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Krogh’s principle for musculoskeletal physiology and 
pathology
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August Krogh: his research and his principle

August Krogh was a Danish scientist who was awarded 
the Nobel Prize in Physiology or Medicine in 1920 for his 
discoveries on the mechanisms that regulate capillaries 
in skeletal muscle1. He was a comparative physiologist 
who used frogs, guinea pigs, cats, dogs, and horses in his 
research that led to his Nobel Prize. He co-founded the 
Nordisk Insulin Laboratory, which became Novo Nordisk. He 
continued to work on comparative physiology until his death 
at age 74. In comparative physiology circles he is best known 
for his ability to choose the most relevant organism (e.g., 

plant, insect, amphibian, bird, mammal) to study problems 
in physiology. In 1929 he stated, “For a large number of 
[physiological] problems there will be some animal of choice, 
or a few such animals, on which it can be most conveniently 
studied”2. Krogh’s mentor remarked that the tortoise was 
“expressly ‘created’ for special physiology purposes, but 
I am afraid that most of them are unknown to the men for 
whom they are ‘created’2. Hans Krebs, also a recipient of 
the Nobel Prize for his work on the “Kreb’s cycle”, provided a 
few examples of the value of using Krogh’s principle to solve 
problems in physiology3. Krebs himself used skeletal muscle 
from pigeons for his research on the tricarboxylic acid cycle 
because they were more suitable for answering his research 
question than rat muscles. The remainder of this article deals 
with the use of Krogh’s principle - studying animals with 
unique physiological mechanisms - for solving problems in 
musculoskeletal physiology and disease. The use of naturally 
occurring animal models, which include spontaneous 
models of pathology as well as models of healthy but unique 
physiological mechanisms, may enhance the ability to solve 
problems in musculoskeletal research. For example, it has 
been noted that “progress in OI [osteogenesis imperfecta] 
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research has been limited because of dependence on human 
fibroblast and osteoblast specimens and the absence of a 
naturally occurring animal model for this genetic disorder4.” 
More recently a canine model of naturally occurring OI has 
been identified5. 

There is great interest in solving problems in human 
musculoskeletal physiology in order to improve the clinical 
treatment of musculoskeletal diseases. Musculoskeletal 
tissues evolved and adapted for numerous biological, 
physiology, and mechanical functions for hundreds of 
millions of years prior to the appearance of humans. In 
many circumstances the adaptions were in response to 
extreme environmental conditions or for performing unique 
functions6. Bone, for example, appeared in animals about 
430 million years ago (Mya), but homo sapiens appeared 
only about 0.2 Mya. Even bipedalism occurred possibly only 
about 7 Mya. Thus, there is a lot to learn from the biological 
and physiological processes of animals that have capitalized 
on hundreds of millions of years of evolution for performing 
musculoskeletal functions. 

Of mice and rats 

There is no doubt that laboratory mice and rats continue 
to be extremely valuable in solving problems in human 
physiology and clinical medicine. For example, they have 
elucidated molecular mechanisms that regulate bone 
formation7, increased our understanding and ability to treat 
arthritis8, and increased our ability to develop therapies for 
osteoporosis9,10. However, mice and rats do have several 
limitations as research models that should be recognized. 
For example, the standard housing conditions for wild type 
mice and rats which include small cages and ad libitum food 
produce sedentary and overweight “control” animals relative 
to food restricted and exercised animals11. Thus, the so 
called control animals do not necessarily represent a healthy 
physiological state. In fact, they more closely model disease 
states like obesity, diabetes, and chronic inflammation. 
Rodents housed in standard conditions have high body fat, 
blood pressure, plasma concentrations of glucose, insulin, 
and cholesterol, as well as high levels of pro-inflammatory 
cytokines and hormones like leptin compared to exercised 
and diet restricted animals11. 

Furthermore, rodents housed in standard conditions 
have a high incidence of spontaneous tumors. In contrast, 
a naturally occurring rodent model (naked mole rat) has 
remarkable cancer resistance despite exceptional longevity 
(approximately 30 years) relative to standard research 
rodents12. Thus, clues from the molecular mechanisms 
that prevent cancer in naked mole rats may be used for 
comparative studies with laboratory rodent models of 
cancer13, which may increase the understanding of and ability 
to treat cancer. Gene expression is also significantly different 
in the tissues of ad libitum fed versus diet restricted rodents11. 
Thus, standard housing conditions for control animals may 
confound the interpretation of genetic and physiological 

responses in drug and disease etiology studies. Additionally, 
even though genetically modified animals provide insight 
on musculsoskeletal diseases like osteoarthritis, as it 
is possible to cause osteoarthritis by knocking out or 
overexpressing specific genes in animal models, it does 
not confirm these same genes are involved in the etiology 
of human osteoarthritis, which may be related to subtle 
changes in development, growth, and decades of physical 
activity14. Ultimately, findings from studies on animals 
that have developed unique musculoskeletal physiological 
characteristics, due to evolutionary pressures, increase our 
understanding of the form, function, and biological regulation 
of musculoskeletal tissues and may help develop novel 
clinical therapies for musculoskeletal diseases and injuries. 
For example, the role parathyroid hormone (PTH) plays in 
regulating bone metabolism in hibernating bears to prevent 
disuse osteoporosis15 may lead to the development of a new 
PTH drug that could be used to treat patients with low bone 
density and at risk for fracture16.

The purpose of this paper is to encourage researchers 
to ask themselves if there are naturally occurring animal 
models that may be better models and provide deeper 
insight for answering specific questions in musculoskeletal 
physiology than lab mice and rats, or if naturally occurring 
animal models may be complementary or synergistic to 
standard laboratory animal models for solving problems 
in musculoskeletal physiology. One of the best and most 
accessible animal models for comparative physiology and 
pathology are pedigree dogs. There are over 300 breeds of 
dogs and many are predisposed to musculoskeletal disorders 
such as osteoarthritis (OA), osteosarcoma, anterior cruciate 
ligament (ACL) failure, and hip dysplasia17. Elucidation of 
canine genomes enables the ability to assess the role of 
genetics in canine musculoskeletal disorders18. For example, 
genetic studies in Dachshunds with naturally occurring 
osteogenesis imperfecta are helping understand the roles of 
post-translational modifications and cross-linking of collagen 
in bone5. In addition to providing models for understanding 
the etiology of musculoskeletal diseases, companion canines 
provide pre-clinical animal models for clinical procedures to 
treat musculoskeletal diseases. For example, approximately 1 
million dogs are treated for ACL injury annually19. Canine and 
equine athletes have also helped us understand how fatigue 
microdamage and targeted bone remodeling contribute to 
the etiological and clinical aspects of stress fractures20-22.

Skeletal muscle

Skeletal muscles are remarkable organs with respect 
to their ability to generate large tensile forces to produce 
motions of the skeletal system ranging from organismal 
locomotion to mastication. For example, the tension in 
human leg extensor muscles can exceed 1,l00 pounds of 
force for a squat exercise23. Comparative models of animals 
particularly well suited for muscular force production have 
contributed greatly to our understanding of structure-
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function relationships of skeletal muscle. For example, crabs 
are able to exert exceptional bite forces because they are 
capable of producing muscle stresses much larger than 
vertebrates24. The ability to produce the high muscle stresses 
results from the longer resting sarcomere length in crabs 
than in vertebrates. Much of our understanding of muscular 
power output and the interactions of muscles and tendons 
comes from studies on animals like insects, kangaroo rats, 
frogs, and kangaroos25-28. Many notable discoveries on 
skeletal muscle physiology were made with non-rodent 
models. Krogh studied gas diffusion in frog muscle29. Oxygen 
is essential for providing energy (i.e., ATP) for muscular 
contraction and force production. Krogh also studied the 
rate at which oxygen is used in skeletal muscle and the 
distance an oxygen molecule has to travel from a capillary. 
In these studies he used muscles from horse, dog, guinea 
pig, frog, and cod30. These were some of the investigations 
that led to his Nobel Prize. The research of Archibald V. Hill 
has contributed extensively to our current understanding of 
muscle physiology. Hill received the Nobel Prize in Physiology 
or Medicine for his work on skeletal muscle just two years 
after Krogh did, but his contributions to elucidating the 
mechanisms of muscular contraction continued long after 
that31. Hill used many animals such as the hummingbird, 
tortoise, sloth, whale and horse for comparisons with human 
muscle mechanics32. He has had a profound influence on 
more recent prominent muscle researchers including those 
trying to find treatments for diseases that affect skeletal 
muscle such as cerebral palsy33-36. 

Solutions to debilitating skeletal muscle conditions such 
as cerebral palsy, sarcopenia, disuse induced atrophy, and 
Duchenne muscular dystrophy (DMD) may be influenced 
or inspired by naturally occurring animal models. There 
is currently no cure DMD, which is caused by a mutation in 
the dystrophin gene, which leads to progressive muscle 
degradation and weakness in boys starting at about 4 
years of age, loss of ambulation at about 12 years of age, 
and death at about 26 years of age due to cardiac and 
respiratory failure. There are dystrophin deficient mouse 
models, but they display a mild phenotype compared to boys 
with DMD. However, the golden retriever muscular dystrophy 
dog (GRMD) faithfully reproduces the human phenotype37. 
Recently, two exceptional GRMD dogs were found to have 
normal muscle function despite the complete loss of 
dystrophin38. These dogs demonstrated overexpression of 
the Jagged1 gene which may be able to rescue the dystrophic 
phenotype, representing a possible new therapy for boys 
with DMD. Physical inactivity, due to injury or bed rest cause 
skeletal muscle atrophy39,40. While this muscle atrophy can 
be simulated in rodent models, an alternative approach to 
developing therapies for disuse induced muscle wasting is to 
consider animal models that are naturally resistant to disuse 
induced muscle atrophy. Hibernating mammals are physically 
inactive for up to 6 months annually, but exhibit relatively 
little muscle atrophy upon emergence from hibernation41. 
There is evidence suggesting roles for mammalian target 
of rapamycin (mTOR), PGC-1α (peroxisome proliferator-

activated receptor-γ coactivator-1), and serum and 
glucocorticoid-inducible kinase 1 (SGK-1) in the regulation 
of skeletal mass during hibernation, representing possible 
targets for developing new therapies. Despite whole muscle 
contracture in cerebral palsy patients, sarcomere lengths 
are longer than in healthy controls36. While there is currently 
no known naturally occurring animal model were nerve or 
muscle injury causes longer sarcomere lengths36, future 
identification of one or the use of other comparative animal 
models may increase our understanding of the etiology of 
and possible treatments for cerebral palsy.

Articular cartilage, ligament, and intervertebral 
disc

The passive soft tissues are also mechanical organs 
that are commonly damaged and diseased (e.g., ACL tear 
or osteoarthritis). There are numerous lab animal models 
to simulate the human conditions, but there are naturally 
occurring animals’ models (e.g., companion dogs) that 
may provide greater insight than induced models42-48. 
Osteoarthritis is the progressive degradation and loss of 
articular cartilage that affects approximately 25% of the 
adult population49. Its etiology is attributed to numerous 
factors such as genetics, aging, and joint injury. Despite 
an abundance of research, the molecular mechanisms of 
osteoarthritis are not well understood. Dogs, cats, horses, and 
primates are some of the naturally occurring animal models 
which may help elucidate the mechanisms of osteoarthritis 
etiology since osteoarthritis occurs spontaneously in 
these animals42-45,47. Macaques spontaneously develop 
osteoarthritis in the spine that is radiographically similar 
to human spinal osteoarthritis42. Since longitudinal studies 
with repeated radiographs is not feasible in humans, this 
model provides the ability to study disease progression over 
lifetimes. The knee joint of domestic dogs is histologically 
similar to the human knee joint and some dogs naturally 
develop knee osteoarthritis45. Studying natural osteoarthritis 
in companion dogs is advantageous because the etiology can 
be compared to human osteoarthritis and experimentally 
induced osteoarthritis (e.g., via cranial cruciate ligament 
transection) in dogs, and may accelerate the development 
of pharmaceutical therapies through clinical trials45. Dogs 
also naturally develop osteoarthritis in the hip joint43. COX-
2, 5-LOX, and LTB4 are all upregulated in the synovium 
of osteoarthritic canine hips and represent possible 
pharmaceutical targets for treating osteoarthritis in canine 
and human patients. The only known naturally occurring 
model of post-traumatic osteoarthritis (PTOA) is race horses 
and these equine models have shed light on the mechanisms 
of PTOA etiology and progression50. For example, it has been 
shown that osteoclasts are recruited to subchondral bone 
by RANKL from chondrocytes during the progression of 
OA and it was suggested that cathepsin K from osteoclasts 
contributes to osteochondral degradation50. Racehorses with 
OA have also shown that lubricin, a lubricating glycoprotein, 
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is upregulated in the synovial fluid, possibly to help protect 
cartilage from further degradation47.

Spontaneous ligament and meniscus injuries also occur 
in dogs46,48,51, which may be useful models for developing 
new procedures and implants for repairing human soft 
tissue injuries52. Additionally, there are also several naturally 
occurring animal models of intervertebral disc regeneration. 
The sand rat is the most common, but other models include 
the pin tail mouse, Chinese hamster, baboon, and multiple dog 
breeds53. Several of these naturally occurring models, such 
as the sand rat and pin tail mouse, demonstrate spontaneous 
disc degradation similar to that of humans. Thus, these 
animals could be used to help provide insight on the etiology 
of disc disease that may not be available in animal models of 
experimentally induced disc degradation.

Bone 

Mineralized tissues may have first appeared to perform 
mechanical functions for feeding54. Cellular bone (i.e., 
containing osteocytes, osteoblasts, and osteoclasts) first 
appeared in fish about 430 Mya55. In extant terrestrial 
vertebrates like humans, bone is known to play numerous 
physiological and mechanical functions and has the ability 
to demonstrate phenotypic plasticity in response to altered 
conditions such as the habitual mechanical environment. 
The current dogma is that osteocytes mediate changes in 
bone structure in response to altered mechanical loading56. 
However, acellular fish bone can also adapt to changes 
in mechanical loading57. This is a good example of how 
naturally occurring animal models can provide insight into 
musculoskeletal physiology to complement and sometimes 
challenge research in standard rodent models.

Short bouts (e.g., 1-8 weeks) of physical inactivity in 
humans and laboratory animals induce substantial bone 
loss, reduced mechanical properties, and increased fracture 
risk by uncoupling bone formation from resorption58-60. In 
contrast, hibernating bears that are physically inactive for up 
to 6 months annually do not have compromised mechanical 
properties of bone either at the tissue level61,62 or whole 
bone level63-66, and are used as naturally occurring animal 
models for preventing osteoporosis67. Intracortical porosity 
of bear cortical bone actually decreases with age68 instead 
of increasing with age as in human bone69. Histological and 
biochemical studies on the physiology of bone remodeling 
indicate that bone resorption and formation are suppressed 
and balanced during hibernation64,70,71. The suppressed 
remodeling is likely driven by the need to conserve metabolic 
energy and balanced remodeling is likely driven by the need 
to maintain eucalcemia70. The biological and physiological 
changes that occur during hibernation, and the effects 
of hibernation on bone have been thoroughly reviewed 
previously72-74. Several studies have been conducted on the 
biological mechanisms that influence bone metabolism in 
hibernating bears15,70,75-81, which have led to the development 
of new therapies to treat low bone mass and fracture 

risk16. The unique biological and physiological mechanisms 
of hibernating bears may also provide insight on how to 
treat obesity and cardiovascular disease82. Hibernating 
rodents and frogs also provide naturally occurring animal 
models for understanding the effects of prolonged physical 
inactivity on bone83-89. For example, bone proteomic studies 
have implicated a role for the endocannabinoid system in 
regulating bone remodeling in hibernating marmots90. Thus, 
clues from the biological mechanisms that regulate bone 
metabolism in hibernators may help in the development of 
novel therapies to treat immobilized human patients such as 
those affected by stroke91.

Companion dogs have been extremely valuable in increasing 
our understanding of spontaneous tumor development and 
developing novel therapies for treating cancers including 
osteosarcoma92. While there are numerous mouse models 
of cancer, they often do not faithfully reproduce many of 
the aspects of human cancer such as long latency periods, 
recurrence, and metastasis93. Canine cancer models on the 
other hand share many similarities with human cancers. 
Dogs are excellent models for understanding and treating 
osteosarcoma in humans because they have remarkably 
similar cancer biology, clinical presentation, and responses to 
treatment92. Thus, surgical, chemotherapy, and radiotherapy 
approaches to treating osteosarcoma are being translated 
from veterinary medicine to human medicine. For example, a 
chemotherapy protocol developed for dogs improves survival 
rates for pediatric osteosarcoma patients94. Companion 
dogs may also provide insight on etiology and treatments for 
other bone diseases such as osteogenesis imperfecta. It was 
previously noted that progress in osteogenesis imperfecta 
research has been limited by the absence of a naturally 
occurring animal model4. Subsequently, naturally occurring 
osteogenesis imperfecta was identified in Dachshunds95,96. 
Dachshunds have been useful for understanding the molecular 
mechanisms of osteogenesis imperfecta. For example, in 
Dachshunds with osteogenesis imperfecta, a mutation in the 
ER chaperone protein HSP47 produced over-hydroxylation 
and partial intracellular retention of procollagen I5. 

Conclusions

These are just a few of the known examples of animals 
with unique musculoskeletal physiology and animal models 
of spontaneous musculoskeletal disease and injury. The next 
time you are trying to answer a question or solve a problem 
in basic, clinical, or translational musculoskeletal biology or 
physiology consider known and yet to be discovered naturally 
occurring animal models, in addition to lab mice and rats, for 
your answers and solutions. Capitalizing on the evolutionary 
physiology of animals with unique adaptions to extreme 
environments or those prone to spontaneous musculoskeletal 
injury or disease with similar biology and clinical presentation 
to humans will increase our ability to understand and treat 
musculoskeletal disorders. However, the limitations and 
difficulties of working with naturally occurring animal models 
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also need to be considered. Field work and housing of naturally 
occurring animal models is generally considerably more time 
consuming and expensive compared to ordering traditional 
lab rodents from a vendor and housing multiple animals in 
small cages. Consider for example the logistics of studying 
bone metabolism in hibernating mammals. This may require 
radio-collaring bears and tracking them in the wild to obtain 
blood samples for analyses of bone remodeling markers, 
or trapping marmots in the Rocky Mountains at elevations 
exceeding 12,000 feet and transporting them to a custom 
built vivarium and hibernaculum. It may be difficult to get 
large sample sizes of animals with unique musculoskeletal 
physiology or spontaneous musculoskeletal disease and 
injury, and ethical consideration may be more challenging 
than with conventional rodent models. Clearly not everyone 
can work with these types of animal models, but certainly 
everyone can glean insight about musculoskeletal physiology 
and pathology from studies on them.
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