA layer, and reacts with it:

15[Ca] + 33(CaO ·Al2O3)(s) = 4(12CaO · 7Al2O3)(s)+10[Al] (3)

2. At this time, the generated [Al] diffuses outward through the C12A7 liquid phase
layer and enters into the molten steel.

Figure 7 is a schematic of the transformation process of CaO·Al2O3 into 12CaO·7Al2O3
inclusions. In the Figure 7, r0 represents the radius of C12A7 inclusion after complete
modification, r represents the radius of the unreacted CA inclusion, and l1 and l2 represent
the interface between CA inclusion and C12A7 inclusions, respectively. In the refining
process, argon blowing and stirring are used. (Ca) and (Al) diffuse rapidly in molten
steel and in the high-temperature reaction process. Therefore, the rate control link in the
modification process for inclusions is solute diffusion in the calcium aluminate layer. At
1600 ◦C, the diffusion coefficients of Ca and Al in the calcium aluminate layer are [24,29]
DCa ≈ 10−8.6 m2·s−1 and DAl ≈ 10−10.4 m2·s−1, respectively. In this paper, the kinetics
of the Al2O3 inclusion modification in high-carbon hard wire steel were analyzed in two
cases. In the first case, the diffusion process of Al in the calcium aluminate layer was the
limiting link. In the second case, the diffusion of Ca in the calcium aluminate layer was the
limiting link in the process of inclusion modification.
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interface layer between CA and C12A7 inclusions, l2 represent that surface layer between the C12A7

inclusion and the molten steel boundary, aCA indicates the activity of CA inclusions, aAl indicates the
activity of Al, aCa indicates the activity of Ca).

When the diffusion of Al in the calcium aluminate layer is the limiting link in inclusion
modification, the diffusion rate of Al in the C12A7 layer is expressed as:

vAl = −
dnAl

dt
= 4πr2DAl

dcAl

dr
(4)

where nAl represents the amount of Al, r represents the radius of unreacted nuclear CA,
DAl indicates the diffusion rate of Al in molten steel, cAl is the concentration of Al in C12A7,
and t represents the modification time of inclusions:

dcAl = −
1

4πDAl

dnAl
dt

dr
r2 (5)

Equation (5) is integrated as:∫ CAl,l2

CAl,l1

dcAl = −
1

4πr2DAl

dnAl
dt

∫ r0

r

dr
r2 (6)

From Equation (6), we get:

vAl = −
dnAl

dt
= 4πDAl

r0r
r0 − r

(cAl,l1 − cAl,l2) (7)

In the formula, cAl,l1 represents the Al concentration at the interface between two
inclusions and cAl,l2 represents the Al concentration at the interface between inclusion
C12A7 and molten steel.

According to Equation (7), the rate of Al consumption in the modification reaction is:

− dnAl
dt

= −
2dnAl2O3

dt
= −

xAl2O3 dnCA

dt
= −51

79
4πr2ρCA

MCA

dr
dt

(8)

where ρCA represents the density of CA, ρCA = 2.96 × 103 kg/m3, and MCA represents the
molar mass of CA, MCA=158g/mol.

Combining Equation (7) with Equation (8), we can obtain:

∫ t

0

79MCADAl(cAl,l1 − cAl,l2)

51ρCA
dt =

∫ r

r0

(r− r2

r0
)dr (9)
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The relationship between the unreacted nucleus radii of inclusions and the modifica-
tion time (t) can be obtained by finishing the following:

t =
17ρCAr2

0
158MCADAl(cAl,l1 − cAl,l2)

[
1− 3(

r
r0
)

2
+ 2(

r
r0
)

3
]

(10)

To calculate the modification time of inclusions, the activity of solute elements in steel
was used instead of its concentration. Equation (10) can be expressed as:

t =
17ρCAr2

0
158MCADAl(aAl,l1 − aAl,l2)

[
1− 3(

r
r0
)

2
+ 2(

r
r0
)

3
]

(11)

When CA inclusions are completely transformed into C12A7, when r = 0, the complete
modification time (tf) of inclusions is:

t f =
17ρCAr2

0
158MCADAl(aAl,l1 − aAl,l2)

(12)

where ρCA, MCA, and DAl are all constants and the modification time for CA inclusions
depends on their radii and the activity difference of Al between the interface between two
inclusions and the interface between molten steel and inclusions.

When the diffusion of Ca in the calcium aluminate layer is the limiting link in inclusion
modification, the diffusion rate of Ca in the C12A7 layer is expressed as follows:

vCa =
dnCa

dt
= 4πr2DCa

dcCa

dr
(13)

where nCa represents the amount of Ca, r represents the radius of unreacted nuclear CA,
DCa indicates the diffusion rate of Ca in molten steel, cCa is the concentration of Ca in
C12A7, and t represents the modification time of inclusions:

dcCa =
1

4πDCa

dnCa

dt
dr
r2 (14)

Equation (14) is integrated as:∫ CCa,l2

CCa,l1

dcCa =
1

4πr2DCa

dnCa

dt

∫ r0

r

dr
r2 (15)

From Equation (15), we get:

vCa =
dnCa

dt
= 4πDCa

r0r
r0 − r

(cCa,l1 − cCa,l2) (16)

In the formula, cCa,l1 represents the Ca concentration at the interface between two
inclusions and cCa,l2 represents the Ca concentration at the interface between inclusion
C12A7 and molten steel.

The rate of Ca generated by the modification reaction is:

dnCa

dt
=

2dnCaO
dt

=
xCaOdnC12 A7

dt
=

16
33

4πr2ρC12 A7

MC12 A7

dr
dt

(17)

where ρC12 A7 represents the density of C12A7, ρC12 A7 = 2.83 × 103 kg/m3, and MC12 A7

represents the molar mass of C12A7, MC12 A7 = 1386g/mol.
Combining Equation (16) with Equation (17), we can obtain:

∫ t

0

33MC12 A7 DCa(cCa,l1 − cCa,l2)

16ρCA
dt =

∫ r

r0

(r− r2

r0
)dr (18)
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The relationship between unreacted nucleus radii of inclusions and modification time
(t) can be obtained by finishing:

t =
8ρC12 A7 r2

0
99MC12 A7 DCa(cCa,l1 − cCa,l2)

[
1− 3(

r
r0
)

2
+ 2(

r
r0
)

3
]

(19)

To calculate the modification time of the inclusions, the activity of solute elements in
steel was used instead of its concentration. Equation (18) can be expressed as:

t =
8ρC12 A7 r2

0
99MC12 A7 DCa(aCa,l1 − aCa,l2)

[
1− 3(

r
r0
)

2
+ 2(

r
r0
)

3
]

(20)

When CA inclusions are completely transformed into C12A7, when r = 0, the complete
modification time (tf) of inclusions is:

t f =
8ρC12 A7 r2

0
99MC12 A7 DCa(aCa,l1 − aCa,l2)

(21)

where ρC12 A7 , MC12 A7 , and DCa are all constants, and the modification time of CA inclusions
depends on their radius and the activity difference of Ca between the interface between
two inclusions and the interface between molten steel and inclusions.

4.2. Model and Parameter Determination

When the diffusion of Al in the calcium aluminate layer is the limiting link in inclusion
modification, the concentration of [Al] in calcium aluminate inclusions is difficult to
determine and can be replaced by aAl as the following formula:

For interface l1:

15[Ca] + 33(CaO ·Al2O3)(s) = 4(12CaO · 7Al2O3)(s)+10[Al] (22)

The Gibbs free energy of this reaction is [25,29,30]:

∆Gθ
1 = −565, 555− 1609.66T, J ·mol−1 (23)

∆G1
θ = −RT ln Kθ = −RT ln

a10
Al,l1

a4
12CaO ·7Al2O3

a15
Caa33

CaO·Al2O3

(24)

aAl ,l1 =

 a15
Caa33

CaO·Al2O3

a4
12CaO ·7Al2O3

exp(
∆G1

θ

−RT
)

 1
10

(25)

In the formula, aAl ,l1 represents the activity of the interface layer Al between inclusion
CA and C12A7, while a

CaO·Al2O3
and a

12CaO ·7Al2O3
are regarded as 1:

ai = fi × [%i] (26)

aAl ,l2 = fAl×[%Al] (27)

where aAl ,l2 represents the activity of Al at the interface between C12A7 inclusions and
molten steel.

When the diffusion of Ca in the calcium aluminate layer is the limiting link in inclusion
modification, the activity of the interface layer Ca between inclusion CA and C12A7 can be
estimated as Equation (28).
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For interface l1:

aCa ,l1 =

 a10
Ala

4
12CaO ·7Al2O3

a33
CaO·Al2O3

exp(∆G1
θ

−RT )

 1
15

(28)

In the formula, aCa ,l1 represents the activity of the interface layer Ca between inclusion
CA and C12A7, while a

CaO·Al2O3
and a

12CaO ·7Al2O3
are regarded as 1.

For interface l2:
aCa,l2 = fCa×[%Ca] (29)

The formula shows the activity of Ca at the interface between C12A7 inclusions and
molten steel.

According to the interface shown in Equation (13), combined with the experimental
steel composition in Table 2 and the interaction coefficient between elements in molten
steel at 1873 K as shown in Table 3.

Table 3. Interaction coefficients of Ca, O, and Al in molten steel at 1873 K (1600 ◦C) [13,31,32].

ej
i

C Si Mn S Al O Ca

Ca −0.34 −0.095 −0.007 −28 −0.072 −780 −0.002
O −0.42 −0.066 −0.021 −0.13 −1.17 −0.17 −313
Al 0.091 0.056 −0.004 0.035 −0.043 −1.98 −0.047

Equation (17) was used to calculate the activities of Ca and Al in each test steel (as
shown in Table 4).

Table 4. Activity of Ca and Al in steel A and steel B.

Steel aCa aAl

A 1.31 × 10−7 0.0048
B 1.52 × 10−8 0.0043

4.3. Determination of Restrictive Links

According to Equations (12) and (21), the diffusion of Al and Ca in the C12A7 layer,
which treated as limiting link in the transformation of CA inclusions into C12A7 in steel A,
was calculated as shown in Figure 8. It can be seen that the value of tf is larger in the red
line than that in the black line when the radius is same. This indicates that the diffusion
of Al in the inclusion layer was the limiting link in the modification process of inclusions,
which was consistent with the research results of Park et al. [24].
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4.4. Effects of Solute Element Content in Molten Steel on Modification Time

The modification of inclusions depends on the activity of Al, which is affected by
the content of each solute element in molten steel. The effects of Ca, Al, and O contents
in molten steel on the time taken to modify CA into C12A7 inclusions with a radius of
1.5 µm was studied based on Equations (12), (25), and (27), as shown in Figure 9. The
modification time increased linearly with increasing oxygen content and decreased with
increasing calcium content in molten steel. When the content of O increased in the range of
0.0002–0.0045%, the modification time was prolonged from 0.0011 s to 118 s, increasing by
approximately 118 s. When the content of Ca increased in the range of 0.0002–0.0045%, the
modification time for complete transformation of Ca inclusions into C12A7 was reduced
from 48616 s to 247 s, which was reduced by approximately 48369 s. The change of
modification time with increasing Al content was very small. It can be seen that the
Ca concentration in molten steel had the greatest influence on the modification time of
inclusions. The steel with high Ca content was favorable for the modification of CA
inclusions into C12A7 inclusions.

Materials 2021, 02, x FOR PEER REVIEW 13 of 19 

 

4.4. Effects of Solute Element Content in Molten Steel on Modification Time 
The modification of inclusions depends on the activity of Al, which is affected by the 

content of each solute element in molten steel. The effects of Ca, Al, and O contents in molten 
steel on the time taken to modify CA into C12A7 inclusions with a radius of 1.5 μm was 
studied based on  Equations (12), (25), and (27), as shown in Figure 9. The modification 
time increased linearly with increasing oxygen content and decreased with increasing 
calcium content in molten steel. When the content of O increased in the range of 0.0002–
0.0045%, the modification time was prolonged from 0.0011 s to 118 s, increasing by 
approximately 118 s. When the content of Ca increased in the range of 0.0002–0.0045%, the 
modification time for complete transformation of Ca inclusions into C12A7 was reduced from 
48616 s to 247 s, which was reduced by approximately 48369 s. The change of modification 
time with increasing Al content was very small. It can be seen that the Ca concentration in 
molten steel had the greatest influence on the modification time of inclusions. The steel with 
high Ca content was favorable for the modification of CA inclusions into C12A7 inclusions. 

0.000 0.001 0.002 0.003 0.004
10-3

10-2

10-1

100

101

102

103

104

t f/
s

wt/%

 Ca
 Al
 O

 
Figure 9. Effects of solute element content in molten steel on the time of complete modification of 
CA inclusions into C12A7. 

The relationship between the Ca content in molten steel and modification time of 
inclusions was calculated based on Equations (12) and (25), as shown in Figure 10. The 
complete modification time for inclusions was significantly shortened with the increase 
of the Ca content in molten steel and decrease of the inclusion radius. When the Ca content 
in molten steel was 0.0025% and the radius of inclusion was 1.5 μm, the modification times 
for Al2O3 into CA6, CA6 into CA2, CA2 into CA, CA into C12A7, and C12A7 into C3A were 
4.5, 16, 116, 601, and 449 s, respectively. This indicates that the modification times for 
inclusions tend to be longer in the transformation of higher CaO-containing calcium 
aluminate. The modification of Al2O3 into CA6 was fastest, while the most time was 
required to modify CA into C12A7. When calcium aluminate inclusions changed from solid 
state to liquid state, this process was the most difficult to carry out and the required 
modification time was the longest. 

1 4 16 64 256 1024
0.000

0.001

0.002

0.003

0.004

[C
a]

/%

tf/s

 r=1.5μm
 r=2μm
 r=3μm

（a）

 

 
8 16 32 64 128 256 512 1024 2048

0.0000

0.0008

0.0016

0.0024

0.0032

0.0040
 r=1.5μm
 r=2μm
 r=3μm

[C
a]

/%

tf/s

（b）

 

Figure 9. Effects of solute element content in molten steel on the time of complete modification of
CA inclusions into C12A7.

The relationship between the Ca content in molten steel and modification time of
inclusions was calculated based on Equations (12) and (25), as shown in Figure 10. The
complete modification time for inclusions was significantly shortened with the increase of
the Ca content in molten steel and decrease of the inclusion radius. When the Ca content in
molten steel was 0.0025% and the radius of inclusion was 1.5 µm, the modification times for
Al2O3 into CA6, CA6 into CA2, CA2 into CA, CA into C12A7, and C12A7 into C3A were 4.5,
16, 116, 601, and 449 s, respectively. This indicates that the modification times for inclusions
tend to be longer in the transformation of higher CaO-containing calcium aluminate. The
modification of Al2O3 into CA6 was fastest, while the most time was required to modify
CA into C12A7. When calcium aluminate inclusions changed from solid state to liquid
state, this process was the most difficult to carry out and the required modification time
was the longest.
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Figure 10. Relationship between Ca content in molten steel and complete modification times for
inclusions with different compositions: (a) Al2O3 modified into CA6; (b) CA6 modified into CA2;
(c) CA2 modified into CA; (d) CA modified into C12A7; (e) C12A7 modified into C3A.

4.5. Influence of Inclusion Conversion Rate in Molten Steel on Modification Time

In order to evaluate the modification rate, taking CA to C12A7 as an example, the
inclusion conversion ratio is defined as:

α =
mCA(Initial) −mCA(End)

mCA(Initial)
× 100% (30)

According to Equations (11) and (30), the relationship between the conversion ratio
and modification time during inclusion deformation was calculated, as shown in Figure 11.
The conversion ratio was affected by the melting time, inclusion type, and size. The
conversion ratio increased quickly at the beginning of the modification but became slow
as the reaction progressed. It can be seen that when the conversion ratio of CA to C12A7
with a 2 µm radius increased from 0% to 57.8%, this took 167 s, while the time needed to
prolong the process was 902 s, with a conversion ratio increase from 57.8% to 100%; it took
about six times longer time at the later stage of inclusion modification than at the early
stage. Therefore, in the later stage of inclusion modification, the stirring speed should be
increased to promote inclusion modification and reduce the modification time.
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Figure 11. Modification process of inclusions with different particle sizes (a) Al2O3 is modified into 
CA6, (b) CA6 is modified into CA2, (c) CA2 is modified into CA, (d) CA is modified into C12A7, (e) 
C12A7 is modified into C3A). 
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4.6. Relationship between Inclusion Radius and Modification Time

The relationship between the inclusion radius and modification time was studied
based on Equation (12), as shown in Figure 12. The complete modification times for
inclusions increased with the square of their radii. The complete modification time was
prolonged by four times, while the radii of unmodified inclusions doubled. The complete
modification time for inclusions with a 1 µm radius from CA to C12A7 was 267 s, and was
1069 s for inclusions with a 2 µm radius. During the whole modification process of solid
Al2O3 inclusions to liquid calcium aluminate inclusions of the same size, the modification
time for inclusions from CA to C12A7 was the longest.
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Figure 12. Complete modification time for Al2O3 inclusions of different sizes.

4.7. Modeling Verification

In order to verify the calculation of the kinetic model for the modification of Al2O3
inclusions during calcium treatment, the calculated CaO content was compared with
experimental results, considering the boundary conditions and unreacted core model
parameters, as shown in Figure 13. The modification of inclusions with radii of 1, 2, and
3 µm was simulated based on observed results in experiments. It can be seen that the
modification of Al2O3 inclusions in sample A is much faster than that in sample B, which
is consistent with experimental results. The model calculation is closer to the experimental
data, indicating that they are in good agreement. Additionally, it was found that the
inclusions with 1 µm evolving from Al2O3 to CA6 took no longer than 1 s. It took about
1000 s for inclusions with a 3 µm radius to modify Al2O3 into liquid calcium aluminate in
sample A and about 6000 s for that in sample B.
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5. Conclusions

In the experiments with high-carbon hard wire steels treated with different contents
of calcium at 1600 ◦C, the compositions and morphological evolution of inclusions were
studied. The kinetic model for modification of Al2O3 inclusions during calcium treatment
in high-carbon hard wire steels was established based on unreacted core theory. This model
considers the transfer of Ca and Al through the boundary layer and within the product
layer coupled with thermodynamic equilibrium at the interfaces. The calculated results
based on the kinetic model were compared with experimental results. The main findings
are summarized below:

1. The diffusion of Al in the inclusion layer was the limiting link in the inclusion
modification process. The modification time increased linearly with increasing oxygen
content and decreased with increasing calcium content in molten steel. The change of



Materials 2021, 14, 1305 15 of 16

modification time with increasing Al content was very small. The Ca concentration in
molten steel had the greatest influence on the modification time of inclusions;

2. The modification times for inclusions tended to be longer in the transformation of
higher CaO-containing calcium aluminate. The modification of Al2O3 into CA6 was
fastest, while the most time was needed to modify CA into C12A7;

3. It took about six times time longer at the later stage of inclusion modification than at
the early stage. The complete modification times for inclusions increased with the
square of their radii. The complete modification times were prolonged by four times
when the radii of unmodified inclusions doubled;

4. The model calculation was in good agreement with experimental results. The inclu-
sions with a 1 µm radius evolving from Al2O3 to CA6 took no longer than 1s. The
modification of Al2O3 inclusions in sample A was much faster than in sample B. It
took about 1000 s for inclusion with a 3 µm radius to modify Al2O3 into liquid calcium
aluminate in sample A and about 6000 s for that in sample B.
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