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Abstract

Objective: To develop a clinico-genetic predictor of impulse control disorder

(ICD) risk in Parkinson’s disease (PD). Methods: In 5770 individuals from

three PD cohorts (the 23andMe, Inc.; the University of Pennsylvania [UPenn];

and the Parkinson’s Progression Markers Initiative [PPMI]), we used a

discovery-replication strategy to develop a clinico-genetic predictor for ICD

risk. We first performed a Genomewide Association Study (GWAS) for ICDs

anytime during PD in 5262 PD individuals from the 23andMe cohort. We then

combined newly discovered ICD risk loci with 13 ICD risk loci previously

reported in the literature to develop a model predicting ICD in a Training data-

set (n = 339, from UPenn and PPMI cohorts). The model was tested in a non-

overlapping Test dataset (n = 169, from UPenn and PPMI cohorts) and used

to derive a continuous measure, the ICD-risk score (ICD-RS), enriching for PD

individuals with ICD (ICD+ PD). Results: By GWAS, we discovered four new

loci associated with ICD at p-values of 4.9e-07 to 1.3e-06. Our best logistic

regression model included seven clinical and two genetic variables, achieving an

area under the receiver operating curve for ICD prediction of 0.75 in the Train-

ing and 0.72 in the Test dataset. The ICD-RS separated groups of PD individu-

als with ICD prevalence of nearly 40% (highest risk quartile) versus 7% (lowest

risk quartile). Interpretation: In this multi-cohort, international study, we

developed an easily computed clinico-genetic tool, the ICD-RS, that substan-

tially enriches for subgroups of PD at very high versus very low risk for ICD,

enabling pharmacogenetic approaches to PD medication selection.

Introduction

Impulse control disorders and related behaviors (ICDs) have

risen in importance in Parkinson’s disease (PD) over the past

few decades, following the introduction of D2 receptor-

selective dopamine agonists (DAs) for management of PD

symptoms in the 1980s. Initial systematic studies showed

that ICDs (most commonly compulsive gambling, buying,

sexual behavior, and eating behaviors) occur frequently in

people with PD treated with dopaminergic medications.1,2

More recent studies confirmed that ICD rates are not ele-

vated in people with de novo, untreated PD.3

In the largest cross-sectional epidemiological study

done to date, encompassing 3090 PD patients, an ICD
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was identified in 14%.4 A recent national multi-site study

reported a 5-year cumulative ICD incidence rate of 46%,5

and another study found clinically significant ICD symp-

toms in 36% of people with PD who also experienced

dyskinesias.6 DA treatment is by far the strongest PD

medication correlate.6,7 In addition, a personal or family

history of alcoholism or gambling; impulsive or novelty-

seeking characteristics; younger age or early PD onset;

male sex; and psychiatric comorbidity (depression, anxiety

and REM sleep behavior disorder) are additional corre-

lates of ICDs in PD.1,6,8–10 In candidate gene studies,

common variants in a number of neurotransmitter genes

have also been linked to the development of ICDs in indi-

viduals with PD, but to date, evidence from these rela-

tively small-scale genetic studies is mixed.11,12

Often problematic and at times disabling, ICDs remain

under-recognized in clinical practice.2,13–15 To assist in

diagnosis and management, several questionnaires and rat-

ing scales have been developed for detecting and monitor-

ing ICDs and related behaviors in PD, including the

Questionnaire for Impulsive-Compulsive Disorders in

Parkinson Disease (QUIP)16 and the Questionnaire for

Impulsive-Compulsive Disorders in Parkinson Disease-

Rating Scale (QUIP-RS),17 both of which are recom-

mended instruments for assessing ICD symptoms in PD.18

Management strategies for ICDs are suboptimal.19 Cur-

rent clinical practice is to withdraw DA medications after

ICD development, substituting with levodopa for symp-

tom control. While ICD behaviors often resolve after dis-

continuing DA treatment,20 considerable morbidity is still

incurred in the process, and complicated withdrawal

symptoms can occur (i.e., DA withdrawal syndrome).21

Given the limited treatment strategies available to man-

age ICDs in PD, preventive strategies would be ideal. We

reasoned that the evidence supporting a genetic basis for

impulsivity, together with the high prevalence of DA use

in PD, the high cumulative prevalence of ICDs in PD

individuals, and the substantial morbidity incurred by the

development of an ICD, represented an opportunity to

develop pharmacogenetics in PD. Specifically, here we

sought to develop a clinico-genetic predictor of PD indi-

viduals at high versus low risk for the development of

ICDs. Such a predictor could identify which individuals

might be safest to receive DAs, an effective therapy for

motor control but the PD symptomatic therapy class most

likely to precipitate an ICD. To develop and then test this

predictor, we used three large PD cohorts comprising

5770 individuals with PD: the Michael J. Fox Foundation

Parkinson’s Progression Markers Initiative (PPMI) cohort,

the 23andMe PD cohort, and the University of Pennsylva-

nia NIA U19 PD (UPenn) Cohort (Fig. 1).

Methods

Participants

23andMe cohort

The 23andMe, Inc. research cohort is derived from the

research participant base of 23andMe, Inc., a direct-to-

consumer genetic testing company. Consented research

participants provided saliva samples for genotyping.

Genotyping was performed on five genotyping platforms

(Illumina, Inc., San Diego, CA, USA ) by Labcorp, Inc.,

and followed by a genotype imputation step using a refer-

ence panel combining the May 2015 release of the 1000

Genomes Phase 3 haplotypes22 with the UK10K imputa-

tion reference panel.23 Details of the analyses and variant

quality controls have been published elsewhere.24 A total

of 5262 23andMe participants with a self-reported diag-

nosis of PD and >97% European ancestry (determined

through an analysis of local ancestry25), completed the

web-administered modified QUIP-short form for ascer-

tainment of an ICD anytime during PD. These partici-

pants comprised the 23andMe cohort for ICD prediction.

Figure 1. Overview of study. The study consisted of two major steps: (1) GWAS in the 23andMe Cohort for nomination of novel variants

associated with ICD in PD and (2) development of a model to predict ICD behavior in PD subjects. The GWAS in the 23andMe Cohort (3286 ICD

negative (ICD−) and 1976 ICD positive (ICD+) participants) uncovered four SNPs associated with ICD behavior in PD subjects at p < 1.3e-06.

These four and the additional 13 SNPs that were previously reported in the literature to associate with ICD were tested for association with ICD

behavior and used to develop an ICD risk score in PD subjects. In particular, we obtained genotypes of 17 nominated SNPs for 320 (252 ICD−
and 68 ICD+ participants) PPMI and 188 (139 ICD− and 49 ICD+ PD participants) UPenn Cohort PD subjects. We applied model selection to

develop a final logistic regression classifier model. First, we combined the PPMI and UPenn Cohorts (N = 508) and then we randomly split this

combined dataset into a non-overlapping Training dataset and Test dataset in a 2:1 ratio. To select the subset of variables to keep in our final

model (providing the best fit to the data), we used the Training dataset only, first performing backward feature selection with fivefold cross-

validation repeated 100 times on the Training dataset (261 ICD− and 78 ICD+ PD participants). We fit the final model (which included two SNPs

(rs1800497 and rs1799971) as well as cohort, age, sex, dopamine agonist use, levodopa use, disease duration, and ethnicity as predictors) to the

Training dataset employing Bayesian logistic regression. We then evaluated the ability of the Bayesian logistic regression model to predict ICD in

the held-out Test dataset (130 ICD− and 39 ICD+ PD participants). The final classifier model achieved ROC-AUC = 0.72 on the Test dataset. For

each PD participant in the Test dataset, we calculated the risk score (log odds) and RR of developing an ICD behavior using the predictive model.

ICD, impulse control disorder; PD, Parkinson’s disease; GWAS, Genomewide Association Study; PPMI, Parkinson’s Progression Markers Initiative;

RR, risk ratio.
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The full Genomewide Association Study (GWAS) sum-

mary statistics for the 23andMe discovery dataset will be

made available through 23andMe to qualified researchers

under an agreement with 23andMe that protects the pri-

vacy of the 23andMe participants. Please visit https://

research.23andme.com/collaborate/#dataset-access/ for more

information and to apply to access the data.

University of Pennsylvania cohort

The parent study of the UPenn cohort is the Clinical Core

of the Penn NIA U19 (Center On Alpha-synuclein Strains

In Alzheimer Disease & Related Dementias at the Perelman

School of Medicine at the University of Pennsylvania

(UPenn), formerly the Morris K. Udall Center at the
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Perelman School of Medicine at the University of Pennsyl-

vania). Over the past 13 years, the Clinical Core of the

UPenn NIA U19 has recruited PD subjects to participate in

a longitudinal study that includes: (1) serial assessment

with a battery of motor, non-motor, and neuropsychologi-

cal tests; (2) blood for plasma-based biomarkers and DNA,

cerebrospinal fluid, and structural and functional brain

imaging; and (3) post-mortem brain tissue, enrolling over

400 subjects in this time span, with approximately 180

active participants at any given time. Starting in 2015 the

QUIP-RS was administered to U19 Clinical Core partici-

pants annually/biennially. At the time of our ICD study,

188 PD subjects from the U19 Clinical Core parent study

had complete demographic and clinical records, including

QUIP-RS scores, as well as DNA availability. For these

individuals, genotypes were obtained, and they formed the

UPenn cohort for ICD prediction. SNP genotyping was

performed on a GSA chip (Illumina Infinium Global

Screening Array) or by TaqMan SNP Genotyping Assays.

We used proxies (R2 = 1) for one SNP that was not

directly genotyped (Table S4).

Parkinson’s Progression Markers Initiative cohort

PPMI is a comprehensive longitudinal, observational,

international, multi-center study designed to identify PD

progression biomarkers. The original PPMI cohort

included 400+ recently diagnosed, untreated (at baseline)

PD subjects. Biological samples include a longitudinal

collection of blood for genotyping and biomarker

measurement. The aims and methodology of the study

have been published elsewhere26 (www.ppmi-info.org/

studydesign). Participants complete the QUIP-short form

annually. Three hundred and twenty PPMI participants

had complete genetic and QUIP-short form data avail-

able, and they comprise the PPMI cohort for this ICD

study. Genotypes for 17 SNPs included in our analysis

were obtained from the PPMI database (http://www.

ppmi-info.org/data).

Ethics statement for human subjects
research

For the UPenn Cohort, the Institutional Review Board of

University of Pennsylvania approved the human subjects

research in this study. Written informed consent was

obtained from cohort participants. For the PPMI Cohort,

all participants signed a written consent form to partici-

pate in the study. For the 23andMe cohort, participants

provided informed consent and participated in the

research online, under a protocol approved by the exter-

nal AAHRPP-accredited IRB, Ethical & Independent

Review Services (E&I Review). Participants were included

in the analysis based on consent status as checked at the

time data analyses were initiated.

Ascertainment of ICD symptoms

The 188 PD participants of the UPenn cohort, 5262 par-

ticipants of 23andMe cohort,22–25 and 320 participants of

the PPMI cohort26 were assessed for the four primary

ICD behaviors: gambling, hypersexuality, buying, and eat-

ing.16 Individuals were deemed ICD+ based on previously

established QUIP and QUIP-RS cut-off scores.16,17

For the 23andMe cohort, a modified QUIP-short form

for web-based administration was used, ascertaining the

presence/absence of ICD symptoms at any time during

the course of PD. For the UPenn cohort, the QUIP-RS is

administered annually/biennially per study protocol and

assesses current ICD symptoms. In the PPMI study, the

QUIP-short form is administered annually and assesses

current ICD symptoms. In the UPenn and PPMI cohorts,

for ICD+ participants with data from more than one

research visit, we used clinical data from the visit coincid-

ing with the first occurrence of the ICD behavior. For

ICD participants with data from more than one research

visit, we used clinical data from the most recent visit.

Genome-wide association study for novel
ICD variants

In the 23andMe cohort, we performed GWAS with 23andMe’s

GWAS pipeline,24 in order to find variants associated with

ICD. The logistic regression model included age, sex, PD

duration, DA use, levodopa use, the first five genetic principal

components, and variables representing the genotyping plat-

form. The principal component analysis was performed using

~65,000 high-quality genotyped and trans-ethnic variants that

are present on all five genotyping platforms. GWAS analyses

were run independently for the genotyped and imputed vari-

ants. Approximately 15.2M variants passed the pre- and post-

GWAS quality control, and the genomic inflation factor for

these variants was 1.03. The top four loci from this GWAS,

with a suggestive p < 1.3e-06 for association with ICD, were

nominated for follow-up investigation.

Investigation of novel ICD variants in UPenn
and PPMI cohorts

To test for association between genotypes at the four

nominated SNPs from the 23andMe ICD GWAS, and the

presence or absence of ICD in the PPMI and UPenn

cohorts, we used logistic regression models assuming a

log-additive (multiplicative) genetic model. The effect of

each SNP on ICD was adjusted for age, sex, DA use (yes/

no), levodopa use (yes/no), and PD duration.
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Evaluation of SNPs nominated from the
literature in UPenn, PPMI, and 23andMe
cohorts

In addition to SNPs found by hypothesis-free GWAS, we

investigated 13 candidate SNPs nominated from the liter-

ature on ICDs11 for their association with ICD in the

PPMI, UPenn, and 23andMe cohorts. For these candidate

SNPs, we again employed logistic regression with a log-

additive model of genetic inheritance, and the effect of

each SNP on ICD was adjusted for age, sex, DA use, levo-

dopa use, and disease duration.

Logistic regression model predicting ICD

We combined the PPMI (n = 320) and UPenn (n = 188)

cohorts for a total of 508 individuals with PD. We then

randomly assigned these individuals into Training

(n = 339) and Test (n = 169) sets, only ensuring that the

proportion of ICD+ individuals within the Training and

Test sets was not significantly different.

In the Training set, we developed a classifier to predict

which individuals were ICD+. Specifically, we used a

logistic regression model with 25 potential predictor vari-

ables; 17 SNPs (Table S1, cohort (UPenn, PPMI), sex

(male, female), age (years), ethnicity (White or non-

white, by self-report), education (years), PD duration

(years), current DA therapy (yes/no), and current levo-

dopa therapy (yes/no). In order to select the best subset

of predictor variables, we employed the R caret package.27

We used the glmStepAIC function to perform backward

variable selection, based on Akaike information criterion,

with fivefold cross-validation repeated 100 times, in order

to select the best final variables to include in the model.

To perform unbiased variable selection, we randomly

sampled seeds for each of the 500 iterations. Our final

classifier then used the selected variables under a Bayesian

logistic regression model to avoid inflation of estimate

effect sizes for rare variants.

Model performance at prediction of ICD was assessed

in both the Training and Test sets using receiver operat-

ing characteristic (ROC) curves, generating an area under

the curve (AUC) for both the Training and Test sets.

Development of the ICD-RS

Having constructed a model (Bayesian logistic regression

classifier) using the Training set, we evaluated the ability

of this classifier to predict ICD behavior in an indepen-

dent Test set of 130 ICD-negative (ICD−) and 39 ICD-

positive (ICD+) participants. We used the final model,

which included two SNPs (rs1800497, rs1799971) and

adjusts for cohort, age, sex, ethnicity, disease duration,

DA use, and levodopa use, to develop an ICD risk score

(ICD-RS) as a continuous measure of ICD risk by relating

the output of the Bayesian logistic regression model to

probabilities:

ICD�RS ¼ ln
pICD

1�pICD

� �

¼ 0:365þ 1:408� ðcohortÞ�0:823� Sexð Þ
� 0:037� age at testð Þ þ 0:590� DA useð Þ
� 0:729� levodopa useð Þ�0:096

� PD durationð Þ�0:96� ðEthnicityÞ þ 0:429

� rs1800497 : Gð Þ þ 0:465� rs1799971 : Að Þ
We additionally developed a more generalizable ICD

risk score (genICD-RS) by employing the same methodol-

ogy, but removing cohort as an input variable, in order

to test performance without adjustment for cohort. This

genICD-RS used data from the combined datasets of 320

PPMI and 188 UPenn PD individuals, as we sought a

predictor that may be broadly tested for replication in

many clinical cohorts.

Additional details regarding statistical
analysis

We conducted all analyses in R (http://www.r-project.

org); R-scripts are available as a supplemental file.

To test for significant differences between the ICD+
and ICD− groups across demographic and clinical vari-

ables we employed t-tests or Fisher’s exact tests, as indi-

cated by variable distribution. Here we compared the

means or proportions of the two groups (ICD+, ICD−)
for each demographic and clinical variable individually.

All statistical tests were two-sided.

For cross-validation and model generation we used the

“caret” package.27 We created and analyzed receiver oper-

ating characteristic (ROC) curves employing the “pROC”

package.28 The specificity versus sensitivity analysis was

performed by employing the function coords from the R

package pROC.28 To estimate the best cutoff point we

used closest.topleft method which chooses the point clos-

est to the top-left part of the curve as the optimal

threshold.

We also conducted individual SNP association analysis

for all 17 SNPs, separately in the PPMI and UPenn cohorts.

For this analysis, we employed the R SNPassoc package.29

RESULTS

Prevalence of ICD in each cohort

A detailed description of the 5770 PD individuals enrolled

in the study is reported in Table 1. In all three PD
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cohorts studied, the prevalence of ICD observed greatly

exceeded ICD prevalence reported in the general popula-

tion.30 However, we observed a wide range (21.2–37.6%)

of ICD prevalence across the three cohorts (Table 1).

Specifically, the ICD prevalence in the 23andMe cohort

(37.6%) was much higher than the prevalence found in

the UPenn (26.1%) and PPMI (21.2%) cohorts. We note,

however, that ICD ascertainment in the 23andMe Cohort

differed from the Upenn and PPMI cohorts in two key

respects. First, in the 23andMe Cohort the QUIP was

administered by web-based survey, rather than in-person

with a research coordinator. Second, because the

23andMe Cohort was only accessed one time, the QUIP

short form used in this cohort screened for impulsive-

compulsive behaviors at any time during the course of

PD, whereas the QUIP-RS used in the longitudinally fol-

lowed Upenn and PPMI cohorts screened for current ICD

behaviors.

Differences in PD individuals with versus
without ICD

Because the three cohorts differ significantly in terms of

stage of PD, medication exposure, disease duration, and

age, we analyzed these additional factors within each

cohort individually, employing t-tests and Fisher’s exact

tests. Younger age was associated with ICD across all

three cohorts. In the Upenn and 23andMe cohort, males

were more likely to have ICD (p = 0.008, p = 0.001).

Exposure to DA was associated with ICD in the 23andMe

(p < 0.001) and PPMI (p < 0.001) cohorts. Levodopa use

was also associated with ICD in the 23andMe (p = 0.036)

and PPMI (p < 0.001) cohorts, with no association in the

Upenn cohort (p = 0.90). Additional results are summa-

rized for each cohort and each variable in Table 1.

Association of individual ICD risk SNPs with
ICD

The previous report of Kraemmer et al11 evaluated 13

SNPs to predict risk for ICD in PD, using data from 276

participants in the PPMI cohort, studied for an average

follow-up duration of 2.2 years. Of the 13 SNPs in the

original report of Kraemmer et al,11 only two (rs702764

and rs7305115) showed borderline associations with

impulsivity when tested independently in models adjusted

for age, medication use, and duration of follow-up. How-

ever, all 13 SNPs were used for predictive model develop-

ment. We investigated these 13 SNPs for association with

ICD in the PPMI cohort with two additional years of

follow-up, as well as in the 23andMe and Upenn cohorts.

In the PPMI cohort, only one of these 13 SNPs

(rs1800497, in the DRD2 locus), was associated with ICD

behavior (nominal p = 0.002, Table S2). None of the 13

Table 1. Demographic and clinical characteristics of studied PD cohorts.

Variable

23andMe cohort UPenn cohort PPMI cohort

ICD− ICD+

p

ICD− ICD+

p

ICD− ICD+

p

n = 3286 n = 1976 n = 139 n = 49 n = 252 n = 68

62.45% 37.55% 73.90% 26.10% 78.80% 21.20%

Age (years), M (SD) 70.2 (8.8) 67.6 (9.5) <0.0011 71.5 (8.1) 68.9 (6.3) 0.021 66.9 (9.7) 62.3 (9.9) <0.0011

Education (years), M (SD) 16.7 (2.7) 16.4 (2.7) <0.0011 16.1 (2.4) 16.1 (2.5) 0.491 15.6 (3.0) 15.6 (3.0) 0.911

Disease duration (years), M (SD) 5.2 (4.7) 7.5 (5.9) <0.0011 11.3 (5.9) 9.9 (5.0) 0.121 5.06 (1.17) 3.24 (1.45) <0.0011

Sex, n (%)

Female 1535 (46.7) 775 (39.2) <0.0012 64 (46.0) 12 (24.5) 0.0082 86 (34.1) 20 (29.4) 0.562

Male 1751 (53.3) 1201 (60.8) 75 (54.0) 37 (75.5) 166 (65.9) 48 (70.6)

Ancestry, n (%)

Other 0 (0) 0 (0) na 16 (11.5) 0 (0) 0.012 14 (5.6) 3 (4.4) 12

European 3286 (100) 1976 (100) 123 (88.5) 49 (100) 238 (94.4) 65 (95.6)

Dopamine agonist use, n (%)

No 2008 (61.1) 712 (36.0) <0.0012 86 (61.9) 24 (49.0) 0.122 173 (68.7) 32 (47.1) <0.0012

Yes 1278 (38.9) 1264 (64.0) 53 (38.1) 25 (51.0) 79 (31.3) 36 (52.9)

Levodopa use, n (%)

No 632 (19.2) 334 (16.9) 0.0362 18 (12.9) 6 (12.2) 0.902 52 (20.6) 36 (52.9) <0.0012

Yes 2654 (80.8) 1642 (83.1) 121 (87.1) 43 (88.5) 200 (79.4) 32 (47.1)

ICD, impulse control disorder; PD, Parkinson’s disease; M, mean; SD, standard deviation.
1t-test
2Fisher exact test.

Bold values indicate statistically significant differences.
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candidate SNPS individually associated with ICD behavior

in either the 23andMe (Table S3) or the Upenn Cohort

(Table S4).

GWAS to nominate novel ICD risk variants

Prior studies of genetic risk factors for ICD in PD have

employed a candidate gene approach, which may limit

the discovery of novel variants. Moreover, the lack of

clear associations between ICD and each of the 13 candi-

date SNPs nominated from the prior literature in the

23andMe, PPMI, and Upenn cohorts underlines the need

for a discovery approach. Thus, we next employed a

GWAS approach in the 23andMe PD cohort. After

quality-control filtering, 15.2M SNPs were analyzed for

association with ICD, as ascertained by QUIP. Four loci

associated with ICD at suggestive p-values of 4.9e-07 to

1.3e-06 (Fig. 2). Minor allele frequencies for each of the

four SNPs ranged from 0.019 to 0.267. Three of these

four suggestive association signals are localized within the

following genes—PRKAG2, MEFV, and PRKCE (Fig. 3).

Moreover, multiple linked SNPs associated with ICD are

localized within PRKAG2 and PRKCE, adding confidence

to these signals (Fig. 3).

Clinico-genetic predictor of ICD in PD

While single-SNP associations with ICD in PD are worthy

of mechanistic investigation, our primary goal in this

study was to develop a clinico-genetic predictor that

might guide drug choice for PD patients at the individual

level. Thus, we investigated the 13 SNPs previously nomi-

nated from the Kraemmer et al study,11 the four SNPs

newly associated with ICD in the 23andMe cohort, and

eight clinical variables associated with ICD (age, sex,

cohort, disease duration, education, ethnicity, DA use,

and levodopa use) to develop such a predictor. Moreover,

we sought to create a broadly applicable predictor of ICD

risk informative in various types of clinical cohorts.

To do this, we turned to the PPMI and Upenn cohorts,

which differ in stage of PD, with the PPMI study enrol-

ling participants with PD at the time of diagnosis, while

the Upenn study captures a typical subspecialty clinic

population, with an average PD duration of 10.8 years at

ICD assessment. Specifically, we combined these two

cohorts and then split individuals randomly (2:1 ratio)

into a Training dataset comprised of 339 subjects (261

ICD− and 78 ICD+) and a non-overlapping Test dataset

comprised of 169 subjects (130 ICD− and 39 ICD+).

Figure 2. The top four SNPs revealed by 23andMe GWAS. (A) Manhattan plot of GWAS on 23andMe Cohort comparing PD subjects with and

without ICD behavior. For each SNP, −log10 scaled p-value is plotted against chromosomal position. The top 4 SNPs (p < 1.30e-06) are labeled

by the nearest gene. The horizontal solid line indicates the genome-wide significant cutoff p-value (p = 5.0e-08). (B) GWAS summary statistics for

the most highly associated variants. For each SNP we show: dbSNP build 146 rsid, chromosomal position (GRCh37 build), the two SNP alleles (A1/

A2) in alphabetical order, OR for allele A2, the association test p-value adjusted for genomic inflation, the confidence interval based on the stan-

dard error of the effect size, and the nearest gene. The nearest gene legend: [Gene1, Gene2,. . .] = The SNP is contained within the transcripts of

the specified gene(s). Gene---[] = The SNP is flanked by gene on the left and there is no gene within 1 Mb on the right. []---Gene = The SNP is

flanked by gene on the right and there is no gene within 1 Mb on the left. ICD, impulse control disorder; PD, Parkinson’s disease; GWAS, Geno-

mewide Association Study; OR, odds ratio.
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In the Training dataset, we used backward stepwise

logistic regression starting with our full model (25 vari-

ables: 17 SNPs +8 clinical). The optimal model included

the following nine variables: cohort, age, sex, ethnicity,

disease duration, DA therapy, levodopa therapy, and

genotype at two SNPs; rs1800497 (in the dopamine

receptor D2 gene, DRD2) and rs1799971 (in the Opioid

Receptor Mu 1 gene, OPRM1). Fitting this nine-variable

model to the Training dataset by Bayesian logistic

regression, we obtained estimates of coefficients for each

variable. In our Training dataset, for the final model, all

clinical covariates except ethnicity significantly associated

with ICD, while each of the two SNPs showed border-

line associations (p-value 0.10–0.17) with ICD (Fig. 4A).

The odds ratio for ICD for DA use was 1.8, while levo-

dopa use was negatively associated with ICD.

Figure 3. Regional association plots of both genotyped and imputed SNPs across four genomic regions linked to ICD behavior in PD subjects.

(A) Region chr1p32.2 shows association of rs148267997 annotated to DAB1. (B) chr7q36.1 region with rs2302532 as a top associated SNP

annotated to PRKAG2. (C) chr16p13.3 region with rs11466021 as a top associated SNP annotated to MEFV. (D) Region chr2p21 shows

association of rs78448334 annotated to PRKCE. A –log10 p-value for association between individual SNPs and ICD is plotted against the SNP’s

chromosomal position. X-axis shows physical position based on NCBI genome Build 37. The right y axis shows the recombination rate (solid

blue line on the plots) estimated from 1000 Genomes Project. A symbol “o” indicates a genotyped variant, a “◊” indicates a protein altering

genotyped SNP, “+” is an imputed variant, and an “x” indicates a protein-altering imputed SNP. Color represents the pairwise LD with the

SNP with the most significant p-value at each locus computed from a set of 10,000 23andMe samples. ICD, impulse control disorder; PD,

Parkinson’s disease.
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We assessed the performance of this model in our

Training dataset by receiver operator characteristic

curves (ROC), AUC, and accuracy metrics. Our predic-

tor model showed a moderate ability to differentiate

ICD+ from ICD− PD subjects with an AUC of 0.75

(Fig. 4B).

Model performance in the Test dataset

We next applied the ICD-predictor model developed in

our Training dataset to the Test dataset of PD individuals

whose data were not used to develop the predictor. Our

model performed equally well in the Test dataset, with a

Figure 4. Development of ICD behavior classifier model. (A) The Bayesian logistic regression model estimates of the effects of two SNPs, adjusted

for cohort, age at test, sex, dopamine agonist use, levodopa use, disease duration and ethnicity. We calculated the upper (UCL) and lower (LCL)

confidence limits of odds of ICD behavior as: CL = odds �1.96 SE (odds), where odds ¼ expβx , and βx is a linear predictor of ICD.

Cohort = UPenn versus PPMI, with UPenn associated with higher risk of ICD (positive estimate), Sex = female versus male, with females

associated with lower risk of ICD (negative estimate). (B) The performance of the Bayesian classifier model measured in the Training dataset (261

ICD− and 78 ICD+ participants) by ROC-AUC was 75%. The same model achieved ROC-AUC = 72% when we performed prediction in the non-

overlapping Test dataset (130 ICD− and 39 ICD+ participants). (C) Estimating the best ROC-AUC cutoff point in the Test dataset. Specificity and

sensitivity of final Bayesian logistic regression model when predicting ICD behavior in the Test dataset across a range of cutoff points. We per-

formed this analysis using the method closest.topleft (pROC package function coords), which revealed 0.23 as the best cutoff point, yielding an

accuracy of 70%, sensitivity of 69% and specificity of 72% (dotted lines). ICD, impulse control disorder; ROC-AUC, receiver operator characteris-

tic curves-area under the curve. *p < 0.05, **p < 0.01, ***p < 0.001.
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ROC-AUC of 0.72 (Fig. 4B). To refine ICD prediction in

the Test dataset, we also compared sensitivity versus

specificity across a range of thresholds (Fig. 4C).

Prediction of ICD-RS in Test dataset

To develop a clinically useful tool, we used our Bayesian

logistic regression model to generate a continuous risk

score for ICDs in PD (ICD-RS, Fig. 5A).

We then evaluated the distribution of ICD-RS in the

Test dataset only. For individuals with ICD-RS greater

than +1 standard deviation above the mean, we found

the empirical prevalence of ICD was 2.6-fold higher than

for individuals below that cutoff (Fig. 5B). Among the 39

ICD+ individuals in the Test dataset, the average ICD-RS

was significantly higher (p = 2.4e-05) than for the 130

ICD− individuals (Fig. 5C). Moreover, we found that the

ICD+ individuals demonstrated a bimodal distribution of

ICD-RS, with one subgroup of individuals slightly “right-

shifted” in ICD-RS from the ICD-group and a second

subgroup of individuals with much higher ICD-RS than

the ICD-group (Fig. 5D). Importantly, we found that

individuals in the lowest quartile of ICD-RS had minimal

rates of ICD – ~7%, with bootstrap estimates SE in this

quartile ranging from 3% to 11%—while ICD rates in the

highest quartile of ICD-RS approached 40% (Fig. 5E).

Development and performance of a
genICD-RS

Because a real-world tool for use in identifying high- versus

low-ICD risk PD individuals would not depend on the

cohort of origin, we finally sought to develop a genICD-RS

that omits Cohort as a predictive variable, testing its perfor-

mance for risk stratification in the combined PPMI

(n = 320) and UPenn (n = 188) PD individuals.

As shown in Figure S1, the remaining input variables

for the genICD-RS showed the same direction and similar

magnitude as the ICD-RS, and the performance of the

genICD-RS was similar as well. Specifically, for individu-

als with genICD-RS greater than 1+ standard deviation

above the mean, the empirical prevalence of ICD was 2.7-

fold higher than for individuals below that cutoff (Fig.

S1B). Moreover, we found that individuals in the lowest

quartile of genICD-RS had much lower rates of ICD

(12%), while ICD rate in the highest quartile of genICD-

RS was 43% (Fig. S1E).

Discussion

In the current study, we investigated multiple PD cohorts

comprising 5770 PD individuals, employing a discovery-

replication design to better understand and predict ICD

development in PD. We identified four novel genetic vari-

ants through GWAS for ICD in the 23andMe PD cohort.

We then combined these newly discovered variants with

genetic variants previously reported to associate with ICDs,

developing a clinico-genetic predictor for ICD develop-

ment. Testing this predictor in PD individuals from both

the Penn-based cohort and the international PPMI cohort,

we found that it achieved moderately high performance

(AUC 0.75–0.72) in both the Training dataset in which it

was developed and a held-out Test dataset. From our pre-

dictor model, we developed a continuous metric, the ICD-

RS, demonstrating that this tool, incorporating just seven

easily obtained clinical variables and genotypes at two

SNPs, could risk-stratify PD individuals with respect to

ICD. Specifically, in the Test cohort individuals in the highest

quartile of ICD-RS had 38% prevalence of ICD, whereas PD

individuals in the lowest quartile of ICD-RS had only 7%

ICD prevalence, a more than fivefold difference. Moreover, a

generalized version of the ICD-RS (the genICD-RS), which

omits cohort as an input variable and can thus in principle

be tested in any clinical cohort, performed similarly.

Our findings have implications for pharmacogenetic

decision-making in PD. In particular, multiple previous

Figure 5. Risk scores for development of ICD behavior in PD subjects. (A) Calculation of ICD-RS in the Test dataset. We calculate the ICD-RSs for

each participant in the Test dataset using the log odds (coefficient estimates) obtained by fitting the final Bayesian logistic regression model to the

Training dataset. (B) Distribution of the RR in the Test dataset. The RR is the ratio of the empirical ICD prevalence within subgroups of the Test data-

set. First, we calculated the ICD prevalence in the group of PD participants with ICD-RS >1 SD above the mean of ICD-RS. Then, we calculated ICD

prevalence in the remainder of the PD participants (ICD-RS below the cutoff of +1 SD): RR þ1SD:RSð Þ ¼ ICD prevalence in participants aboveþ1SD ofI CD−RS
ICD prevalence in partcipants belowþ1SD of ICD−RS ¼ 2:6.

The participants above 1 standard deviation of ICD-RS have 2.6-fold higher rates of ICD behavior than the rest of the participants in the Test dataset.

Dashed blue and solid red lines represent normal and empirical distribution of ICD-RS, respectively. (C) ICD-RS (log odds) percentile among ICD+ ver-

sus ICD− PD participants in the Test dataset. While the horizontal line within the box indicates the median, we also show the percentile mean for

each group. Both median and mean percentile are higher in the ICD+ group. (D) Distributions of risk (pICD) per ICD group. Both ICD+ PD and ICD−
PD are skewed to the left because only ~23% of participants are ICD+. The purple dotted line indicates the best threshold (0.23) as estimated by the

closest.topleft method. (E) The relationship between prevalence of ICD and ICD-RS percentiles in the Test dataset. Error bars indicate standard errors

(SE) generated by 1000 bootstrap replicates. ICD prevalence, binned according to percentiles of ICD-RS, is highly correlated with ICD-RS percentiles.

Empirical ICD prevalence increases from 7% in individuals within the lowest quartile of ICD-RS to 38% in the highest quartile. ICD, impulse control

disorder; ICD-RS, ICD risk scores; RR, risk ratio.
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reports, corroborated by our current study, suggest that a

large proportion of PD individuals may suffer from ICD

during their disease course.2,4,5,14,31 These impulsive behav-

iors are strongly associated with the use of DAs. In clinical

practice, the clear utility of DAs in managing PD symptoms

may support their continued use despite the concern for

triggering an ICD, and from a practical perspective the

widespread use of DAs to control motor symptoms in PD

patients largely precludes the adoption of strategies to

eliminate DA exposure entirely. Thus, an easily enacted risk

stratification strategy to determine, on an individual basis,

which PD patients may be at highest versus lowest risk for

ICD development could impact the field substantially. Sim-

ply put, high-risk PD individuals might be counseled to

use levodopa for motor symptom control, while DA use

could still be considered in low-risk PD individuals.
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The ICD-RS reported here can inform exactly such a

risk-stratification strategy. Clinical variables could be

easily obtained on routine care visits, while a blood or

saliva sample could serve as a source for DNA for geno-

typing. Because medication decision-making in PD is

rarely an emergent task, an ICD-RS, obtainable within

hours to days, could then inform drug choice, in a first

example of “precision medicine” approaches in PD. While

the exact cut-offs for ICD-RS that might be used for

decision-making regarding DA use, or any medication

choice (since our model is agnostic with respect to use),

remain to be determined, we note that our observed ICD

HR of 2.6 for individuals with ICD-RS >1 SD above the

mean is considerably larger than the HR seen for one

example of pharmacogenetic decision-making already

used in clinical medicine. Specifically, CYP2C19 geno-

types, known to affect efficacy of clopidogrel for inhibi-

tion of platelet aggregation, are used for antiplatelet drug

selection in cardiology,32 despite the fact that the HR for

major cardiovascular events observed with clopidogrel use

is only 1.55 for carriers of one CYP2C19 loss-of-function

allele and 1.76 for carriers of two alleles.33

Strengths of this study, which support downstream

efforts to translate findings into the clinical setting,

include ascertainment of ICD by standardized, validated

instruments, the discovery-replication design, and repro-

ducibility of findings across multiple large, multi-site PD

cohorts. Specifically, we employed versions of the QUIP

and QUIP-RS, developed in 2009 and 2012, and both rec-

ommended by the International Parkinson and Move-

ment Disorder Society for evaluation of ICD behaviors,18

for ascertainment of ICD in all three cohorts, ensuring

that this important clinical measure was obtained in the

most rigorous fashion possible for a large-scale study.

Moreover, our study had multiple phases, with the dis-

covery of novel variants associating with ICD by GWAS

in the 23andMe cohort, followed by testing of these vari-

ants in the PPMI and UPenn cohorts; and development

of the ICD-RS in a Training dataset, followed by valida-

tion of predictor performance in a non-overlapping Test

dataset of PD individuals. This iterative discovery-

replication design guards against overfitting (and indeed,

the equal performance of our predictor in both the Train-

ing and Test datasets confirms that overfitting did not

occur) and increases confidence in our findings. Finally,

our use of the highly characterized UPenn and interna-

tional PPMI cohorts, alongside the large, geographically

dispersed 23andMe PD cohort, to develop and test our

predictor greatly increases the likelihood that our findings

will be widely applicable in PD. Indeed, our sample size

of 5770 PD patients is the largest screening study of ICD

behaviors in PD to date and the number of patients

screening positive for an ICD at any point during the

course of PD across the three studies included here is the

largest sample size of affected patients known to date.

The limitations of our study should be considered

alongside the previously mentioned strengths. First, all

clinical data from the 23andMe cohort is by self-report,

so there is potential for bias both in terms of who chose

to participate in this study and through error in self-

report. We believe, however, that the benefit afforded by

our ability to access such a large cohort of PD partici-

pants, which enables research approaches such as the

GWAS for ICD in PD reported here, outweighs this liabil-

ity. Additionally, the four novel variants conferring risk

for ICD in PD found by GWAS here associate at p-values

that are suggestive of true association (p-values 4.9e-07 to

1.3e-06) but fall slightly short of genomewide significance.

However, our strategy of subsequent validation of prelim-

inary results from the 23andMe cohort in the PPMI and

UPenn cohorts ensures that our final conclusions are not

overly influenced by any one cohort. Second, the AUC

for ICD-RS was ~0.72 in the Test cohort, suggesting

moderately high, but far from perfect, performance. It is

possible that multiple underlying biological substrates

may contribute to the clinical phenomenon of ICDs in

PD, putting a biologically based “ceiling” on performance

for any global ICD predictor. Moreover, the three cohorts

studied here differ significantly from each other, in rates

of ICDs, disease duration, and other parameters, intro-

ducing heterogeneity that may also limit predictor perfor-

mance. That said, our goal in this study was to create a

clinically useful pharmacogenetic tool. As such, basing

our analyses on PD individuals across a wide spectrum of

disease, dispersed across countries and cohorts, is most

likely to result in widely applicable findings. We addition-

ally point to the ability of the ICD-RS, as well as the

more generalizable genICD-RS, to separate quartiles of

PD individuals whose actual ICD prevalence differed sub-

stantially and to a clinically meaningful extent (~fourfold
increase in ICD comparing the highest vs. lowest quartiles

of risk), supporting the utility of this score. We note,

moreover, that while additional clinical information, such

as a history of psychiatric disease or substance use disor-

der, may further refine estimates of ICD risk, the tool

presented here requires minimal clinical data, with all

variables easily obtained and objective in nature, allowing

for its use in a wide variety of settings.

In summary, we present our findings from a study of

5770 PD individuals from the UPenn, PPMI, and 23andMe

cohorts, demonstrating that an ICD risk predictor com-

posed of seven easily obtained clinical variables and geno-

type at two SNPs can identify PD individuals at extremes

of risk for ICD development. Our findings have clinical

implications for pharmacogenetic decision-making in PD:

identification of high-ICD-risk individuals may allow for
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avoidance of DA use in this group, sparing them consider-

able ICD-related morbidity. More generally, the develop-

ment of molecular tools, such as the ICD-RS reported here,

may permit a new “precision medicine” approach to the

care of patients with neurodegenerative disease.
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