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ABSTRACT
Background and objective Short-read sequencing is
becoming the standard of practice for the study of
structural variants associated with disease. However,
with the growth of sequence data largely surpassing
reasonable storage capability, the biomedical community
is challenged with the management, transfer, archiving,
and storage of sequence data.
Methods We developed Hierarchical mUlti-reference
Genome cOmpression (HUGO), a novel compression
algorithm for aligned reads in the sorted Sequence
Alignment/Map (SAM) format. We first aligned short
reads against a reference genome and stored exactly
mapped reads for compression. For the inexact mapped
or unmapped reads, we realigned them against different
reference genomes using an adaptive scheme by
gradually shortening the read length. Regarding the base
quality value, we offer lossy and lossless compression
mechanisms. The lossy compression mechanism for the
base quality values uses k-means clustering, where a
user can adjust the balance between decompression
quality and compression rate. The lossless compression
can be produced by setting k (the number of clusters) to
the number of different quality values.
Results The proposed method produced a compression
ratio in the range 0.5–0.65, which corresponds to 35–
50% storage savings based on experimental datasets.
The proposed approach achieved 15% more storage
savings over CRAM and comparable compression ratio
with Samcomp (CRAM and Samcomp are two of the
state-of-the-art genome compression algorithms). The
software is freely available at https://sourceforge.net/
projects/hierachicaldnac/with a General Public License
(GPL) license.
Limitation Our method requires having different
reference genomes and prolongs the execution time for
additional alignments.
Conclusions The proposed multi-reference-based
compression algorithm for aligned reads outperforms
existing single-reference based algorithms.

BACKGROUND AND SIGNIFICANCE
Massively parallel sequencing is leading revolution-
ary advances in biology and helping unravel the
genetic basis of disease.1 With the advent of next
generation sequencing (NGS) technologies sup-
ported by companies such as Helicos Biosciences,
Pacific Biosciences, and Illumina, the cost of
sequencing the whole genome has decreased dra-
matically in the past few years and it is expected to
drop below $1000 per individual in the near
future.
However, the massive amount of data produced

by whole genome sequencing is becoming a large

burden for data storage and transmission. For
example, the DNA of an individual is comprised of
two complementary copies of more than 3.2 GB of
bases. Today, the 1000 Genomes Project2 has pro-
duced more than 50 TB of data for 1092 indivi-
duals from 14 populations, and is quickly moving
toward the goal of sequencing 2500 people.3 Many
other genome data repositories are also expanding
quickly. For example, the size of the Sequence Read
Archive (SRA), a public repository of sequencing
data, will exceed 1000 TB by the end of 2013.4

Although the storage capacity keeps increasing, it
cannot catch up with the speed of sequencing data
generation. Thus, advanced genome compression
mechanisms need to be developed to reduce the
storage and reduce the bandwidth that is necessary
for transferring genome data.
Sequence alignment is the first and essential step

in genome analysis. Alignment tools like BLAST,5

CUDASW++,6 or Bowtie,7 8 9 take advantage of
the fact that the nucleotide diversity within the same
species is relatively small—the difference in humans
is around 0.1%, that is, 1 base difference per
1000.10 Two formats, FASTQ and Sequence
Alignment/Map (SAM) are becoming the industry
standards for NGS data. FASTQ, which is a
common input to alignment tools, is a text-based
format for storing a biological sequence and its cor-
responding quality scores. The SAM file, which is an
output from the alignment tool, follows a
TAB-delimited text format consisting of an optional
header section and an alignment section. Each align-
ment line has a variable number of optional fields or
aligner-specific information, and 11 mandatory
fields with essential alignment information, such as
the mapping position. A SAM file is commonly
compressed in the Blocked GNU Zip Format
(BGZF) format and converted to a smaller binary
BAM file,11 which is supported by Illumina GA/
HiSeq12 and Roche 454.13 In this study, our core
compression algorithm focuses on the SAM format.

Related work
There are some analysis toolkits that deal with
NGS data, such as Goby14 and GATK15 16 for
alignment data. Sakib et al17 presented a specific
encoding scheme SAMZIP for SAM files by
exploiting knowledge of the SAM format and its
specifications. It processes each field independently
using encoding techniques such as run-length
encoding (RLE), delta encoding, Huffman coding,
and dictionary coding. The SLIMGENE algorithm
implemented by Kozanitis et al in collaboration
with iDASH (a national center for biomedical com-
puting)18 can achieve 40× compression ratio (CR)
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of genomic fragments without quality values and 5× CR when
quality values are included. Hach et al19 introduced another
compression approach called SCALCE, for HTS (high through-
put sequencing) genome (or transcriptome, exome, etc)
sequences. HTS is based on the reorganization of reads to boost
the locality of reference. The aforementioned algorithms com-
press genome data by exploring the redundant structure of the
target, however they do not take full advantage of publicly avail-
able genome information.

Recently, Fritz et al20 presented a reference-based compres-
sion method called CRAM. CRAM demonstrated a high CR by
enabling lossy compression on the quality information and
unaligned sequences. CRAM remaps unmapped reads (UMRs)
using a secondary compression framework that remaps the
unaligned reads again to other reference sequences.

Regarding lossless compression algorithms for FASTQ and
SAM/BAM formats, Quip, which was proposed by Jones et al,21

is one of the first assembly-based compressors using a de novo
assembly algorithm. Later on, Popitsch et al22 presented another
set of lossless and lossy compressors called NGC. The NGC
algorithm improves the compression efficiency by exploiting the
redundancy within the common features of reads that are
mapped to the same genomic positions, followed by a highly
configurable strategy for quantizing per-base quality values.
Samcomp, introduced by Bonfield et al,23 uses the SAM flags,
position, and cigar strings to anchor each called base to a refer-
ence coordinate and encodes the base according to a per-
coordinate model. The accuracy and compression performances
rely on the availability of aligned data at each specific reference
coordinate.

The algorithms listed above either rely on a single reference
genome or generate a de novo assembly that is entirely self-
contained to align the target sequence for compression.
However, such strategies usually result in a low rate of exact
mapped reads (EMRs), because the compression of inexact
mapped reads (IMRs) (ie, reads with four or fewer mismatches)
and UMRs (ie, reads with more than five mismatches) usually
requires more bits than the compression of EMRs. In contrast,
we aim at improving compression efficiency by increasing the
rate of EMRs by considering alternative references. Our strategy
relies on sequentially mapping reads against multiple reference
genomes as well as on an adaptive read length shortening
mechanism.

Our proposed algorithm, Hierarchical mUlti-reference
Genome cOmpression (HUGO), compresses a SAM format file
sorted by position within the reference by extracting the 11
mandatory fields and a variable number of optional fields into
12 separate files. Because all these fields have low inter-
correlations,17 we can process each field in parallel. The work-
flow of the proposed algorithm is shown in figure 1. Since the
‘Sequence’ and the ‘Quality value’ fields represent more than
50% of the total data and are usually hard to compress (due to
lack of regularity), we concentrate on the compression of these
two difficult fields. For the ‘Sequence’ field, we align the reads
against the reference sequence using SOAP3,24 a Binary
Alignment/Map, and Graphic Processing Unit (GPU)-based
aligning software, where the alignment information for the
EMRs is recorded for compression. SOAP324 can be 20× faster
than CPU-based tools like BWA or Bowtie. Since HUGO is
designed to conduct several rounds of alignments, speed is of
critical concern. We realign the IMRs and UMRs to different
reference sequences, which, combined to an adaptive read
length shortening mechanism, turns these reads into EMRs. For
the ‘Quality’ field, we further propose a lossy quantization

approach using the k-means clustering algorithm and investigate
its impact on downstream applications. For the remaining fields
in the SAM file, we explore their self-regularity and interrela-
tionship, and then adopt appropriate compression algorithms
for each of them.

MATERIALS AND METHODS
Datasets
The datasets are taken from several types of NGS datasets.
Sequences whose names started with ‘NA’ or ‘HG’ were taken
from the 1000 Genomes Project. The remaining sequences were
from the SRA under study numbers/run accession numbers:
ChIP-Seq (mouse): SRX014899/SRR032209; RNA-Seq
(Escherichia coli): ERX007969/ERR019653. Additionally, we
used the HCC1954 genome from the University of California,
Santa Cruz mixed spike-in low coverage sample for the Cancer
Genome Atlas Benchmark 4, found at https://cghub.ucsc.edu/
datasets/benchmark_download.html.

Methods
The SAM format has one header section with approximately
100 lines in total, and one alignment section. The header
section can be identified by the prefix character ‘@’. Each align-
ment record in the alignment section consists of 11 mandatory
fields and a variable number of optional fields. As mentioned
earlier, since there are very low inter-field correlations,17 we can
independently process each field in parallel. We can thus reduce
the time used for compression. Since this paper mainly focuses
on the compression of ‘Sequence’ and ‘Quality value’ fields, a
review of classic encoding schemes for the remaining fields in
the SAM format is shown in online supplementary appendix 1.

Sequence field encoding design
Our method focuses on the efficient compression of genome
sequences by seeking the best match among multiple reference
genomes. The rationale for using a reference genome to
improve compression performance is mainly based on the fact
that the nucleotide diversity within human species is relatively
small, so most reads in a re-sequencing run can find EMRs or
IMRs within the reference sequences. Although a part of differ-
ences between the reads and the reference genome stems from
sequencing errors instead of genetic variations, the ratios among
EMRs, IMRs, and UMRs for a given set of input sequence
usually vary considerably for different references that are used
in the alignment, since different references usually reflect differ-
ent sample characteristics, such as ethnicity of the sample
donor. Figure 2 shows an example of the alignment results for
NA12878chrom2025 against four different reference sequences:
hg18, hg19, HuRef chromosome 20, and HuRef (see online
supplementary appendix 4 for details of these references).

Given the short reads from the 1000 Genomes sample
NA12878,25 the reference genome hg19 shows the highest rate
of EMRs when compared to the other three references due to
its completeness and integrity. However, there are still more
than 25% reads partially mapped or unmapped. Existing
genome compression methods handle IMRs and UMRs either
(a) in their original format (eg, NGC) by storing UMRs in BAM
format while quantizing their quality values in lossy compres-
sion modes, or (b) in a lossless manner (eg, SLIMGENE and
CRAM) by introducing extra bits to record the mismatches.
Original storage of IMRs and UMRs in BAM format usually
achieves a low compression rate, and lossy quantization of
quality values is not always favored by researchers who require
lossless recovery of quality values for their downstream
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applications. Although the existing lossless compression algo-
rithms for IMRs and UMRs preserve the best data utility, they
usually require a large amount of extra bits, and therefore they
deteriorate the compression performance. For example, in order
to encode IMRs/UMRs, the information about IMRs/UMRs’
positions, strands (forward mapping or inverse mapping), substi-
tutions, insertions, or deletions need to be recorded. In fact,
such approach may not be the most efficient way to handle

IMRs/UMRs, since a long IMR/UMR could be represented by
multiple EMRs with shorter length in the same reference, which
require fewer bits and usually result in better compression effi-
ciency. Figure 2 illustrates that different references can provide
different alignment coverage for a given set of input sequences.
In other words, an IMR/UMR that cannot find an exact match
in one reference might be perfectly aligned with another refer-
ence, or broken down into a smaller sequence that is an EMR.

Figure 1 The framework for the proposed genome compression algorithm. The input file first goes through the exact matching scheme (leftmost
branch) to iteratively identify matched sequences with reduced length. Unmatched sequences below a certain length threshold are compressed by
PPMVC (command line parameter is ‘e’), a variant of Prediction by a partial matching (PPM) algorithm27 based on context modeling and prediction.
The remaining fields, except for the quality value, are handled by regularity based coding (middle branch). We support two versions of quality value
compression: (1) lossy version using k-means clustering and multi-thread PPMVC (command line parameter is ‘e –o4 –r1’), (2) lossless version with
multi-thread PPMVC (command line parameter is ‘e –o4 –r1’) only (rightmost branch).

Figure 2 Alignment results of
NA12878chrom20 against the four
references. hg18 (upper-left), hg19
(upper-right), HuRef chromosome 20
(lower-left) and HuRef (lower-right).
Each pie chart depicts the percentage
of exact mapped reads (EMRs) with 0
mismatch, IMRs with 1 to 4
mismatches, and unmapped reads
(UMRs) with more than 4 mismatches.
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Based on the above observations, we propose a HUGO frame-
work that incorporates mapping to alternative references as well
as an adaptive read length shortening scheme to improve the
compression performance for IMRs/UMRs.

Figure 3 shows an example of aligning the input file
NA12878chrom20 against two references, hg19 and HuRef,
using the read length shortening scheme, where IRMs or UMRs
generated from hg19 are first shortened by half and realigned
against hg19 or HuRef. Then, the HUGO encoder keeps redu-
cing the lengths for all new generated IMRs/UMRs and realign-
ing shorter reads until it reaches a predetermined threshold. We
can see that the proportions of IMRs and UMRs decrease grad-
ually as the read length gets shorter. In particular, the percent-
age of UMRs reduces to 0 when the read length is shortened to
19, as shown in figure 3.

Although figure 3 illustrates the advantages of multi-reference
alignment and of a length shortening scheme for reducing the
rate of IMRs and UMRs, it still shows each reference being con-
sidered independently. In figure 4, we explain how to build a
hierarchical framework that can interactively select the best ref-
erence. In this case, we use HG00096chrom11 sequence25

against two references, hg19 and HuRef. For example, in the
second iteration, since the percentage of EMRs aligned by
HuRef.fa (ie, 14.57%) is higher than that of hg19.fa (ie,
12.5%), the HUGO codec will pick HuRef.fa as the best refer-
ence for read length L = 50. Following the same procedure,

figure 4 shows that a 99.99% EMRs rate, which is the sum over
all the percentages in green, is achieved within four iterations. If
two candidate references lead to the same EMRs rates, as shown
in iteration 4 in figure 4, the reference that requires less infor-
mation to represent EMRs will be selected. In practice, the
EMRs rate in HUGO framework usually increases when
sequences that are biologically more similar to that of the
sample are utilized. In SOAP3, each EMR is represented by a
very efficient data structure, a tetrad of {Read ID, Chrome Id,
Offset, Strand}, where the encoding method for each field in
the tetrad is presented as follows:

Read ID: This field refers to the read identifier of an EMR in
original sequence. Since the read ID of an EMR is usually adjacent
to another (refer to online supplementary figure S3 in appendix
3), we only need to calculate the differences of read IDs between
adjacent EMRs through Delta coding. Next, Huffman coding is
used to encode these differences, where the empirical statistic indi-
cates that most differences are equal to or less than 2.

Chromosome ID: This field represents the chromosome iden-
tifier by which an EMR has been aligned. The vast majority of
EMRs within the same sequence region are aligned to the same
chromosome. Thus, run length encoding (RLE) is used to com-
press such identifiers. For example, an input data ‘wwwwddddd’
can be encoded as ‘w4d5’ in RLE.

Offset: This field indicates the leftmost position that the exact
alignment occurs in the designated chromosome of the

Figure 3 An example of aligning the input file NA12878chrom20 against two references, hg19 and HuRef. Exact mapped reads (EMRs)/IRMs and
unmapped reads (UMRs) generated from hg19 are shortened and passed through the realignment module against hg19 and HuRef. Since each read
length shortening step will double the number of IMRs/UMRs, we also double the y-axis limits to maintain an effective visual scale.
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reference sequence. Our experiments indicate that the offset
positions of adjacent EMRs are close to each other (see online
supplementary figure S3 in appendix 3). Similarly to the Read
ID case, we also apply Delta coding and Huffman coding to cal-
culate and encode these differences.

Strand: This field consists of two identifiers, ‘+’ and ‘−’.
They represent the forward mapped read and reverse comple-
mentary mapped read, respectively. RLE is selected for its
compression.

Since the current release of 1000 Genome data is generated
from Illumina sequencers, where the read lengths usually range
from 70 to 120 bp, the final read lengths after three
read-length-shortening iterations will range from 17 to 30 bp.
As observed in our experiments, further length splits with more
than three iterations can only lead to a very little compression
gain, but result in a high increase in time to compress. Thus, a
maximum of three iterations will be used in our codec. For
IMRs and UMRs generated in the last iterations, we encode
them through the PPM (prediction by partial matching) algo-
rithm.26 27 The details of PPM can be found in online supple-
mentary appendix 1.

It is worthwhile noting that Fritz et al have proposed to
remap UMRs in CRAM using a secondary compression frame-
work that may be built from multiple datasets, including an
alternative human sequence. However, our HUGO approach
differs from CRAM in three main aspects:
1. Unlike our hierarchical structure, CRAM only remaps the

unaligned reads once to either contiguous sequences that are
present across the first mapping or to another human

sequence (eg, HuRef), and only later tries to map these
reads to all bacterial and viral sequences to account for
potential laboratory or sample contamination.

2. Given that it does not employ the length-shortening proced-
ure from our approach, CRAM’s remapping operation can
not map as many unaligned reads as our proposed method.

3. CRAM has not implemented its multi-reference slices even
in the latest V.2.0. The efficiency of this proposal special
framework has not been tested. Hence, the multi-reference
idea does not seem to have been put into practice yet.

Quality value field encoding design
The proposed strategy for the quantization of quality values
seems related to the NGC’s quantization ‘binning’ scheme.
However, NGC determines the quantization borders by mapping
all quality values that lie within an interval to a single value
within this interval, and by allowing the application of different
quantization schemas to quality values of different categories. In
contrast, the proposed method automatically determines the
quantization borders through a k-means clustering method to
minimize the quantization error of all quality values by minimiz-
ing the within-cluster sum of squares (WCSS) of the errors.

For sequencing data from a Illumina sequencer, the original
phred quality values (Qphred) range from 0 to 93, where most of
them are invisible ASCII characters. A shifted ASCII quality value
QASCII from 33 to 126 is introduced in equation (1), where Pe
represents the error probability of the corresponding base-call. In
practice, QASCII has a wide value range and follows a
quasi-random distribution, which results in high entropy, making

Figure 4 The procedure of aligning the input sequence HG00096chrom11 with references hg19 and HuRef. Here, a 99.99% exact mapped reads
(EMRs) rate, which is the sum over all the percentages in green, is achieved in 4 iterations. The sequence length starts with L = 100 and the lengths
of IMRs and unmapped reads (UMRs) are shortened by half after each iteration until L = 12 or 13. At each iteration, the reference, which leads to a
lower IMRs/UMRs rate (as shown in red), will be selected as the current reference.
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it hard to efficiently compress the Quality value.17 21 28 29

Therefore, the best practice in most existing genome compression
schemes20 22 28 is to compress QASCII in a lossy manner, which
provides a trade-off between compression performance and data
utility.

QASCII ¼ Qphred þ 33; Pe ¼ 10�
QASCII�33

10 ;

Qphred ¼ �10log10Pe
ð1Þ

However, the most important question for such a method is
whether the information loss due to lossy compression on quality
values will have a large impact on the results of downstream
applications, such as software for variant calling,16 genotype
calling, and for removal of potential PCR duplicates,30 which
consider the quality values as an authoritative inference. To allow
a flexible adjustment between the compression efficiency and the
data utility for downstream applications, we present a user-
configurable quantization scheme for the lossy compression of
Q-value through k-means clustering. Assume an individual has
the total Lr¼

PW
t¼1 mt quality values, where a read t has length

mt and the total number of reads is W. The whole Lr quality
values are reduced to n unique ones QASCII by {q1,q2,qj,…qn},
where each qj appears numj times in W reads. The k-means clus-
tering aims at partitioning Lr quality values into k clusters, so that
the quality values within the same cluster can be replaced by the
quality values of the cluster center.31 We can minimize the WCSS
in terms of the error probability:

argmin
S

Xk

i¼1

X

qj[Si

10�
qj�33

10 � 10�
ui�33
10

����

����

����

����
2

� numj ð2Þ

Where ui is the cluster mean of points in Si and the exponential
terms come from the definition in equation (1). Algorithm 1 in
box 1 shows the proposed k-means clustering scheme for
Q-value quantization and compression.

Based on algorithm 1, the quantization result after k-means
clustering is shown in figure 5, where k = 10 and the input file
is NA12878chrom20. In figure 5, the value of each cluster
center is shown in red and qj’s within the same cluster are
depicted in the same color. Online supplementary table S1 in
appendix 3 illustrates the trade-offs between the compression
performance using bzip2 and the quantization error in terms of
mean absolute percentage error (MAPE) after k-means cluster-
ing for quality values. Although it decreases the storage by more
than 50% with k = 5, the MAPE increases to 27.49%. This
result indicates that the proposed quantization method might
generate too much noise for small k’s. A more important effi-
cacy measurement is the impact of the lossy scheme to the
downstream applications, especially variant calling. We tested
such impact in the following section. Finally, it is worth men-
tioning that the proposed algorithm is equivalent to a lossless
compression scheme without quantization when the k value is
set to the number of unique quality values, which is 51 in this
case.

The influence of quantizing per-base quality values on
downstream analysis
We used a popular variant calling tool, SAMTOOLS, for testing
the variant and genotype prediction. The resulting variant sets
from the file that was decompressed from the lossy compressed
BAM file were then compared with the ones obtained from

uncompressed datasets that served as our ‘gold standard’. If the
variant sets obtained from these two inputs show very similar
results, we can declare that the lossy quantization of quality
values has little influence in the downstream analysis. We
counted the number of recovered (ie, tp: true positive), lost (ie,
fn: false negative), and additional (ie, fp: false positive) variants,
and recovered invariants (ie, tn: true negative). Then, we
defined the variant recovery precision as tp

tpþfp, the sensitivity

(a.k.a. recall rate) as tp
tpþfn, the genotype preservation percentage

as 1� cgt
tp , and the specificity as tn

tnþfp following the specifica-
tions,22 where cgt is the number of variants from the set of true
positives that changed their genotype classification from homo-
zygous to heterozygous or vice versa.

The variant recovery precision and sensitivity analysis reveal
how much k-means clustering quantization has to sacrifice in
terms of false positive and false negative calls. The genotype
preservation percentage indicates how well each quantization
mode preserves the predicted genotype of called variants. The
variant recovery specificity measures the proportion of negatives
(ie, invariants) which are correctly identified. In figure 6, we
plotted the percentage of these four statistical measures
for NA12878chrom20 and HG00096chrom11, respectively.
The specific statistics of these four statistical measures corre-
sponding to figure 6 are included in supplementary table S2 in
appendix 3. Figure 6 shows that, as expected, with lower k’s (ie,
higher CRs) one can observe more fpþ fn as well as less tpþ tn
with incorrectly predicted genotypes. However, it does not
mean that tp (or tn) with lower k is smaller or fp (or fn) with
lower k is larger than that with higher k, which can be also
inferred from online supplementary table S2. That is why
HUGO_L with six clusters (ie, HUGO_L(6)) performs worse
than the situation with one and two clusters in terms of variant

Box 1 The algorithm description of the proposed
k-means clustering scheme for Q-values’ quantization and
compression.

Algorithm 1: Proposed k-means clustering scheme for Q-values’
quantization and compression
1. Initiate the set of k means Uð1Þ ¼ fu(1)1 ; u(1)2 ; . . . ; u(1)k g.
2. while the set of k cluster center UðtÞ = Uðt�1Þ do
3. Assignment step: Assign each observation to the cluster

whose mean is closest.

4. S(t)i ¼ fqp : 10�
qp�33
10 � 10�

u(t)
i
�33

10

�����

�����

� 10�
qp�33
10 � 10�

u(t)
j
�33

10

�����

�����; 81 � j � kg

5. Update center step: Calculate the new means to be the
centroids of the observations in the new clusters.

6. u(tþ1)
i ¼ �10 � logð 1

jS(t)i j
X

qj[S(t)i

ð10�
qj�33

10 � numjÞÞ þ 33

7. end while
8. Calculate the mean absolute percentage error (ie, MAPE):

9. MAPE ¼ 100P
qi
numi

�
Xk

i¼1

X

qj[Si

10�
qj�33

10 � 10�
ui�33
10

10�
qj�33

10

������

������
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recovery precision and variant recovery specificity. In any case,
in figure 6, when k ≥ 10 the proposed algorithm results in rea-
sonable accuracy (ie, the accuracy rates of four statistical mea-
sures are all above 95%). HG00096chrom11 generates more
accurate results than NA12878chrom20 using the same lossy
mode k. Moreover, the proposed lossy quality values quantiza-
tion schemes outperform the lossy mode of CRAM (ie,

CRAM-l) with higher variant recovery, higher variant recovery
specificity, and higher genotype preservation rates. However,
HUGO_L(1) and HUGO_L(2) show lower variant recovery sen-
sitivity (ie, more false negatives) than CRAM-l. Clearly, there is
not a single winner but our experiment empirically suggests that
we can reduce storage without sacrificing much data utility by
selecting the appropriate cluster number k.

Figure 5 The distribution of k-means
clustering results with k=10. The
vertical axis shows the occurring times
for each quality value in the log scale.
Since n is 51 in this sample, there is a
corresponding number of unique
quality values in the original ‘Quality
value’ field, and we quantize these
integers into 10 clusters (red bars)
using the k-means clustering scheme.
Quality values in the same cluster are
depicted by the same color.

Figure 6 The impact of lossy compression on variant callings based on (left) NA12878chrom20 and (right) HG00096chrom11 sequences using
SAMTOOLS. Here ‘Hierarchical mUlti-reference Genome cOmpression (HUGO)’ refers to the lossless compression of quality values. ‘HUGO_L’ refers to
the lossy compression of quality values using the k-means algorithm, and the number in the bracket indicates the value of k. ‘CRAM-l’ is the lossy
mode of CRAM with the lossy compression command line ‘--capture-insertion-quality-scores --capture-piled-quality-scores
--capture-substitution-quality-scores --capture-unmapped-quality-scores --capture-all-tags’.
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Encoding techniques for fields other than ‘Sequence’ and
‘Quality value’ fields
The distribution regularity of each field and corresponding
compression methods are described in online supplementary
appendix 2. We summarize the specific compression scheme for
each field in table 1. We tested the compression performance
for the corresponding 10 fields in NA12878chrom20 and
HG00096chrom11 sequences. The original size of each individ-
ual SAM field is determined by the file size of the uncompressed
field extracted from the corresponding SAM file. As shown in
table 1, the compressed files are much smaller when compared
to the original ones.

At decompression, we first decompress and transform the 12
fields that consist in principle of the 11 mandatory and all
optional SAM fields independently. Then, we reconstruct the
SAM file from the 12 separate decompressed files, each of
which contains information on one field, except that the twelfth
file contains the information of all optional fields. For the
‘Sequence’ field, because the IMRs/UMRs in each alignment are
sent to the next alignment during the compression, we have to
recover reads from the last alignment to the first alignment
during the decompression and therefore decompress the IMRs/
UMRs at each alignment. Consequently, the decompressed reads
remain the same as the original ones. Since each field’s content
has the same order, we concatenate the 12 fragments from the
12 files in a record-by-record way in SAM’s standard format (ie,
‘QNAME’, ‘FLAG’, ‘RNAME’, ‘POS’, ‘MAPQ’, ‘CIGAR’,
‘MRNM’, ‘MPOS’, ‘TLEN’, ‘SEQ’, ‘QUAL’, ‘OPT’). The names
of candidate references are recorded directly from the users’
command line settings. If needed, we convert the generated
SAM file to the BAM format using SAMTOOLS.

RESULTS
We implemented both our encoder and decoder in C++ and ran
experiments on a Linux workstation with a 2.4 GHz Intel Xeon
CPU, 96 GB of memory, and an NVIDIA Tesla M2090 GPU. In
addition, we tested the performances of the proposed HUGO
codec with different setups over the datasets taken from several
types of NGS data; the results were also compared with several
existing compression algorithms, such as bzip2, CRAM/CRAM-l,
and Samcomp. The latest CRAM V.2.0 and Samcomp V.0.7 were
used in the comparison. The command line parameters used
for bzip2, CRAM, CRAM-l, and Samcomp were, respectively,
‘-z’, ‘--capture-all-quality-scores –capture-all-tags’, ‘–capture-
insertion-quality-scores –capture-piled-quality-scores –capture-
substitution-quality-scores –capture-unmapped-quality-scores
–capture-all-tags’ and ‘<input.sam>’.

The results of our evaluation are summarized in table 2,
which includes the compressed size, CR, and compression/

decompression time (CT/DT) for different settings. For all input
sequences, bzip2 showed the worst compression performance,
as it was designed for fast compression of general-purpose data.
The failure of general-purpose compression algorithms is one of
the crucial reasons why biomedical researchers pursue alterna-
tives for efficient storage of large genome data. Due to the use
of per-position models, Samcomp seems to provide the best
compression efficiency over all input sequences. However, it is
important to note some limitations of Samcomp, which is not a
full-field SAM/BAM compressor because it primarily focuses on
identifiers, sequence, and quality values. The SAM header, aux-
iliary fields, and the template fields in columns 7–9 are not pre-
served. For a fair comparison with Samcomp, we present the
results of ‘HUGO*’ in table 2 when auxiliary fields and
columns 7–9 are removed. Since the proposed method HUGO
and the CRAM tool only store the number of each query name
instead of the full name, the decompressed sequences of
HUGO/CRAM act as the input sequences for Samcomp. Under
these equivalent conditions, we can see that HUGO* achieves
similar CRs as Samcomp, although its CPU costs (time and
memory) are higher than those of Samcomp. In this study, we
focus on HUGO’s adaptive length and highly tuned encoding
and its compression performance. Table 2 illustrates that our
tool achieved lossless CRs between 0.5 and 0.65, which corre-
sponds to space savings of 35–50%. For the lossy compression
modes, the proportion of space savings increases up to 50–90%
by quantizing the quality values with k-means clustering.
HUGO also saves 6–20% space compared to the CRAM tool
for the same lossless or lossy compression mode.

Although the proposed HUGO scheme achieves better com-
pression efficiency, the compression time is increased by 20–
40% when compared with CRAM. Additionally, the maximum
memory usage of compression doubles over the experimental
sets, as shown in table 3. It is worth mentioning that the
memory consumption in ‘HUGO’ during compression is mainly
due to the fast alignment tool SOAP3. In contrast, the memory
usage for decompression in HUGO is much less than CRAM. In
addition, the execution time can be considerably reduced when
the SAM format is used as an input, since the conversion
between SAM and BAM formats using SAMTOOLS introduces
a large compression overhead.

LIMITATIONS AND DISCUSSION
Even though EMRs can be efficiently stored, IMRs and UMRs,
which account for 20–50% of total reads in a sequence, are not
as well compressed by traditional methods, and may dominate
the final storage size. The key idea of our proposed method is to
use a tunable multi-reference based scheme for different reso-
lution of reads. However, in several instances there was no

Table 1 Compression results for the corresponding 10 fields in NA12878chrom20 and HG00096chrom11 sequences

Field QNAME FLAG RNAME POS MAPQ CIGAR MRNM MPOS TLEN OPT Total

Compression scheme HC HC RLE DC/HC HC LZW RLE DC/HC HC bzip2 –

NA12878 chrom20
Original size (MB) 87.1 16.6 13.7 40.4 13.6 22.8 9.2 40.3 19.7 696.0 659.4
Compressed size 2.2 1.9 0.1 3.2 0.9 2.7 0.1 5.9 1.7 11.9 30.6

HG00096 chrom11
Original size (MB) 113.0 21.5 18.3 56.2 18.2 33.0 12.2 56.0 27.3 1127.0 1482.7
Compressed size 2.2 2.0 0.1 5.5 1.2 2.8 0.2 7.7 2.0 21.9 45.6

DC, Delta coding; HC, Huffman coding; LZW, Lempel-Ziv-Welch coding; RLE, run-length encoding.
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Table 2 Comparisons of compression efficiency among the proposed HUGO/HUGO_L (lossy compression using k clusters), bzip, CRAM, and
Samcomp for a broad types of sequences

Input sequence Program name Reference BAM size CS CR CT DT

NA12878 chrom20 bzip2 hg19 356 MB 358 MB – 2 min 5 s 1 min 32 s
Samcomp hg19 163 MB 0.46 50 s 49 s
HUGO* hg19 169 MB 0.47 2 min 38 s 2 min 00 s
CRAM hg19 217 MB 0.61 2 min 30 s 2 min 25 s
HUGO hg19 189 MB 0.53 3 min 50 s 2 min 55 s
HUGO hg19,HuRef 189 MB 0.53 3 min 49 s 2 min 57 s
HUGO_L(30) hg19 187 MB 0.53 4 min 00 s 2 min 58 s
HUGO_L(20) hg19 143 MB 0.40 3 min 55 s 2 min 55 s
HUGO_L(10) hg19 98 MB 0.28 3 min 50 s 2 min 39 s
HUGO_L(02) hg19 56 MB 0.16 3 min 41 s 1 min 40 s
HUGO_L(01) hg19 53 MB 0.15 3 min 40 s 1 min 40 s
CRAM-l hg19 54 MB 0.15 2 min 20 s 2 min 20 s

HG00096 chrom11 bzip2 hg19 661 MB 663 MB – 3 min 15 s 1 min 30 s
Samcomp hg19 304 MB 0.46 1 min 30 s 1 min 44 s
HUGO* hg19, HuRef 315 MB 0.48 3 min 20 s 2 min 38 s
CRAM hg19 411 MB 0.62 4 min 00 s 4 min 30 s
HUGO hg19 348 MB 0.53 5 min 01 s 4 min 20 s
HUGO hg19, HuRef 346 MB 0.52 5 min 00 s 4 min 15 s
HUGO_L (30) hg19 343 MB 0.52 5 min 10 s 4 min 14 s
HUGO_L (20) hg19 271 MB 0.41 5 min 05 s 4 min 09 s
HUGO_L (10) hg19 151 MB 0.23 4 min 58 s 4 min 02 s
HUGO_L(02) hg19 75 MB 0.11 4 min 55 s 2 min 38 s
HUGO_L (01) hg19, HuRef 72 MB 0.11 4 min 56 s 2 min 30 s
CRAM-l hg19 71 MB 0.11 3 min 55 s 4 min 31 s

HG00103 chrom11 bzip2 hg19 717 MB 720 MB – 3 min 34 s 1 min 30 s
Samcomp hg19 333 MB 0.46 1 min 36 s 1 min 55 s
HUGO* hg19, HuRef 344 MB 0.48 3 min 50 s 2 min 49 s
CRAM hg19 454 MB 0.63 5 min 30 s 5 min 15 s
HUGO hg19 382 MB 0.53 5 min 33 s 4 min 40 s
HUGO hg19, HuRef 380 MB 0.53 5 min 32 s 4 min 38 s

HG01028 chrom11 bzip2 hg19 964 MB 967 MB – 4 min 45 s 2 min 10 s
Samcomp hg19 458 MB 0.48 2 min 06 s 2 min 39 s
HUGO* hg19, HuRef 476 MB 0.49 4 min 15 s 2 min 58 s
CRAM hg19 585 MB 0.61 5 min 16 s 7 min 00 s
HUGO hg19 532 MB 0.55 7 min 38 s 5 min 20 s
HUGO hg19, HuRef 529 MB 0.55 7 min 38 s 5 min 22 s

NA06984 chrom11 bzip2 hg19 1.19 GB 1.192 GB – 6 min 08 s 2 min 32 s
Samcomp hg19 504 MB 0.41 2 min 32 s 3 min 04 s
HUGO* hg19, HuRef 542 MB 0.44 4 min 0 s 3 min 42 s
CRAM hg19 737 MB 0.60 6 min 43 s 9 min 00 s
HUGO hg19 634 MB 0.52 9 min 25 s 8 min 55 s
HUGO hg19, HuRef 630 MB 0.52 9 min 20 s 8 min 50 s

NA06985 chrom11 bzip2 hg19 2.33 GB 2.34 GB – 11 min 35 s 5 min 10 s
Samcomp hg19 1188 MB 0.50 5 min 42 s 6 min 21 s
HUGO* hg19, HuRef 1295 MB 0.54 8 min 34 s 7 min 14 s
CRAM hg19 1570 MB 0.66 12 min 40 s 15 min 20 s
HUGO hg19 1456 MB 0.61 17 min 18 s 12 min 43 s
HUGO hg19, HuRef 1451 MB 0.61 17 min 15 s 12 min 40 s

HG00096 mapped Samcomp hg19 14.53 GB 6936 MB 0.47 33 min 40 s 38 min 20 s
HUGO* hg19, HuRef 7165 MB 0.48 1 h 20 min 1 h 20 min
CRAM hg19 n/a n/a n/a n/a
HUGO hg19 7965 MB 0.54 2 h 30 min 2 h 20 min
HUGO hg19, HuRef 7919 MB 0.53 2 h 30 min 2 h 20 min

RNA-Seq ERR019653 Samcomp NC_000913 169 MB 79 MB 0.47 30 s 52 s
HUGO* NC_000913 96 MB 0.57 1 min 8 s 1 min 45 s
CRAM NC_000913 102 MB 0.60 1 min 30 s 1 min 32 s
HUGO NC_000913 101 MB 0.60 2 min 35 s 2 min 30 s

ChIP-Seq SRR032209 Samcomp mouse 608 MB 270 MB 0.44 1 min 25 s 1 min 30 s
HUGO* mouse 275 MB 0.45 3 min 01 s 3 min 15 s
CRAM mouse 289 MB 0.48 4 min 40 s 4 min 17 s
HUGO mouse 299 MB 0.49 4 min 42 s 6 min 10 s

Cancer HCC1954 Samcomp hg19 29.7 GB 8041 MB 0.27 50 min 27 s 53 min 38 s
HUGO* hg19 8313 MB 0.27 2 h 5 min 2 h 2 min
CRAM hg19 19 586 MB 0.64 2 h 1 min 3 h 8 min
HUGO hg19 16 759 MB 0.55 4 h 10 min 4 h 8 min

Here, ‘n/a’ indicates that an Exception error occurred because some reference sequences were not found in the fasta file when compressing the input file ‘HG00096mapped’ using
CRAM.
CR, compression ratio; CS, compressed size; CT, compression time; DT, decompression time; HUGO, Hierarchical mUlti-reference Genome cOmpression.
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obvious (ie, CR decreases by at least 0.05) improvement in the
rate of EMRs when compared to direct alignment of the shor-
tened reads against hg19 reference alone. The reason is that
almost all target sequences are close to the reference sequence
hg19, and we do not have other reference sequences that repre-
sent these sequences any better. As shown in figure 3, the adop-
tion of a multi-reference based structure even generates slightly
less exact mapped reads than the single reference based frame-
work for the input sequence NA12878chrom20. Our method is
limited by the availability of ‘useful’ reference genomes, which
might have identical or near-identical structure characteristics to
those of the sequence being compressed. For this reason, the
order of the reference genomes used in hierarchical alignment is
also important. The best yield can be achieved when the most
similar reference to the source reads is chosen, even though part
of these differences stems from sequencing errors and not from
genetic variation. This could be done, for example, by matching
phenotype characteristics such as ethnicity or disease, or by lever-
aging additional information such as family data. For example,
Illumina recently started to provide whole genome sequence and
variant call data for 17 members of the Coriell CEPH/UTAH
1463 family (http://www.illumina.com/platinumgenomes/) in
order to create a ‘platinum’ standard comprehensive set of
variant calls. We expect that our multi-reference method can be
useful for compressing ‘pedigree’ genomes that are becoming
increasingly available. For genomes with a high number of
somatic mutations it is still difficult to find an appropriate refer-
ence, but as more data become available the similarity data could
be recorded for purposes other than compression.

On the other hand, the compression time, required memory,
and the success of our proposed method strongly depend on the
SOAP3 alignment tool, which sets a high bar for the running
environment. Users need a Linux workstation equipped with a
multi-core CPU (default quad-core) with at least 20 GB main
memory and a CUDA-enabled GPU with compute capability 2.0,
if the GPU-based alignment tool is used, and at least 3 GB
memory (default 6 GB). Fortunately, new alignment tools are
being developed with increasing speed and sensitivity every year,
which naturally boosts the efficiency of our proposed method.

CONCLUSION
Storage and transmission are important challenges in the use of
large sequencing ‘Big Data’. We developed a novel compression
technique, the HUGO framework, for compressing aligned
reads. Our method also presents an innovative way of hierarch-
ically matching gradually shortened reads in order to make full
use of available reference genomes. Our experiments compared
the performance of our algorithm with other state-of-the-art
compression algorithms, such as CRAM, to which it was super-
ior, and Samcomp, which had similar compression performance.
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Table 3 Comparison of maximum memory usage among the proposed HUGO method, CRAM, and Samcomp, for different types of sequences

Input sequence Program name BAM size SAM size

Memory usage

Compression Decompression

NA12878chrom20 CRAM 356 MB 1.58 GB 6.7 GB 6.5 GB
Samcomp 292 MB 320 MB
HUGO 14 GB 1.9 GB

HG00096chrom11 CRAM 661 MB 2.65 GB 8.1 GB 4.3 GB
Samcomp 300 MB 320 MB
HUGO 15 GB 2.4 GB

HG00103chrom11 CRAM 717 MB 2.91 GB 8.0 GB 4.6 GB
Samcomp 301 MB 320 MB
HUGO 16 GB 2.6 GB

HG01028chrom11 CRAM 964 MB 3.95 GB 8 GB 3.7 GB
Samcomp 301 MB 320 MB
HUGO 16 GB 3.2 GB

NA06984chrom11 CRAM 1.19 GB 5.16 GB 8.2 GB 4.1 GB
Samcomp 300 MB 320 MB
HUGO 19 GB 3.5 GB

NA06985chrom11 CRAM 2.33 GB 9.41 GB 8.1 GB 4.3 GB
Samcomp 300 MB 320 MB
HUGO 19 GB 4.0 GB

HG00096mapped CRAM 14.53 GB 60.1 GB n/a n/a
Samcomp 314 MB 320 MB
HUGO 45 GB 34 GB

RNA-Seq ERR019653 CRAM 169 MB 1.32 GB 6.2 GB 3.3 GB
Samcomp 285 MB 290 MB
HUGO 3.2 GB 1.7 GB

ChIP-Seq SRR032209 CRAM 608 MB 2.36 GB 8.1 GB 4.3 GB
Samcomp 300 MB 318 MB
HUGO 14.8 GB 2.3 GB

Cancer HCC1954 CRAM 29.7 GB 92.8 GB 9.6 GB 9.1 GB
Samcomp 320 MB 330 MB
HUGO 46 GB 37 GB

HUGO, Hierarchical mUlti-reference Genome cOmpression; SAM, Sequence Alignment/Map.
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