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Aim: Patients with high myopia (HM) reportedly exhibit changes in functional

brain activity, but the mechanism underlying such changes is unclear. This

study was conducted to observe differences in dynamic spontaneous brain

activity between patients with HM and healthy controls (HCs) via dynamic

regional homogeneity (dReHo) analysis.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI)

scans were performed on 82 patients with HM and 59 HCs who were closely

matched for age, sex, and weight. The dReHo approach was used to assess

local dynamic activity in the human brain. The association between mean

dReHo signal values and clinical symptoms in distinct brain areas in patients

with HM was determined via correlation analysis.

Results: In the left fusiform gyrus (L-FG), right inferior temporal gyrus (R-ITG),

right Rolandic operculum (R-ROL), right postcentral gyrus (R-PoCG), and right

precentral gyrus (R-PreCG), dReHo values were significantly greater in patients

with HM than in HCs.

Conclusion: Patients with HM have distinct functional changes in various

brain regions that mainly include the L-FG, R-ITG, R-ROL, R-PoCG, and

R-PreCG. These findings constitute important evidence for the roles of brain

networks in the pathophysiological mechanisms of HM and may aid in the

diagnosis of HM.
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Introduction

High myopia (HM), a common ophthalmic disease, is the
state of myopia with a refractive error of -6 diopters or worse
(Flitcroft et al., 2019). In East Asia, approximately 80–90% of
young people have myopia, and one-fifth of these people have
HM (Wu et al., 2016). It is estimated that, by 2050, there will be
938 million individuals with HM (9.8% of the global population)
(Holden et al., 2016). High academic pressures and limited time
outdoors are regarded as key risk factors for myopia (Morgan
et al., 2021). The high prevalence of myopia leads to an increased
incidence of HM because of the relationship between these
two diseases (Morgan et al., 2018). Excessive axial elongation is
the most important pathological change in patients with HM;
it can cause retinal detachment, choroidal neovascularization,
macular hemorrhage, and retinal ischemia, all of which lead to
impaired visual function (Piao et al., 2021). In clinical practice,
resting-state functional magnetic resonance imaging (rs-fMRI)
has recently received considerable attention. Some studies have
shown that patients with HM exhibit changes in brain function,
mainly in terms of cognitive function (Zhang et al., 2020), but
the differences in dynamic spontaneous brain activity between
patients with HM and healthy controls (HCs) remain unknown.

Resting-state functional magnetic resonance imaging is
an emerging neuroimaging modality that provides a new
non-invasive technique to study the relationship between
spontaneous brain activity and clinical manifestations.
Compared with other fMRI methods, rs-fMRI has the
advantages of direct signal acquisition and the detection
of functional regions in various patient populations
(Smitha et al., 2017). Patients with HM reportedly exhibit
significantly decreased functional connectivity (FC) between
the supramarginal gyrus and rostrolateral prefrontal cortex,
as well as between the ventral attention and frontoparietal
control networks (Zhai et al., 2016). Huang et al. (2016)
demonstrated that the amplitude of low-frequency fluctuation
(ALFF) in the bilateral inferior frontal gyrus was considerably
lower in patients with HM than in HCs. The above studies
provide a neuroimaging basis for a better understanding
of attentional control problems in patients with HM.
Nevertheless, most rs-fMRI studies show that functional
brain activity is stationary throughout the resting scan, but
they overlook the time-dependent nature of spontaneous
neuronal activity fluctuation in the brain (Calhoun et al., 2014;
Liao et al., 2015, 2019). Regional homogeneity (ReHo) can
only reflect the static characteristics of human spontaneous
brain activity, which contradicts the notion that resting-
state spontaneous neurocerebral activity has time-dependent
dynamic characteristics. Thus, there has been an increasing
focus on dynamic processes in spontaneous brain activity.
Recently, dynamic regional homogeneity (dReHo) has been
used in studies of various diseases to investigate the dynamic
variability of spontaneous neuronal brain activity.

Dynamic regional homogeneity is a commonly used
analysis in rs-fMRI, which can show the dynamic temporal
consistency of spontaneous brain activity between neighboring
voxels, describe similarities in local brain activity, and explore
the functional coordination of spontaneous neural activity
(Zang et al., 2004). Dynamics amplitude of low frequency
fluctuation (dALFF) is an analytical method that combines
the ALFF and a sliding window (Cui et al., 2020); this
method measures the intensity of low-frequency oscillation in
spontaneous neural activity, which can represent the intensity
of neural activity in a single acceleration and demonstrate
excitability in specific regions of the cerebral cortex (Zang
et al., 2007). Thus far, ALFF technology has been used to
study functional changes in spontaneous brain activity in
patients with HM (Huang et al., 2016). In contrast to ReHo,
dReHo involves the use of a sliding window method; areas
with large fluctuations in dReHo are generally functional
centers of the brain (Hutchison et al., 2013). dReHo has
been used in studies of neuropsychiatric diseases, such as
brain networks involved in bipolar disorder, clinical depression,
trigeminal neuralgia, and other diseases (Yan et al., 2019;
Sun et al., 2021). To our knowledge, no study has explored
dReHo abnormalities in patients with HM. There is increasing
evidence that patients with HM have a greater cognitive
impairment as compared to HCs (Zhang et al., 2020). Here,
we investigated whether dReHo values differ between patients
with HM and HCs, which may be related to the cognitive
changes caused by HM.

Participants and methods

Participants

From August 2021 to December 2021, 82 patients with
HM and 59 HCs were examined in the Department of
Ophthalmology at Nanchang University’s First Affiliated
Hospital. For each participant, age, sex, and educational
background were all met. People with brain disorders
were excluded based on their clinical findings and
physical assessment. All participants were examined in
the same clinic and provided written informed consent to
participate in the study. All procedures were conducted in
accordance with the Declaration of Helsinki, and ethical
approval was granted by the Nanchang University’s First
Affiliated Hospital’s Medical Ethics Committee (Jiangxi
Province, China).

The inclusion criteria for patients with HM were the
binocular vision of –6 diopters or worse; corrected decimal
visual acuity better than 1.0; and the completion of MRI-
related tests, optical coherence tomography, ultrasonography,
and other ophthalmic examinations. The exclusion criteria
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for patients with HM were binocular vision better than -
6 diopters, retinal detachment, maculopathy, choroidal
neovascularization, retinal pigment epithelial disease, history
of ocular trauma or ophthalmic surgery, neurological disease,
and/or cerebral infarction.

Healthy controls were randomly selected from Nanchang
City according to their age, sex, and educational background.
The inclusion criteria for HCs were no ocular disease;
no major illness (e.g., neurological illness or cerebral
infarction); uncorrected decimal visual acuity better
than 1.0; and the completion of MRI-associated tests,
optical coherence tomography, ultrasonography, and other
ophthalmic examinations.

fMRI data acquisition

A 3-T Trio Magnetic Resonance Imaging Scanning System
(Trio Tim, Siemens Medical Systems, Erlangen, Germany) was
used to collect all MRI data. During image acquisition, we asked
participants to close their eyes, minimize motion, and avoid
falling asleep. We also asked participants to use earplugs to
reduce the effects of head motion and machine noise during
scanning. The following three-dimensional high-resolution
T1WI parameters were used: repetition time = 1,900 ms, echo
time = 2.26 ms, thickness = 1, no intersection gap, acquisition
matrix = 256 × 256, field of view = 240 × 240 mm2, and flip
angle = 12◦.

fMRI data processing

In the brain imaging data processing and analysis toolbox
(Data Processing and Analysis of Brain Imaging; DPABI),1

the sliding time window method was used to calculate the
dReHo index. In accordance with a previously described
method, the minimum window length of the sliding time
window was set at ≥ 1/fmin (the minimum frequency of
the time series) because a shorter window length would
increase the risk of false fluctuations in the time series
(Leonardi and Van De Ville, 2015).

Sliding time window analysis

In this study, the window length was 30 repetition time (TR)
and the step size was 1 TR. In each time window, the ReHo
indices of all brain voxels were calculated. Next, the standard
deviations (SDs) of these ReHo brain maps were calculated
to characterize the dynamics of ReHo. Finally, the smoothing
kernel was set at 8 × 8 × 8 mm3 to smooth dReHo images.

1 http://rfmri.org/dpabi

Statistical analysis

Two-sample t-tests were performed on the fMRI data using
SPM8 software (two-tailed voxel-level: p < 0.01, glomerular
filtration rate (GRF) correction, cluster-level: p < 0.05), which
allows the assessment of differences in zReHo maps between
two groups via the GRF method. The GRF method was
used to compensate for multiple comparisons and to adjust
for age and sex.

Based on the dReHo calculations, some brain regions
showed differences in signals between patients with HM and
HCs. Thus, the mean dReHo value in each region was obtained
by averaging all voxels within that region.

Results

Demographics

This study contained 82 patients with HM (43 men and 39
women, mean age 26.53 ± 5.291 years) and 59 HCs (24 men
and 35 women, mean age 25.67 ± 3.102 years). Demographic
characteristics are shown in Table 1.

Group differences in dynamic regional
homogeneity

Figure 1 shows comparisons between the HM and HC
groups. dReHo values in the left fusiform gyrus (L-FG), right
inferior temporal gyrus (R-ITG), right Rolandic operculum (R-
ROL), right postcentral gyrus (R-PoCG), and right precentral
gyrus (R-PreCG) were significantly higher in patients with HM
than in HCs. The mean values of differences in dReHo between
the two groups are shown in Figure 2. The mean differences
in dReHo values between HM patients and HCs are shown in
Table 2.

Discussion

To our knowledge, this is the first study to use the dReHo
method for the estimation of the effect of HM on dynamic
spontaneous brain activity. The dReHo method can help to
provide a greater understanding of HM-related functional

TABLE 1 Demographic characteristics of patients with HM and HCs.

Characteristic HM HC

Sex (male/female) 43/39 24/35

Age (years) 26.53 ± 5.291 25.67 ± 3.102

HM, high myopia; HC, healthy control.
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FIGURE 1

Distribution patterns of dReHo values are observed at the group level in HCs and patients with HM. Note: One-sample t-tests were used to
compare dReHo maps between HCs (A) and patients with HM (B) (p < 0.01). HCs, healthy controls; HM, high myopia; dReHo, dynamic regional
homogeneity analysis; L, left; R, right.

FIGURE 2

Comparison of differences in dReHo values between HCs and patients with HM. Significant differences in dReHo values are observed in the
L-FG, R-ITG, R-ROL, R-PoCG, and R-PreCG. L-FG, left fusiform gyrus; R-ITG, right inferior temporal gyrus; R-ROL, right Rolandic operculum;
R-PoCG, right postcentral gyrus; R-PreCG, right precentral gyrus.

remodeling in the brain. We found that patients with HM
had significantly increased dReHo values in the L-FG, R-ITG,
R-ROL, R-PoCG, and R-PreCG, which suggested a degree of
synchronization in dynamic spontaneous brain activity among
those regions. These changes could be linked to the activity of
various areas in the brain.

The L-FG has a significant impact on language
morphological processing (Zou et al., 2015), lexical processing
of real words, and grapheme-to-phoneme processing of
pseudo-words (Krishnamurthy et al., 2019). The FG has

spatially separated regions: the right side is more sensitive
to facial recognition, while the left side is more sensitive to
language recognition (Harris et al., 2016). Zu et al. (2022) found
that patients with persistent generalized tonic-clonic seizures
(GTCS) had increased ALFF values in the bilateral FG, which
may be useful as a novel neurological marker for persistent
seizures in patients with GTCS. Jung et al. (2021) reported that
L-FG volume was associated with the recognition of emotional
intensity and facial emotion by people with schizophrenia
spectrum psychosis. Chen B. et al. (2021) revealed that patients
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TABLE 2 Mean differences in dReHo values between patients
with HM and HCs.

Brain
region

BA Peak
t-score

MNI coordinates
(x, y, z)

Cluster size
(voxels)

L-FG 20 3.4825 –33, –39, –24 13

R-ITG – 3.4744 66, –39, –15 24

R-ROL – 4.5164 42, –24, 15 18

R-PoCG – 4.6369 54, –12, 39 40

R-PreCG – 4.6523 18, –27, 78 38

Two-tailed voxel-level: p < 0.01, GRF correction, cluster-level: p < 0.05. BA, Brodmann
area; MNI, Montreal Neurological Institute; L-FG, left fusiform gyrus; R-ITG, right
inferior temporal gyrus; R-ROL, right Rolandic operculum; R-PoCG, right postcentral
gyrus; R-PreCG, right precentral gyrus.

with late-life depression (LLD) and odor identification (OI)
dysfunction showed significantly increased ReHo values in
the L-FG. Therefore, increased ReHo values in the L-FG may
indicate an increased risk of OI dysfunction in patients with
LLD. Moreover, a previous study showed that patients with HM
have decreased FC in the L-FG, which may cause differences in
tactile function between patients with HM and HCs (Wu et al.,
2020). Consistent with the previous findings, we demonstrated
that patients with HM had significantly increased dReHo values
in the L-FG, which suggests that behaviors in this brain area are
reinforced. Thus, we speculate that increased dReHo values in
the L-FG are related to dysfunctional language morphological
processing in patients with HM; in such patients, the increased
dReHo values in the L-FG may compensate for the decline in
language morphological processing function.

The R-ITG plays an important role in higher cognitive
functions, such as visual and language comprehension, as well
as emotional regulation (Lin et al., 2020). Wei et al. (2021)
demonstrated that FC in the ITG was increased in patients who
had migraine without aura. They noted that the ITG is regarded
as a component of the default mode network (DMN) (Liu et al.,
2017) and has been associated with worsening pain. Li H. et al.
(2021) reported that ReHo values in the bilateral ITG were
greater in patients with obstructive sleep apnea (OSA). They
showed that increased ReHo values in the bilateral ITG were
positively correlated with the apnea-hypopnea index (AHI).
Yuan et al. (2016) found that patients with amnestic moderate
cognitive impairment (aMCI) had considerably lower ReHo
values in the ITG when compared with HCs. Such a change
in ReHo values could serve as a sensitive functional imaging
biomarker for aMCI. Furthermore, Tu et al. (2018) revealed
that ReHo values in the R-ITG were significantly higher in
alcohol-dependent individuals than in HCs; notably, this region
is responsible for the representation and detection of complex
object features. In support of the previous findings, our study
showed that patients with HM had significantly greater dReHo
levels in the R-ITG. Thus, we presume that increased dReHo
values in the R-ITG may be indicative of deficits in higher
cognitive functions and vision in patients with HM; they might
represent a functional activity to compensate for such deficits.

The R-ROL is involved in the processing of integrated
exteroceptive-interoceptive information (Blefari et al., 2017).
During the perception of pleasant auditory information, motor-
related circuitry in the ROL may facilitate the formation of
vocal representations (Koelsch et al., 2006). Zhang et al. (2021)
demonstrated that individuals with addiction-related disorders
had common decreases in gray matter (GM) volume in the
R-ROL. They discovered similar structural changes in the
prefrontal and insular areas of the brain among patients with
different subtypes of addiction. Furthermore, Wollman et al.
(2017) found that length of opioid use was negatively associated
with GM in the R-ROL, which suggested that opioid addiction
could lead to the disintegration of strongly overlapping
structural and functional systems. Additionally, Li L. et al.
(2021) reported that in the R-ROL, patients with Crohn’s disease
(CD) had considerably increased FC intensity. This could be a
positive feedback mechanism for increased sensitivity to visceral
sensory information, which modulates the brain’s response
to such information and may exacerbate inflammation. In a
separate study, Li J. et al. (2021) revealed that, compared with
HCs, patients with Parkinson’s disease (PD) had considerably
lower ReHo values in the R-ROL; this suggested a negative
relationship between ReHo values and cognition. Indeed, the
R-ROL has been associated with the severity of alterations in
psychological domains, such as apathy, despair, and anxiety
(Sutoko et al., 2020). Expanding upon the prior findings, this
study showed that patients with HM had considerably higher
dReHo values in the R-ROL, which suggests that behaviors in
this brain area are reinforced. Thus, we speculate that HM leads
to increased R-ROL activity, which can cause deficits in the
processing of integrated exteroceptive-interoceptive signals in
patients with HM; the increased dReHo values in the R-ROL
may compensate for the reduced integration of exteroceptive-
interoceptive signals.

The R-PoCG contributes to the processing of sensory
data from various parts of the body (Kropf et al., 2019).
Additionally, the PoCG is the main sensory reception area for
touch, proprioception, pain, and temperature (Cauda et al.,
2009). Hu et al. (2018) demonstrated that patients with HM
had significantly decreased degree centrality (DC) values in
the R-PoCG, which confirmed sensorimotor network (SMN)
remodeling in such patients. Huang et al. (2016) reported that
patients with HM showed higher ALFF values in the R-PoCG.
Furthermore, Chen W. et al. (2021) found that patients with
thyroid-associated ophthalmopathy (TAO) had significantly
decreased DC values in the R-PoCG; the duration of illness was
negatively correlated with DC values in the PoCG. Additionally,
Zhen et al. (2018) revealed that patients with aMCI had
considerably higher ReHo values in the R-PoCG. Such localized
changes in FC imply that these networks simultaneously
experience functional deficiencies and compensation. In the
present study, we found that patients with HM had considerably
higher dReHo values in the R-PoCG, which suggests that
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behaviors in this brain area are reinforced. Thus, we speculate
that HM leads to increased R-PoCG activity, which may broadly
impair the processing of sensory information in patients with
HM. However, the increased dReHo value in the R-PoCG may
compensate for this reduced sensory processing ability.

The R-PreCG plays a critical role in sensorimotor processing
(Desmurget et al., 2014). Tong et al. (2021) demonstrated that
patients with iridocyclitis had significantly decreased ALFF
in the R-PreCG. Wang et al. (2021) reported that patients
with primary angle-closure glaucoma showed significantly
decreased fractional ALFF in the R-PreCG. Furthermore, Jiang
et al. (2021) revealed that, compared with HCs, patients with
diabetic optic neuropathy had significantly higher ALFF values
in the R-PreCG; they suggested that ALFF could be used
to distinguish patients with diabetic optic neuropathy from
individuals without the disease. Additionally, Duan et al. (2014)
found that patients with neuromyelitis optica (NMO) had
significantly decreased white matter volumes in the R-PreCG,
which indicated the presence of subtle white matter damage to
the motor, visual, and cognitive systems in such patients. Our
present findings indicated that the HM group had considerably
higher dReHo values in the R-PreCG, which suggests that
behaviors in this brain area are reinforced. Therefore, we
speculate that increased dReHo values in the R-PreCG lead to
deficits in the sensorimotor processing of patients with HM; the
increased dReHo values in the R-PreCG may compensate for
this reduced sensorimotor processing ability.

Importantly, this study had some limitations. First, patients
with HM in this trial were mostly young adults. Second, the
data were frequently affected by some unavoidable factors in the
fMRI environment (e.g., heartbeat, muscle beat, and respiratory
motion). Finally, the patients had various lengths of HM history,
which may have affected the accuracy of the findings. In future
studies, we plan to focus on including participants of all ages and
improving the test environment.

Conclusion

Our results suggest that, compared with HCs, patients
with HM have altered dReHo values in various brain regions,
which implies that HM causes extensive changes in dynamic
spontaneous brain activity; these changes presumably lead to the
corresponding clinical manifestations. Our findings offer new
insights into the causes and neural mechanisms of HM, and they
may serve as guidance for its diagnosis.
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