
Oh et al. Clin Trans Med  (2015) 4:37 
DOI 10.1186/s40169-015-0078-x

REVIEW

Pediatric asthma and autism—genomic 
perspectives
Sunghee Oh1†, Hong Ji2†, Drew Barzman3†, Ping‑I Lin4† and John Hutton5*

Abstract 

High‑throughput technologies, ranging from microarrays to NexGen sequencing of RNA and genomic DNA, have 
opened new avenues for exploration of the pathobiology of human disease. Comparisons of the architecture of 
the genome, identification of mutated or modified sequences, and pre‑and post‑ transcriptional regulation of gene 
expression as disease specific biomarkers are revolutionizing our understanding of the causes of disease and are guid‑
ing the development of new therapies. There is enormous heterogeneity in types of genomic variation that occur 
in human disease. Some are inherited, while others are the result of new somatic or germline mutations or errors in 
chromosomal replication. In this review, we provide examples of changes that occur in the human genome in two of 
the most common chronic pediatric disorders, autism and asthma. The incidence and economic burden of both of 
these disorders are increasing worldwide. Genomic variations have the potential to serve as biomarkers for personali‑
zation of therapy and prediction of outcomes.
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Introduction
Both autism spectrum disorder (ASD) and asthma are 
among the most common pediatric chronic diseases 
worldwide and pose an enormous economic burden on 
health care delivery systems [1, 2]. There has been recent 
progress in identifying underlying genomic changes in 
these disorders, which will be reviewed here. Unveiling 
changes in the genome that underlie disease identify new 
biomarkers that have the potential to predict outcomes of 
treatment and to identify targets for development of new 
therapies.

Review
Copy number variation
Copy number variants (CNVs) are structural alterations 
of DNA that increase or decrease the number of cop-
ies of one or more sections in a strand of DNA within 
a chromosome [3]. CNVs have been associated with 

certain diseases, for example autism spectrum disor-
der (ASD) and schizophrenia. Family and twin stud-
ies have strongly suggested that certain genetic variants 
can substantially influence the risk of ASD and de novo 
mutations in the form of CNVs contribute to the risk of 
autism [4, 5]. Recent deep sequencing studies have gen-
erated robust evidence for the link between recurrent 
rare variants and ASD [6–8]. Vaishnavi et al. found that 
11 % of ASD-related copy number variants (CNVs) con-
tained microRNAs (miRNAs) [9]. These CNV-miRNAs 
formed a regulatory loop with transcription factors and 
their downstream target genes, and annotation of these 
target genes indicated their functional involvement in 
neurodevelopment and synapse [10]. miRNA studies pro-
vide mechanistic insights into genetic regulations that 
may modulate the risk of ASD. These findings exemplify 
how functional genomic approaches may facilitate the 
efforts to decipher genetic mechanisms underlying clini-
cal features of ASD and other heritable disorders. How-
ever, susceptibility genes for ASD remain elusive because 
of difficulty in replicating linkage or association findings 
[11].

The presence of CNV in childhood asthma has only 
been recently discovered. Rogers et al. showed that CNV 
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in candidate asthma genes was prevalent in 383 asthmatic 
trios participating in the Childhood asthma management 
program (CAMP) [12]. However, the vast majority of 
identified CNVs were of rare frequency (<5 %) and were 
not statistically associated with asthma. 2 CNVs near 
NOS1 and SERPINA3 were modestly association with 
asthma and they were unlikely to explain the previously 
identified associations between SNP and asthma.

Gene fusion
While gene fusions are well known as a major factor in 
both initiation and progression of cancers [13], they are 
rare in both diseases in our study. Copy number vari-
ants are known to occur in both ASD and asthma. CNVs 
can facilitate combining parts of two genes, resulting in 
a fusion transcript. Holt et al. [14] identified fusion-gene 
generating CNVs in probands with ASD, however there 
was no difference in overall frequency of fusion tran-
scripts between patients and normal controls. Ceroni 
et al. [15] identified a child with both ASD and asthma, 
who inherited a maternal deletion that resulted in a 
BST1-CD38 fusion transcript. Whether the fusion tran-
script causes changes in function that underlies ASD 
and/or asthma in the child has not yet been studied.

Non‑coding RNAs
Non-coding RNAs, both microRNAs (miRNA) and long 
noncoding RNAs (lncRNA), play a key role in functional 
genomics—stability and maintenance of gene expres-
sion. For example, they both play a major role in regulat-
ing chronic inflammatory diseases such as asthma [16]. 
Geaghan and Cairns have reviewed evidence that numer-
ous microRNAs (miRNA) play a role in ASD and other 
psychiatric disorders, characterized by dysregulation of 
target transcripts [17]. Abnormal large noncoding RNAs 
significantly contribute to the pathology of autistic brain 
[18, 19].

Mutations in mitochondrial genome
Mitochondrial dysfunctions occur in several human 
inherited disorders [20]. Mitochondrial dysfunction is 
hypothesized to play a role in asthma. Flaquer et al. com-
pared mitochondrial SNPs in 372 asthmatic children and 
395 health controls [21]. Different variants were found in 
asthmatic boys and girls. For boys significant differences 
were found in the CYB gene; for girls in the NADH-
dehydrogenase subunits. Post-mortem brain studies have 
suggested an elevated prevalence of mitochondrial dys-
function in ASD [22].

Epigenetic modification of the genome
Expression of genes can be turned on or off or modi-
fied by factors other than an individual’s DNA sequence. 

Although all organs of the body contain the same DNA, 
the pattern of expression of genes differs from organ to 
organ because of epigenetic factors [23]. The most com-
mon modification that influences expression of genes is 
DNA methylation. Methylation of DNA involves the con-
version of cytosine to methylcytosine at a site in DNA. 
The cytosine nucleotide to be methylated is located 
next to a guanine nucleotide, i.e. in a CpG dinucleotide, 
although recent research has found methylated cytosine 
in other sequence contexts, such as CpA [24]. Genes 
with highly methylated promoters typically are not well 
expressed. Changes from normal patterns of DNA meth-
ylation of specific genes can cause alterations in gene 
expression that are associated with disease. Epigenome-
wide association studies (EWAS) hold promise for the 
detection of new regulatory mechanisms that may be 
susceptible to modification by environmental and life-
style factors affecting disease [25]. Because of the rapid 
advances in sequencing technology, large numbers of 
methylated CpG sites can be identified across the entire 
genome. Because DNA methylation is tissue-specific, 
having a mixed cell population makes it hard to link the 
observed DNA methylation patterns to the disease rather 
than to changes in cell populations. Investigators must 
prospectively identify the sources of cells and define 
appropriate profiling methods.

The role of DNA methylation in pediatric diseases has 
recently been established. Most of the data are derived 
from studies of genes the investigators selected because 
they were thought to be involved in causation of the dis-
ease, the candidate gene approach. With the emergence 
of high-throughput technologies, ranging from micro-
arrays to next-gen sequencing, genome-wide scanning 
to search for disease-related DNA methylation markers 
is now possible. The interplay among DNA methylation 
sites, genetic variation, protein binding sites, and gene 
expression is a very active field of investigation.

Emergent evidence has shown that epigenetic modifi-
cations of DNA, rather than single-locus variation, may 
account for the heritability of ASD [26–28]. Compared 
to other psychiatric disorders with variable onsets across 
the lifespan, ASD, where the onset occurs by the age of 
two, represents one of the few disorders in which time-
dependent penetrance is not a primary concern. The 
high heritability of ASD may also lead to a higher chance 
of success in mapping the risk genes for this disorder. 
Prevalence of ASD has a male excess of 4:1 and dysreg-
ulation of methylation in brain-expressed genes on the 
X-chromosome has been speculated to contribute to 
the development of ASD [29]. Nararajan and colleagues 
reported that a significant reduction in the expression 
of the MeCP2 gene, which encodes methyl CpG binding 
protein 2, was found in 79  % of frontal cortex samples 
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of patients with ASD, and increased MeCP2 promotor 
methylation was particularly prominent in males with 
ASD compared to controls [30]. A recent study by Ladd-
Acosta et  al. [31] investigated over 485,000 CpG loci 
across functionally relevant genomic regions using the 
Infinium Human Methylation 450 Bead Chip and iden-
tified 4 differentially methylated regions located within 
PRRT1, TSPAN32, C11orf21, ZFP57 and SDHAP3 from 
different parts of the brain, which offers novel candidate 
genes for ASD. Genomic imprinting, which arises from 
parent-specific methylation patterns, has been thought to 
play a role in ASD because of findings of parent-of-ori-
gin effect on some chromosomal regions, such as 7q. It 
has been proposed that ASD is caused by an overbalance 
of paternally expressed genes. Schneider and colleagues 
analyzed the methylation and expression patterns of the 
MEST, COPG2, and TSGA14 on 7q in the brain cortex 
of humans and a variety of primates [32]. Compared 
to other primates, expression of the COPG2 gene was 
down regulated in human cortex because of methylation. 
The authors suggest that down regulation of COPG2 in 
humans may partially account for the emergence of the 
more advanced “social brain”. ASD is considered a disor-
der of the “social brain”, therefore genetic and epigenetic 
variants in genes such as COPG2 may play a role in sus-
ceptibility to autism and other pediatric mental disorders 
[33].

Stefanowicz et  al. studied DNA methylation in air-
way epithelial cells (AECs) and peripheral blood mono-
nuclear cells (PBMCs) from atopic, atopic asthmatic, 
non-atopic asthmatic children and healthy controls [34]. 
To measure genomic methylation they used Illumina 
Golden Gate Methylation Cancer Panel 1, which includes 
1505 CpG loci across 807 genes. Gene expression was 
performed using RT-PCR. Of the differentially methyl-
ated CpG sites in airway epithelial cells, 13 were specific 
to healthy controls, 8 were found only in atopics, and 6 
were unique to asthmatics. Genomes from asthmatics 
differed from atopics at 8 sites that included CpG sites 
in genes that encode transcription factor STAT5A and 
zinc transport protein CRIP1. The authors found that 
STAT5A gene expression is decreased and CRIP1 expres-
sion is elevated in airway epithelial cells from asthmat-
ics compared to healthy and atopic subjects. In PBMCs 
no differences in the methylation status of these genes 
were found, so that PBMCs did not serve as alternatives 
to studies of airway epithelial cells. This study highlights 
the importance of studying the right tissue, when iden-
tifying epigenomic changes in disease. A recent study 
by Yang et  al. [35] compared the blood DNA methyla-
tion levels at  ~  480,000 CpG sites between 97 controls 
and 97 asthmatic patients and identified 81 differentially 
methylated CpG sites. Validated CpG sites are located 

at RUNX3, IL4, and catalase. CpG sites associated with 
serum IgE among asthmatics were also discovered. Stud-
ies of DNA methylation are often coupled with gene 
expression studies and genetic variation studies, as DNA 
methylation can regulates gene expression [36] and SNPs 
also modifies DNA methylation [37, 38]. Acevedo and 
colleagues studied the association of childhood asthma 
with CpG sites polymorphisms, regional DNA methyla-
tion and gene expression at the GSDMB/ORMDL3 locus, 
which is located at 17q21, a novel asthma-susceptibility 
locus found in ethically diverse populations [39]. As 
expected, the CpG sites polymorphisms that either cre-
ate or remove CpG sites alters DNA methylation and are 
associated with asthma. They are also associated with 
mRNA expression changes in ORMDL3. In addition, the 
methylation levels at ORMDL3 promoter in asthmatic 
children is also significantly higher compared to controls, 
and is correlated with ORMDL3 expression in blood leu-
kocytes. Interestingly, SNPs and CpG methylation are 
independently associated with ORMDL3 expression, sug-
gesting two independent mechanisms regulating gene 
expression.

Gene expression profiles
Exploring gene expression profiles of normal and dis-
eased tissues has long played a major role in under-
standing the pathophysiology of disease. Originally 
such studies were primarily conducted using expression 
microarrays. Use of microarrays is now typically cou-
pled with studies using high throughput technologies 
such as RNA-seq [40–47]. These techniques have ena-
bled the generation of lists of top putative candidates of 
differentially expressed genes between different groups 
in diseases of interest. Studies of gene expression gen-
erate information about alternative splicing of RNA 
transcripts, the role of non-coding genomic elements 
(ncRNAs, ncDNAs, and microRNAs), and epigenetic 
changes in the genome [48–51].

Hundreds of susceptibility loci and candidate genes for 
ASD have been identified [52, 53]. Despite these find-
ings, only a handful of genetic variants have been con-
sistently found to be associated with the risk of ASD 
across different population. Whole-exome sequencing 
has identified biallelic mutations in several genes previ-
ously associated with ASD (AMT, PEX7, SYNE1, APS13B, 
PAH, and POMGNT1) and demonstrated the impor-
tance of partial loss of gene function in this disorder 
[54]. Splicing mutations may also play a role in suscep-
tibility to ASD [55–57]. Yan and colleagues [58] found 
that neurexin 1alpha structural variants, including a 
splicing mutation, could distinguish patients with ASD 
from healthy controls. Genetic variation in ion channel 
genes, such as CACNA1C and CADPS2, may modulate 
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the risk of ASD [59–61]. A genome-wide scan of micro 
RNAs (miRNAs) in cell lines established from patients 
with ASD compared to normal controls suggested that 
miRNAs dysregulated several coding and non-coding 
genes, including HEY1, SOX9, miR-486 and miR-181b, 
and increased the risk of ASD [62]. All of these genes are 
involved in nervous system development and function. 
One recent study of postmortem human brains reported 
that noncoding antisense RNA transcripts are generated 
at approximately 40  % of loci previously implicated in 
ASD. The antisense RNA corresponding to synaptic ras 
GTPase-activating protein 1 (SYNGAP1) was differen-
tially expressed in brain regions from patients with ASD 
compared to normal controls [63].

Microarray and RNA-sequencing experiments have 
been performed on nasal epithelial cells, bronchial epithe-
lial cells, small airways, and blood cells from asthmatics 
and controls [64–68]. Significant differential expression 
in 70 genes in nasal cells, including IL13, IL5, periostin 
(POSTN), calcium-activated chloride channel regulator 
1 (CLCA1), and serpin peptidase inhibitor, clade B (SER-
PINB2), was found to be linked to airway remodeling, pro-
duction of mucus, and shifting of the immune response 
toward the Th2 phenotype thus enhancing asthma exac-
erbation [67, 68]. Genome-wide association studies have 
identified CDHR3 (cadherin-related family member 3) 
gene as a novel susceptibility locus for early life childhood 
asthma with severe exacerbations [69]. This gene is highly 
expressed in airway epithelium and encodes a calcium-
dependent cell adhesion protein. Custom microarrays 
designed to measure expression of genes thought to play 
a role in the pathogenesis of asthma have proved useful 
in establishing the biological relevance of these genes [70]. 
KLF3A was identified as a susceptibility gene for child-
hood asthma by gene expression arrays in nasal cells and 
further studies found that genetic variation in KLF3A is 
associated with asthma.

Genetic regulatory networks
Information on co-regulators and co-expression of genes 
in normal and disease states has increased interest in 
genetic regulatory networks. The generation of genetic 
variation/gene expression profiles by either array or 
sequencing platforms affords the opportunity to define 
connectivity maps. This permits assignment of genetic 
variants associated with pediatric disorders to specific 
biochemical pathways and regulatory networks [71–73]. 
These technologies have been applied to ASD, cancer and 
other diseases and have uncovered mechanisms of action 
of disease specific target genes. Knowledge of genomic 
changes can be used to identify the biochemical pathways 
and regulatory networks that are affected and identify 

potential targets for drug therapy. Molecular classifica-
tion of a patient’s disease should improve choices of ther-
apy at diagnosis, given a particular molecular subtype, 
and lead to development of new therapies for subtypes 
with a poor prognosis.

Conclusions
Besides identifying disease specific biomarkers, one 
future direction is to integrate the studies in genome 
architecture, epigenomics, and gene expression to under-
stand the underlining mechanisms of pediatric diseases. 
Cutting-edge genome/epigenome-editing tools have 
the potential to correct disease-related variations and 
to develop novel therapies. We have discussed genomic 
mutations and epigenetic modifications in pediatric 
asthma and ASD. Many of these advances represent 
progress beyond the era of functional genomics, which 
focused on measurements of gene expression. The prod-
ucts of post-transcriptional and genomic variations, 
including non-coding genetic elements and copy num-
ber variations are drivers of disease initiation and pro-
gression. Unveiling changes in the genome that underlie 
disease identify new biomarkers that should prove to be 
associated with different outcomes of treatment and pro-
vide targets for development of new therapies. The con-
tinuing development of robust methods for NGS (next 
generation sequencing) and other technologies will con-
tinue to improve our ability to identify causes of disease 
in an individual patient and to use this information to 
personalize therapy.
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