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Abstract: The removal of 5-methyl-deoxycytidine (mdC) from
promoter elements is associated with reactivation of the
silenced corresponding genes. It takes place through an active
demethylation process involving the oxidation of mdC to 5-
hydroxymethyl-deoxycytidine (hmdC) and further on to 5-
formyl-deoxycytidine (fdC) and 5-carboxy-deoxycytidine
(cadC) with the help of a-ketoglutarate-dependent Tet oxy-
genases. The next step can occur through the action of
a glycosylase (TDG), which cleaves fdC out of the genome
for replacement by dC. A second pathway is proposed to
involve C�C bond cleavage that converts fdC directly into dC.
A 6-aza-5-formyl-deoxycytidine (a-fdC) probe molecule was
synthesized and fed to various somatic cell lines and induced
mouse embryonic stem cells, together with a 2’-fluorinated fdC
analogue (F-fdC). While deformylation of F-fdC was clearly
observed in vivo, it did not occur with a-fdC, thus suggesting
that the C�C bond-cleaving deformylation is initiated by
nucleophilic activation.

The nucleobase modification 5-formyl-deoxycytidine (fdC,
1) is found in stem cells during early development and in the
brain.[1–5] These tissues are particularly rich in 5-hydroxy-
methyl-deoxycytidine (hmdC) from which fdC (1) is pro-
duced.[6, 7] The formation of hmdC and fdC requires oxidation
reactions that are performed by a-ketoglutarate-dependent
Tet enzymes, with 5-methyl-deoxycytidine (mdC) being the
initial starting molecule.[8–10] This cascade of oxidation reac-
tions is a part of an active demethylation process, in which
mdC as a silencer of transcription is replaced by unmodified
dC.[11] The central molecule that is removed seems to be

fdC.[12, 13] It can be cleaved out of the genome by a dedicated
DNA glycosylase, which creates an abasic site that is further
processed, leading to the insertion of an unmodified dC.[14]

Because abasic sites are harmful DNA-repair intermediates
that can cause genome instability, it was suggested early on
that fdC might be directly deformylated to dC by C�C bond
cleavage.[15, 16] Evidence for the existence of such a direct
deformylation process was recently reported.[17] Model stud-
ies showed that direct deformylation of fdC and potentially
also decarboxylation of 5-carboxy-deoxycytidine (cadC) are
indeed possible.[15] Nevertheless, it requires activation of the
nucleobase by a nucleophilic addition to the C6 position. For
fdC, an additional hydrate formation on the formyl group
seems to be necessary, as depicted in Figure 1A. Although
activation with a helper nucleophile is well known as the
central mechanistic process during the methylation of dC to
mdC by DNA methyltransferases (Dnmts),[18, 19] it remains to
be confirmed whether such activation occurs in vivo as well.

Figure 1. A) The mdC removal pathways that involve oxidation to
hmdC, fdC, and cadC followed by either base-excision repair (magenta)
or C�C bond cleavage (blue). B) Structures of fdC (1) and the two
probe molecules 2 and 3 used for this study.
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In this work, we investigated this hypothesis with two probe
molecules, 2’-fluorinated-fdC (F-fdC, 2) and 6-aza-fdC (a-fdC,
3). The two compounds were simultaneously fed to different
cell types, including primed stem cells. This led to random
incorporation of these bases at the “C” sites in the respective
genomes. Furthermore, it led to the presence of F-fdC and a-
fdC not only at CpG sites. Ultrasensitive UHPLC-QQQ-MS2

was subsequently used to interrogate the chemical processes
that occur at F-fdC and a-fdC in the genomes. The data show
that while F-fdC is efficiently deformylated, this does not
occur for a-fdC. The only difference between the two
nucleobases is the presence of an in-ring nitrogen atom (6-
aza atom), which features a lone pair that prohibits nucleo-
philic addition. These results thus provide strong evidence
that nucleophilic activation is the central governing mecha-
nistic event that is required for C�C bond cleavage in vivo.

The fluorinated nucleoside F-fdC (2) was recently intro-
duced by us as a deformylation probe.[17] Compound 2 is an
antimetabolite that is effectively incorporated into the
genomes of growing cells. The 2’-fluoro group is required to
block all types of glycosylases, so that base-excision repair is
efficiently inhibited. This ensures high levels of F-fdC (2) in
the genome, as required to observe potential deformylation
processes.

The synthesis of the novel nucleoside a-fdC (3) is depicted
in Scheme 1. The synthesis was started with bromo pyruvic
acid (4), which we first converted into the semicarbazone 5,
followed by conversion into the acid chloride, subsequent
cyclization, and hydrolysis to give hydroxymethylated 6-aza-
uracil (6).[20] Vorbr�ggen nucleosidation with Hoffers� chlor-
osugar subsequently provided the nucleoside 7 as a mixture of
the a- and b-anomers, which could be separated by recrystal-

lization. Next, we acetyl-protected the hydroxymethyl group
to give 8, and then used a standard procedure to convert the U
base 8 into the C-derived base 9 by amination of the 4-triazole
intermediate with ammonium hydroxide. This led to the
concomitant cleavage of the acetyl protecting group. Dess–
Martin oxidation of 9 to 10 and final removal of the toluoyl
groups furnished the 6-aza-5-formyl-deoxycytidine nucleo-
side (a-fdC) 3 in a good total yield of 22 % with respect to 6
(Supporting Information).

Compound 3 features a nitrogen atom instead of a carbon
atom at the 6-position, which possesses a lone pair that blocks
any nucleophilic addition to this position. Compound 3 is
consequently a perfect model system to investigate whether
such a nucleophilic activation is required for the deformyla-
tion, as mechanistically postulated (Figure 1A).

The nucleosides 2 and 3 were subsequently added at
a concentration of 350 mm to the media of Neuro-2a, RBL-
2H3, CHO-K1 cells for 72 hours (see the Supporting Infor-
mation). During this time, the nucleosides are converted
in vivo into the corresponding triphosphates and then incor-
porated into the genome of the dividing cells. Initial studies in
which we fed the nucleosides individually allowed us to
determine that neither compound decreases cell viability up
to a concentration of 400 mm, thus the experiments were
conducted below the toxicity level. In addition, we tested 2
and 3 at 350 mm on E14 TDG +/� and �/�mouse embryonic
stem cells (mESCs) under a three-day priming process with C/
R media. This system allowed us to exclude the BER pathway,
leading to a detectable and quantifiable accumulation of
natural fdC (see the Supporting Information). After three
days, the cells were harvested and lysed, and the genomic
DNA was extracted using an optimised protocol (see the
Supporting Information). This was followed by an enzymatic
digestion of gDNA to single nucleosides and analysed
according to a method that we reported recently in detail.[21]

The obtained nucleoside mixture containing mostly the
canonical nucleosides dA, dC, dG, and dT, plus the non-
canonical nucleosides mdC, hmdC, and fdC, as well as the
incorporated molecules F-fdC and a-fdC and their potential
downstream products (F-dC, F-mdC, a-dC, a-mdC). Nucleo-
sides were separated by ultra-HPL chromatography and
characterized by coupling of the UHPLC system to a triple-
quadrupole mass spectrometer. For exact quantification of
the nucleosides by isotope dilution, isotopically labelled
standards of F-fdC and of the product F-dC were spiked
into the analysis mixture as internal standards (see the
Supporting Information). To enable exact quantification,
calibration curves using these standards were determined
(see the Supporting Information). Quantification was per-
formed in the linear region.

During the analysis, we noted that an unusually low
amount of a-fdC (3) was detected because it showed a broad
elution profile with very low intensity (Figure 2B). All
attempts to sharpen the elution profile in order to gain
sensitivity failed. NMR analysis of compound 3 showed the
reason for broad elution profile (see the Supporting Informa-
tion). Due to the additional electron-withdrawing in-ring
nitrogen atom, compound 3 exists partially as its hydrate in
aqueous solution (20 %, see the Supporting Information).

Scheme 1. Synthesis of the probe molecule a-fdC (3). a) semicarbazi-
de·HCl, NaOAc, HOAc, H2O, 0 8C to r.t. , 2.5 h, 49 %. b) pyridine,
SOCl2, 80 8C, 75 min. c) H2O, 110 8C, 17 h, 74% over 2 steps.
d) TMSCl, HMDS, 135 8C, 75 min, then e) Hoffer’s chlorosugar, CHCl3,
r.t. , 17 h, 56 % over 2 steps. f) Ac2O, pyridine, r.t. , 22 h, 96 %. g) 1,2,4-
triazole, POCl3, NEt3, MeCN, 0 8C to r.t. , 18 h, then h) NH4OH, 1,4-
dioxane, 40 8C, 5 h, 84%. i) Dess–Martin periodinane, CH2Cl2, �15 8C
to r.t. , 1 h, 89%. j) NaOMe, MeOH, benzene, r.t. , 1.5 h, then
k) reversed-phase HPLC, 54 %.
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Although the ease of hydrate formation may foster deformy-
lation, the hydrate/carbonyl equilibrium makes efficient
detection of compound 3 basically impossible. In order to
circumvent the problem, we started to derivatize a-fdC (3)
before analysis with methoxyamine. Addition of CH3ONH2

(150 mm) to the digestion solution indeed provided the
methoxyoxime of a-fdC in quantitative yield after just
15 min at 25 8C and pH 10. The naturally present fdC (1)
and the probe molecule F-fdC (2), however, react as well, but
unfortunately not quantitatively. To reduce impurities during
MS measurements, we decided against using a catalyst for
oxime formation. We therefore decided to analyse the
digested DNA in two batches. The first one contained the
digested untreated DNA to quantify all bases other than a-
fdC. In the second batch, we treated the digested DNA with
methoxyamine for a-fdC quantification. For quantification of
the derivatized a-fdC, we constructed an external calibration
curve (see the Supporting Information).

With this method in hand, we next quantified all nucleo-
sides present in the genome of the cells treated with a mixture
of 2 + 3.

Figure 3A shows that we indeed detected the fluorinated
F-dC (2), thus confirming very efficient deformylation
activity. We tested different cell types and found different
levels of deformylation activity. But in all cases, the con-
version of F-fdC into F-dC was clearly detectable. Most
interesting is that we observed the highest deformylation
activity in cells associated with neuronal properties. This is in
line with neurons featuring the highest levels of hmdC and
fdC. In contrast, Figure 3B shows that for a-fdC (3), we were
unable to detect any formation of the deformylated com-
pound a-dC despite the high propensity of 3 to exist in the
hydrated form, which is one prerequisite for efficient C�C
bond cleavage. This result suggests that the ability to react

with a nucleophile at the 6-position is also required in vivo for
efficient deformylation.

In order to substantiate this result, we next performed
in vitro studies with bisulfite. Bisulfite is a strong nucleophile
that has been reported to cause deformylation of fdC by first
attacking the C6 position, followed by conversion of the
C5, C6-saturated fdC adduct into the bisulfite adduct, which
then undergoes deformylation.[22] The deformylated product
dC is then further converted into dU by the well-known
bisulfite-induced deamination reaction of dC (see the Sup-
porting Information). Indeed, when we reacted fdC with
bisulfite, we observed efficient deformylation and deamina-
tion to dU. We then studied to what extent the reaction is
influenced by the 2’-F atom present in F-fdC, in order to
estimate whether the in vivo deformylation could be just the
result of the 2’-F atom. Treatment of F-fdC with bisulfite also
led to deformylation and deamination to F-dU, and indeed
the reaction is a little faster compared to fdC (see Figure 3C).
Although the difference is measurable, it is in total rather
small. With these data in hand, we can conclude that we may
overestimate the amount of deformylation that can occur with
fdC lacking the 2’-F atom. We can certainly exclude that
deformylation in vivo occurs only with F-fdC. It is unfortu-
nate that we are unable to measure the direct deformylation
of fdC because of the presence of efficient BER processes. A
TDG �/� cell line showed a huge increase in fdC compared
to the TDG +/�, whereas a-fdC and F-fdC stay constant, thus
showing that these compounds are indeed not repaired by the

Figure 2. A) Overview of the experimental steps with the feeding and
analysis. B) Analysis scheme and the reaction of a-fdC with methoxy-
amine to block hydrate formation and of a typical UHPL-chromato-
gram before (C-8 column) and after derivatization (C-18 column) for
exact quantification. Peak splitting is due isomerization (blue peaks: a-
fdC, red peaks: fdC, and purple peaks: F-fdC).

Figure 3. A) Deformylation data for F-fdC in different cell types, show-
ing that F-fdC is deformylated in very different cells. Deformylation rate
was calculated by the F-dC + F-mdC/dN per F-fdC/dN, then the values
were normalized to the cell line with the lowest deformylation level
(CHO-K1= 1). B) The deformylation of F-fdC/dG and a-fdC/dG, show-
ing the induced differences due to C6-carbon-to-nitrogen exchange.
C) The bisulfite data show that the deformylation of fdC and F-fdC is
comparable, thus showing that the 2’-F substitution has only a small
accelerating effect, whereas the reaction of a-fdC could not be
detected.
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TDG protein (see the Supporting Information). The bisulfite
studies, however, show that the F-fdC compound is not
a perfect but sufficient reporter of this C�C bond cleavage.
Treatment of a-fdC (3) with bisulfite did not provide the
deformylated product a-dC under any circumstances, showing
that the inability to react with a nucleophile at the 6-position
totally blocks the C�C bond cleavage. We can therefore
conclude that the deformylation of fdC during active deme-
thylation requires oxidation of mdC to fdC. fdC can undergo
a direct C�C bond cleavage to dC, but this reaction requires
a helper nucleophile to attack the C6-position, which is
blocked in the case of a-fdC by the lone pair introduced by the
C6-carbon-to-nitrogen exchange. While the chemistry that
allows the transformation of fdC into dC is now elucidated,
we next need to find the nucleophiles that perform the
reaction in vivo.
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Rev. 2012, 41, 6916 – 6930.

Manuscript received: January 9, 2020
Accepted manuscript online: January 30, 2020
Version of record online: February 25, 2020

Angewandte
ChemieCommunications

5594 www.angewandte.org � 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2020, 59, 5591 –5594

https://doi.org/10.1002/anie.201502722
https://doi.org/10.1002/anie.201502722
https://doi.org/10.1002/ange.201502722
https://doi.org/10.1093/nar/gkt360
https://doi.org/10.1093/nar/gkt360
https://doi.org/10.1016/j.cell.2013.04.001
https://doi.org/10.1002/anie.201103899
https://doi.org/10.1002/anie.201103899
https://doi.org/10.1002/ange.201103899
https://doi.org/10.1038/nchembio.1848
https://doi.org/10.1038/nchembio.1848
https://doi.org/10.1126/science.1169786
https://doi.org/10.1002/anie.201101547
https://doi.org/10.1002/anie.201101547
https://doi.org/10.1002/ange.201101547
https://doi.org/10.1016/j.cell.2013.02.004
https://doi.org/10.1126/science.1210597
https://doi.org/10.1016/j.celrep.2015.01.008
https://doi.org/10.1016/j.celrep.2015.01.008
https://doi.org/10.1002/anie.201605994
https://doi.org/10.1002/anie.201605994
https://doi.org/10.1002/ange.201605994
https://doi.org/10.1039/C9SC02807B
https://doi.org/10.1039/C9SC02807B
https://doi.org/10.1021/jacs.7b04131
https://doi.org/10.1021/jacs.7b04131
https://doi.org/10.1021/ja403229y
https://doi.org/10.1021/ja403229y
https://doi.org/10.1002/anie.201202583
https://doi.org/10.1002/anie.201202583
https://doi.org/10.1002/ange.201202583
https://doi.org/10.1038/nchembio.2531
https://doi.org/10.1002/1439-7633(20020402)3:4%3C274::AID-CBIC274%3E3.0.CO;2-S
https://doi.org/10.1073/pnas.1522491113
https://doi.org/10.1073/pnas.1522491113
https://doi.org/10.1038/s41596-018-0094-6
http://www.angewandte.org

