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The study tested the water purification mechanism of the combination of

microorganisms and purification materials via characteristic, enzymatic, and

metagenomics methods. At 48 h, the removal rates of total nitrogen, total

phosphorous, and Mn chemical oxygen demand in the combination group

were 46.91, 50.93, and 65.08%, respectively. The alkaline phosphatase (AKP)

activity increased during all times tested in the volcanic rock, Al@TCAP, and

exogenous microorganism groups, while the organophosphorus hydrolase

(OPH), dehydrogenase (DHO), and microbial nitrite reductase (NAR) activities

increased at 36-48, 6-24, and 36-48 h, respectively. However, the tested

activities only increased in the combination groups at 48 h. Al@TCAP

exhibits a weak microbial loading capacity, and the Al@TCAP removal is

primarily attributed to adsorption. The volcanic rock has a sufficient ability

to load microorganisms, and the organisms primarily perform the removal

for improved water quality. The predominant genera Pirellulaceae and

Polynucleobacter served as the sensitive biomarkers for the treatment at

24, 36-48 h. Al@TCAP increased the expression of Planctomycetes and

Actinobacteria, while volcanic rock increased and decreased the expression

of Planctomycetes and Proteobacteria. The growth of Planctomycetes and

the denitrification reaction were promoted by Al@TCAP and the exogenous

microorganisms. The purification material addition group decreased the

expression of Hyaloraphidium, Chytridiomycetes (especially Hyaloraphidium),

and Monoblepharidomycetes and increased at 36-48 h, respectively.

Ascomycota, Basidiomycota, and Kickxellomycota increased in group E,
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which enhanced the nitrogen cycle through microbial enzyme activities,

and the growth of the genus Aspergillus enhanced the phosphorous

purification effect.

KEYWORDS

purification materials, exogenous microorganisms, water purification enhancement,
microbial enzyme activity, metagenome

Introduction

In intensive aquaculture systems, such as cage and pond
cultures, extra nutrients are often discharged without treatment
(Santos et al., 2016). Approximately, 75% of aquaculture
feed residues are converted into nitrogen and phosphorus in
wastewater (Serpa et al., 2013). The use of purification materials
can effectively reduce the contents of nutrients, such as nitrogen
and phosphorus. Research on the actual treatment effect of
aluminum-loaded attapulgite (Al@TCAP) on black and odorous
water found that Al@TCAP can effectively reduce ammonia
nitrogen (NH3-N) and total phosphorous (TP) in water (Yin
et al., 2019). Volcanic rock can be used in the remediation of
heavy metals (de Anda et al., 2019) and wastewater treatment
(Wan et al., 2020).

However, the more effective and higher pollutant removal
rate requires longer hydraulic resident times (HRT) in the tune
of weeks to months. First, these nutrients typically promote
the growth of aquatic plants because they readily absorb and
utilize certain dissolved inorganic substances, such as ammonia,
urea, and phosphate (i.e., PO4

3−-P, Franchino et al., 2016).
Through the calculation, with the combined ammonia removal
efficiencies of several nitrifying bacteria, the removal rate of
NH3-N reached 71% (Sangnoi et al., 2017). The microorganisms
have been used to convert dissolved organic matter into
harmless substances, and the commercial micro-ecological
products include effective microorganisms (EM), Bacillus,
Streptococcus, Lactobacillus, and photosynthetic bacteria
(Kuebutornye et al., 2019). The exogenous microorganisms
were used to enhance the water purification effect when
combined with purification materials that can provide a
microorganism-loaded environment (Ren et al., 2021; Yin et al.,
2022). The nitrifying and phosphorus-accumulating bacteria
were enriched when added microorganisms in the activated
sludge (Kuśnierz et al., 2022).

In Jiangsu province of China, the wastewater treatment
system named “two dams and three districts” was constructed
for water purification to remove suspended solids, nitrogen,
and phosphorus. Two major problems in wastewater treatment
systems should be solved urgently: the mechanism of the
crosstalk in these interactive biochemical reactions (containing
organics degradation, nitrification, denitrification, and

microbial activities), and the enhancer method of water
purification within the shorter HRTs in actual sewage
treatment systems, even 40% removal rate obtained in our
previous study via “Al@TCAP-volcanic rock + bacteria
preparation + activated sludge.” Our recent study showed
that the enhanced removal effect in this wastewater treatment
system occurred when adding microorganisms and activated
sludge (Yin et al., 2022), while the mode of action has not
been determined.

In this study, the key factors governing the technical
feasibility of the wastewater treatment system are evaluated:
(1) the enhanced effect of exogenous microorganisms based on
the two purification materials (Al@TCAP and volcanic rock)
in the wastewater treatment system (superficial characteristic,
nutrient removal, and enzyme activity), (2) the useful enhancers
of bacterial and fungal category via 16S rRNA- and ITS-Seq
methods. The purpose of this experiment was to explore the
water purification mechanism effectiveness of a combination of
microorganisms and purification materials.

Materials and methods

Experimental design and sampling

The experimental wastewater was rearing water for tilapia
Oreochromis niloticus from the base center of FFRC-CAFS.
The water quality of the wastewater was determined during
the experiment. The selected purification materials, Al@TCAP,
and volcanic rock were prepared in our laboratory using
the method reported by Yin et al. (2019) and Wan et al.
(2020). The Al@TCAP and volcanic rock distribution method
was tile and accumulation based on the optimal purification
effect in the pre-experiment, and the total added amount was
6 g/L. The composed purification material added half of the
amount (6 g/L) of Al@TCAP and volcanic rock. The exogenous
microorganisms, included Bacillus licheniformis, Bacillus sp.
(Jiangsu Suwei microbial research Co., Ltd.) (Ren et al.,
2021), and activated sludge (Sk Hynix Semiconductor (Wuxi)
Co., Ltd.) (Santorio et al., 2021; Kuśnierz et al., 2022), were
named as three bacteria liquids. Their concentrations were
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1× 108-1× 109 CFU/ml of a bacterial liquid dosage of 1 mg/L
following Murray et al. (1981).

Five groups were used in the study: A, the control group
(without purification materials or bacteria liquid); B, 6 g/L
volcanic rock; C, 6 g/L Al@TCAP; D, 1 mg/L three bacteria
liquids (actual detected as 4.6 × 108 CFU/mL); and E, 6 g/L
Al@TCAP+ 6 g/L volcanic rock+ 1 mg/L three bacteria liquids
(4.6 × 108 CFU/mL). First, the water samples collected at 0 h
(s1), 6 h (s2), 12 h (s3), 24 h (s4), 36 h (s5), and 48 h (s6)
after the start of the experiment were used to determine water
quality and enzyme activity. The reasons for the sampling period
selection mainly included the active enzymatic (Otte et al., 1996)
and retention time (Alloul et al., 2021) for function, and the
short centralized drainage time duration in the field culture of
Jiangsu province. The purification materials were loaded with
or without exogenous microorganisms, and their superficial
characteristics were identified using SEM. The samples were
fixed with 2.5% glutaric acid fixative solution before the electron
microscopy analysis and then dried at 105◦C for 6 h before the
full-pore adsorption and desorption experiments.

Superficial characteristics of the
purification material

The SEM method for the purification material is described
in our previous studies (Zheng et al., 2020). The sample to be
tested was vacuum degassed at 250◦C for 3 h, the adsorption
substance was N2, and the adsorption temperature was 77.3 K.
The static adsorption equilibrium volume method was used to
determine the gas adsorption isotherm of the sample. A specific
surface area and porosity analyzer, ASAP 2460, was used for the
full-pore adsorption and desorption experiments. Finally, the
measured adsorption isotherm data were collected. The data for
adsorption and desorption cumulative surface area of pores of
the samples were determined.

Water quality determination

The total nitrogen (TN), NH3-N, NO3
−-N, nitrite nitrogen

(NO2
−-N), TP, PO4

3−-P, and Mn chemical oxygen demand
(CODMn) were analyzed as described (State EPA of China,
2002). The dissolved oxygen (DO) was measured in situ with
a YSI EXO2 multiparameter sonde (United States). The water
removal rate was determined by dividing the decrease in water
quality (treatment group minus control) by the original value.

Enzyme activity

A series of enzyme-linked immunosorbent assay kits
including those for microbial ammonia monooxygenase

(AMO), nitrate reductase (NAR), nitrite reductase (NIR),
alkaline phosphatase (AKP), organophosphorus hydrolase
(OPH), and dehydrogenase (DHO) were purchased from
Meimian Biotechnology Company. The activities of AMO,
NAR, NIR, AKP, OPH, and DHO were tested in the
samples according to the protocols. Simply, the samples
and embedded monoclonal antibodies were added to the
microwells and then combined with a horseradish peroxidase
enzyme. After thoroughly washing the samples, the substrate
tetramethylbenzidine was revealed first in blue and then yellow
before the acid stop solution was added. The intensity of
the color was positively correlated with the enzyme tested
in the sample. The absorbance (OD value) was measured at
450 nm using a microplate reader (Biomarker Technologies
Corporation, Beijing, China). The activity concentration of the
enzyme in the sample was calculated using the standard curve.

Metagenome

The metagenome used both 16SrRNA (bacterium) and ITS
(fungus) sequences. In the 16SrRNA-Seq, the samples for M01-
M03, M04-M06, M07-M09, M10-M12, and M13-M15 were
named as groups A, B, C, D, and E at 0 h, respectively. The
other samples for M16-M90 corresponded to the A-E group at
6, 12, 24, 36, and 48 h orderly. Total bacterial DNA extraction
from samples, polymerase chain reaction amplification, and the
methods described in Zheng et al. (2018) were used in the
study, while for fungi, we followed the methods described in
Fan et al.’s (2018) study. All PCR products were quantified using
the Quant-iT dsDNA HS Reagent and pooled. High-throughput
sequencing analysis of the fungi and bacterial rRNA genes was
performed on the purified, pooled sample using the Illumina
HiSeq 2500 platform (2 × 250 paired ends) at Biomarker
Technologies Corporation (Beijing, China). The original data
were spliced (FLASH, version 1.2.11), and the spliced sequences
were quality filtered (Trimmomatic, version 0.33), and the
illusions (UCHIME, version 8.1) were removed to obtain high-
quality tag sequences. The sequences clustered with more than
97% similarity (USEARCH, version 10.0), while the operating
taxonomical units (OTUs) were filtered with 0.005% as the
threshold. Silva (release 132) was selected for the bacterial 16S
database, and Unite (release 8.0) was chosen for the fungal
ITS database. Using the RDP Classifier for species annotation,
the confidence threshold was 0.8 (version 2.2). For multiple
comparisons, the bacteria were PyNAST (version 1.2.2), the
fungus was ClustalW2, and the phylogenetic tree was established
using the neighbor-joining method.

The research aimed to identify the core microbiome
in the same group and the presence of core bacteria that
affect nitrification and denitrification in all the samples. The
community indices we applied here include Chao1, Ace,
Shannon, and Simpson indexes. A 0.5%, relative abundance
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threshold was used, which focused our analysis on PCR
reproducible OTUs. To find the quality of 16SrRNA-Seq and
ITS-Seq affected by the time (from M01 to M90) and different
treatments (from groups A-E), the average data of five groups
were taken as one group to obtain the new data for 0, 6, 12,
24, 36, and 48 h. The variation was calculated by selecting a
significant increase or decrease in the bacterial community in
a database constructed through a series of comparisons (e.g.,
s1 vs. s2 or s1 vs. s3). Differences can vary from the phylum
to species level.

Data analysis

Mean comparison was performed using Fisher’s least
significant difference test and the Duncan multiple range test
with a significance level of p < 0.05, and the relevant graphs were
drawn in Origin 9.4.

Results

Superficial characteristics

There were fewer microorganisms on the surface of the
Al@TCAP, and no bacterial film was formed (Figure 1).
The volcanic rocks carrying microorganisms contained many
organisms that formed a bacterial film. The adsorption and
desorption cumulative surface area of pores in Al@TCAP were
28.17 and 38.30 m2/g, respectively, while for volcanic rock, it
became 9.59 and 18.22, respectively. The surface area indices of
the Al@TCAP were higher than those of the volcanic rock.

Water quality

In the nitrogen cycle, the TN concentrations in groups C and
E were lower at 48 h than that of the other groups (Figure 2A).
The TN removal rate of group A was higher than that of other
groups at 6–36 h and lower than that of groups C and E at
48 h. The NH3-N in each group displayed an upward trend.
The concentration of NH3-N in group C was lower than that in
other groups after 12 h, and the frequency of NH3-N in group D
was higher than that in the other groups after 24 h (Figure 2B).
The NO3

−-N concentration in group A was higher than that in
the other groups at 0 h, the NO3

−-N concentration in group
B was higher than that in group A at 6 h, and the NO3

−-N
concentrations were higher in groups C, D, and E at 12 h. The
frequency of NO3

−-N in group C was higher than that in group
A at 24 h. The concentrations of NO3

−-N in groups C and B
were higher than that in group A at 36 h, and the concentrations
of NO3

−-N in the other groups were higher than that in group
A at 48 h (Figure 2C). The concentration of NO2

−-N in group

A was low between 0 and 24 h. The concentration of NO2
−-N

in group A increased during 24-36 h, and the concentration of
NO2

−-N was higher at 36 and 48 h than that in the other groups.
The NO2

−-N concentrations in groups B, C, D, and E were low
between 0 and 36 h, and they increased at 36-48 h (Figure 2D).

The TP removal rate was the highest at 6-24 h. The TP
removal rate in group C was higher than that in group A at 36 h.
The removal rates of TP in groups C and E were higher than
that in group A at 48 h. The PO4

3−-P concentration typically
exhibited an upward-decreasing trend (Figure 2E). Group A
starts to decrease after a peak at 24 h, and the other groups drop
after reaching a peak at 36 h. The PO4

3−-P concentration in
group D was higher than that in group A at 0 h, and the PO4

3−-
P concentrations in groups B, D, and E were higher than that
in group A at 6 h. The PO4

3−-P concentrations in groups B
and D were higher than that in group A at 12 h (Figure 2F).
The DO concentration in group D was lower than that in other
groups at 0, 6, and 24 h, and the DO concentration in group C
was higher than that in other groups at 0, 6, and 48 h. At 48 h,
the DO concentration in group A was lower than that in the
other groups. The DO concentration of each group increased
at 0-6 h, decreased at 6-12 h, and then slowly increased at 12-
48 h (Figure 2G). The CODMn removal rates in groups D and
E were higher than that in group A at 6 h, and the CODMn

removal rate in group A was higher than that in other groups
at 12 and 36 h. The CODMn removal rates were higher in groups
C, D, and E than in group A at 24 and 48 h. The CODMn

removal rates in groups D and E were higher than that in group
A (Figure 2H). At 48 h, the removal rates of total nitrogen, total
phosphorous, and Mn chemical oxygen demand in the purified
materials plus the three exogenous microorganisms were 46.91,
50.93, and 65.08%, respectively.

Enzyme activities

In the nitrogen cycle, the ammonia monooxygenase (AMO)
activity was higher in groups D and E than in group A at 0 h, in
groups B, D, and E at 6 h than in group A, in group B at 12 h than
in group A, and in group A at 24 and 36 h. Compared with other
groups, group E exhibited more activity than group A at 48 h
(Figure 3A). The nitrate reductase (NAR) activity was higher in
group C than in group A at 0 h, and it was higher in each group
that group A at 6 and 12 h. Groups B and C exhibited more NAR
activity than group A at 24 h, and group B was more active than
group A at 36 h. Group A exhibited more activity than the other
groups at 48 h (Figure 3B). The nitrite reductase (NIR) activity
was higher in groups C and E than in group A at 0 h, and group
A activity was higher than that in other groups at 6-24 h, groups
C, D, and E were more active than group A at 36 h, and all other
groups exhibited more activity than group A at 48 h (Figure 3C).

It can be seen that the alkaline phosphatase (AKP) activity
of group A was lower than that of the other groups at 0 h and
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FIGURE 1

SEM results for Al@TCAP and volcanic rock when loaded or unloaded with microbes. The red arrow showed loaded with microbes and bacterial
film formation. The Al@TCAP surface was rough, uneven, and exhibited many granular protrusions. The surface of the granular protrusions was
groove shaped, and there were pores under the granular protrusions. The surface of the volcanic rock had granular protrusions and more pores.
The protrusion surface was rough and exhibited a block shape.

FIGURE 2

Measurement results of eight water quality indicators. (A–H) pictures are TN (removal rate), NH3-N, NO3
−-N, NO2

−-N, TP (removal rate),
PO4

3−-P, DO, and CODMn (removal rate), respectively.

higher than that of other groups at 6 h (Figure 3D). AKP activity
was higher in group E than in group A at 12 h, groups B and C
were more active than group A at 24 h, groups C and D were
more active than group A at 36 h, and groups D and E were more
active than group A at 48 h. The organophosphorus hydrolase
(OPH) activity was higher in groups C and D than in group
A at 0 h, groups B, C, and D exhibited greater OHP activity
than group A at 6 h, group E activity was higher than group A

at 12 h, and groups B, C, and D were more active than group
A. Each group exhibited more OPH activity than group A at
36 h, and groups B, C, and D were more active than group A
at 48 h (Figure 3E).

The dehydrogenase (DHO) activity was higher in groups B,
D, and E than in group A at 0 h, groups D and E exhibited
more DHO activity than group A at 6 h, and all other groups
exhibited higher activity than group A at 12 and 24 h, and group
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FIGURE 3

Results of microbial enzyme activity determination. (A–F) pictures are AMO, NAR, NIR, AKP, OPH, and DHO, respectively. The NIR, NAR, and
AMO participate in the nitrogen cycle. NIR degrades NO2

−-N to N2 or NH3-N, reducing the accumulation of NO2
−-N in the environment. NAR

is an inducible enzyme that can directly reduce NO3
−-N to NO2

−-N. AMO catalyzes ammonia oxidation by helping ammonia-oxidizing
bacteria, which can help ammonia-oxidizing bacteria convert NH3-N to NO2

−-N. AKP can catalyze the decomposition of organic phosphorus
and release orthophosphate, while OPH can decompose organic phosphorus compounds in water and reduce organic phosphorus compound
pollution. DHO is an oxidoreductase that participates in the decomposition of organic matter.

B exhibited higher activity at 36 h. Group A was more active than
other groups (except group B) at 36 and 48 h, and group activity
A was higher than that of the other groups at 48 h (Figure 3F).

α/β-diversity for operating taxonomical
units via 16SrRNA-Seq method

The 16S rRNA test results showed that Planctomycetes,
Proteobacteria, and Bacteroidetes are the three primary
group phyla. The predominant genera are Pirellulaceae,
Polynucleobacter, and other Patescibacteria, Planctomycetes,
Actinobacteria, Dependentiae, and Deinococcus-
Thermus displayed significant differences between groups
(Supplementary Figure 1). Results showed that from 24 h,
optimization-CCS (Supplementary Figure 2) and Simpson
diversity indices (Supplementary Figure 2) significantly
increased, while OUT/Ace/Chao1 (Supplementary Figure 2),
Shannon diversity indices (Supplementary Figure 2) decreased
when compared to the controls. With the aspects of different
treatments, group E decreased optimization-CCS. The

maximum percentage of β-diversity variation measured by
weighted UniFrac matrices in different experimental groups
was 94.62% along PC1, 3.91% along PC2, and 0.51% along PC3
by PCA analysis (p < 0.05).

The relative abundances of Aerobic (Actinobacteria,
Planctomycetes, Proteobacteria), Anaerobic (Bacteroidetes,
Planctomycetes), Contains_Mobile_Elements (Proteobacteria),
Facultatively_Anaerobic (Proteobacteria), Forms_Biofilms
(Actinobacteria, Planctomycetes, Proteobacteria),
Gram_Negative (Planctomycetes, Proteobacteria),
Gram_Positive (Actinobacteria), Potentially_Pathogenic
(Proteobacteria, TM7), and Stress_Tolerant (Proteobacteria)
are revealed in Supplementary Figure 3. The branches of
Actinobacteria, Planctomycetes, and Proteobacteria have been
revealed as the significant biomarkers based on the total
expression in all the treatment groups.

When we compared group C (named M52/53/54) with
group D (named M55/56/57) at the class 2 level, the significant
17 COG categories have been enriched in the comparison
between groups C and D at 24 h. The categories are
ordered as amino acid transport and metabolism, carbohydrate
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transport and metabolism, coenzyme transport and metabolism,
defense mechanisms, inorganic ion transport and metabolism,
intracellular trafficking, secretion and vesicular transport, lipid
transport and metabolism, secondary metabolites biosynthesis,
and transport and catabolism.

In the KEGG pathway at the phylum class 1 level,
environmental information processing and metabolism have
been enriched. Interestingly, the significant 27 KEGG pathways
in the comparison between groups C and D at 24 h, named
as biosynthesis of other secondary metabolites, carbohydrate
metabolism, energy metabolism, environmental adaptation,
glycan biosynthesis and metabolism, and infectious diseases:
bacterial, parasitic, and viral, membrane transport, metabolism
of other amino acids, metabolism of terpenoids and polyketides,
and xenobiotics biodegradation and metabolism.

In group C, when we compared 0 h (chosen M07 as a
reference control) and 24 h (chosen M52 as the case), the
significant biomarkers were Planctomycetes and Actinobacteria.
Al@TCAP enhanced the expression of Pirellulaceae. In group B,
when we compared 12 h (i.e., M35) and 48 h (i.e., M81), the
expression of Planctomycetes and Proteobacteria increased and
decreased in the volcanic rock group (Supplementary Figure 3).

In the network between the significant biomarkers in the
process of water purification, the current study found the
top 10 were Pirellulaceae and Polynucleobacter. Filimonas
and Fluviicola are mainly involved in the degradation
of high-concentration organic matter, while the relative
abundance of Novosphingobium, Reyranella, Shinella, Nevskia,
and Brevundimonas (both belong to Proteobacteria) was
positively correlated with the content of polycyclic aromatic
hydrocarbon analogs (Supplementary Figure 3). In the
comparison between groups C and D, the significant KEGG
pathway number of metabolism (other secondary metabolites,
carbohydrate, energy, glycan, other amino acids, terpenoids,
and polyketides), environmental response (xenobiotics
biodegradation, adaptation), and disease prevention
(infectious diseases: bacterial, parasitic, viral) are revealed
in Supplementary Figure 3.

α/β-diversity for operating taxonomical
units via ITS-Seq method

Based on the cluster images of species richness, 141
OTUs were collected. Chytridiomycota (71.51%) was the
primary group phylum. Ascomycota, Basidiomycota, and
Kickxellomycota displayed significant differences between the
groups (Supplementary Figure 1). When assessing the samples,
seven gates were detected, and there were differences between
the collected samples.

Results showed from 48 h, optimization-CCS
(Supplementary Figure 2) and Simpson diversity indices
(Supplementary Figure 2) significantly increased, while

OUT/ACE/Chao1 (Supplementary Figure 2) and Shannon
diversity indices significantly increased when compared with
those at 6 h. OTU, ACE, Chao1, and Shannon diversity indices
at 36 and 48 h significantly decreased when compared with
those at 0 h, while Simpson diversity indices significantly
increased. With the aspects of different treatments, three
purification material addition groups, containing groups B, C,
and E decreased optimization-CCS, while the others showed no
significant differences when compared to the controls.

The variation in β-diversity measured by Bray–Curtis
in different experimental groups, based on an NMDS and
Anosim analysis, found that S1, S2, and S3 are similar, and
S4, S5, and S6 are extremely different between and within
groups, indicating that the microbial communities gradually
developed over time (Supplementary Table 1). There was
little difference among samples. The maximum percentage of
β-diversity variation measured by weighted UniFrac matrices
in different experimental groups was 90.18% along PC1, 7.07%
along PC2, and 0.88% along PC3 by PCA analysis (p < 0.05).

The decreased Chytridiomycetes (especially
Hyaloraphidium) and increased Monoblepharidomycetes
has been shown in the present study with the increasing time.
Except for Basidiomycota, the branch of Aphelidiomycota,
Ascomycota, Chytridiomycota, Kickxellomycota, and
Rozellomycota showed as the significant biomarker between
different time durations via ANOVA analysis (Figure 4).
At 24 h, when we compared group C (chosen s4C1 as
the reference control) and group D (chosen s4D3 as the
case), the significant biomarkers belonged to Ascomycota.
Kickxellomycota, Basidiomycota, and Ascomycota were the
significant biomarkers between group A at 12 h (s3A2) and
E at 48 h (s6E3) via the Ternary method. Compared with the
S2 group, the genus Aspergillus, genus Penicillium, species
Aspergillus penicillioides, and species Penicillium lemhiflumine
in the S5 group were significantly reduced. Compared with
the S2 group, the genus Penicillium and species Penicillium
lemhiflumine in the S6 group decreased significantly (Figure 4).
Compared with the S3 group, the genus Aspergillus in the S5
group was significantly reduced. Compared with the S4 group,
the genus Penicillium in the S5 group decreased significantly.
Compared with the S4 group, the genus Penicillium and species
Penicillium lemhiflumin in the S6 group were significantly
reduced. Compared with the S5 group, the genus Aspergillus in
the S6 group increased significantly.

Discussion

Superficial characteristics and the
related nutrient removal efficiency

Attapulgite and volcanic rock exhibit excellent adsorption
performance and improve the environmental indicators of water
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FIGURE 4

Fungal species-abundance clustering image at different category levels. (A), the significant difference of sample via heatmapby
binary_jaccard_dm. method; (B), biomarkers via the lefse and cladogram method; (C), group ANOVA result in the phylum level, the relative
abundance among the comparisons of s4C1 vs. s4D3, s3A2 vs. s6E3, while the relative abundance of the genus has also been revealed.
Ascomycota (Nigrospora, Aspergillus, Cladosporium, Alternaria, Candida), Basidiomycota (Malassezia, Lyophyllum, Phallus), and
Kickxellomycota (Smittium) increased. The relationship between the selected taxonomy group (abundant species, genera, classes, orders, or
families) was calculated using SPSS 25.0 software.

quality (Fan et al., 2011; Derakhshan et al., 2016). It can
be seen from the characterization experiments on the surface
of the purification material that Al@TCAP has a rough and
uneven surface with a large number of protruding, gully-
like particles, and pores under the particles. The specific
surface area is large, approximately 2.94 and 2.10 times for
adsorption and desorption of the volcanic rock, but the
microbial capacity on the surface is weak, and no bacterial film
is formed. The study demonstrates that Al@TCAP exhibits a
weak microbial loading capacity, and the Al@TCAP removal
is primarily attributed to adsorption. At 48 h, the removal
rates of TN, TP, and CODMn in the purified materials plus the
three exogenous microorganisms were over 47%. The volcanic
rock has a sufficient ability to load microorganisms, and the

organisms primarily perform the removal for improved water
quality.

The exogenous microorganism and activated sludge are
often used for water pollution treatment, strengthening the
denitrification capacity of the polluted water (Fan et al., 2020).
In group E of the present study, the NO3

−-N concentration
increased and decreased within 6–12 h and 12–24 h,
respectively, and the NO2

−-N concentration continued to grow
within 6–24 h, indicating that the nitrification reaction occurred
after the actions of exogenous microorganisms. In the original
group E, the concentration of NO3

−-N decreased at 12–36 h,
and the corresponding 24–48 h NAR increased. The 6–36 h NIR
increased, indicating that denitrification continued to increase
at 12–36 h and that nitrification and denitrification coexisted
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at 12–24 h (Kim et al., 2017; Zhang et al., 2020). At 12 h, the
proportion of Planctomycetes increased in groups C, D, and
E. In comparison, the percentage of Planctomycetes increased
at 24 h in groups A and B. This shows that Al@TCAP and
exogenous microorganisms accelerated the nitrification reaction
and advanced the denitrification reaction (Zhang et al., 2020). In
actual production, when aerating can be determined according
to the NH3-N concentration of the primary precipitation
unit, prolonging the nitrification reaction reduces the impact
of NH3-N on the water body. The fungi detected by ITS-
Seq contained Penicillium and Aspergillus, which have been
proven to have PO4

3−-P-dissolving functions, and their PO4
3−-

P-dissolving ability is typically more reliable than that of
bacteria. Proteobacteria contain Nitrosomonas, which can
oxidize ammonia (Ilgrande et al., 2018). Planctomycetes include
a type of bacteria that can convert NO2

−-N to NH3-N to
form N2. This reaction is called anaerobic ammonium oxidation
(Zheng Y. et al., 2019). The current study suggests that those
bacteria play a vital role in the nitrogen cycle (Zhang et al., 2020).
In addition, the correlation analysis of DO and NAR activities
were significantly positively correlated (p < 0.05), indicating
that increasing DO in water can increase NAR activity. Due to
the decrease in DO, the AMO activity of the oxidized NH3-
N decreased, and NIR reduced NO2

−−-N to NH3-N, which
gradually increased the concentration of NH3-N in the water.

In this experiment, at 36 h, the OPH activity of each
group was higher than that of the new group. Compared
with other periods, the proportion of Penicillium at 36 h was
significantly lower, which explains the flat TP removal rate at
24–36 h (Watanabe et al., 2010). The AKP activity and TP
removal rate of group E at 48 h were higher than those of the
group with the added purification materials and the exogenous
microorganisms (Pundir et al., 2019; Zheng L. et al., 2019). The
content of the genus Aspergillus at 48 h was higher than at
36 h, indicating that the purification materials assisted in the
growth of certain exogenous microorganism environments and
improved the growth of microorganisms associated with TP
removal (Cheng et al., 2019).

The dehydrogenase activity of each group was higher
than that of the control group at 12–24 h, and the CODMn

removal rate of groups D and E with the added exogenous
microorganisms was higher than that of the other groups,
indicating that exogenous microorganisms can accelerate the
initiation of organic matter degradation (Chen et al., 2020) and
enhance the removal rate of CODMn.

Enhance the effect of exogenous
microorganisms

In the comparison between groups C and D, the KEGG
pathway of metabolism, environmental response, and disease
prevention have been significantly affected, while Al@TCAP

enhanced the expression of Pirellulaceae in the present
study. Otherwise, Al@TCAP increased the expression of
Planctomycetes and Actinobacteria. Planctomycetes were the
dominant microbes (13% of the microbial community) under
anaerobic conditions during the nitrogen cycle (Li et al.,
2017). The relative occupied abundances of Proteobacteria
offered their use in wastewater treatment, especially the
bioremediation of hydrocarbon pollutants (Romero et al., 2019).
The volcanic rock increased the expression of Planctomycetes,
decreased the expression of Proteobacteria, and a recent
study showed that volcanic rock had a retention capacity
of heavy metals when combined with the use of biochar
(Piscitelli et al., 2018).

Within the fungi in the present study, the purification
material addition group decreased the expression of
Hyaloraphidium, while no available data for Hyaloraphidium has
been found. The decreased Chytridiomycetes (Hyaloraphidium)
and the increased Monoblepharidomycetes were found with the
increasing time, especially from 36 to 48 h. Chytridiomycetes
was found to be associated with the degradation of organic
matter and trace-organic contaminants (Maza-Márquez
et al., 2016), the diversity indices of 16SrRNA- (24–48 h),
ITS-Seq (36–48 h), and DHO of group C/D decreased at
36–48 h. The present study showed that organic matter
degradation declined from 36 h. Ascomycota (Aspergillus and
Candida; Assress et al., 2019) and Basidiomycota were the
predominant fungal phylum during the thermophilic phase
in the use of sewage sludge (Liu et al., 2019; Robledo-
Mahón et al., 2020). Ascomycota, Basidiomycota, and
Kickxellomycota increased in group D when compared
with B at 24 h, while group E increased Ascomycota at 48 h.
Actinobacteria, Proteobacteria, and Aspergillus significantly
changed in the biochar applied treatments (Awasthi et al.,
2017), Candida was useful for the removal of high-strength
phenolic compounds (Basak et al., 2019) and similar to
our study, it hinted that purification material addition may
have the same effect as biochar in the wastewater treatment
(Rocha et al., 2020).

Conclusion

The ability of Al@TCAP to load microorganisms is
weak, and the water quality is predominantly purified by
adsorption. The volcanic rock exhibits a strong ability to
load microorganisms, and the water quality is primarily
purified by microorganisms. At 48 h, the removal rates of
TN, TP, and CODMn by the purification materials plus three
exogenous microorganisms were 46.91, 50.93, and 65.08%,
respectively. The study found that volcanic rock, Al@TCAP, and
exogenous microorganisms can increase the purification effect
by increasing the OPH, DHO, and NIR activities in a specific
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period. The combination of the composite purification material
and three types of exogenous microorganisms can increase
AKP activity and improve the TP purification effect at 48 h.
In the experiment, Al@TCAP and exogenous microorganisms
promoted the growth of Planctomycetes and accelerated
denitrification. The purification material also provided a
growth environment for microorganisms with phosphorus-
decomposing functions and enhanced TP removal.
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