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The process of gene regulation extends as a network in which both genetic sequences and proteins are
involved. The levels of regulation and the mechanisms involved are multiple. Transcription is the main
control mechanism for most genes, being the downstream steps responsible for refining the transcription
patterns. In turn, gene transcription is mainly controlled by regulatory events that occur at promoters and
enhancers. Several studies are focused on analyzing the contribution of enhancers in the development of
diseases and their possible use as therapeutic targets. The study of regulatory elements has advanced
rapidly in recent years with the development and use of next generation sequencing techniques. All this
information has generated a large volume of information that has been transferred to a growing number
of public repositories that store this information. In this article, we analyze the content of those public
repositories that contain information about human enhancers with the aim of detecting whether the
knowledge generated by scientific research is contained in those databases in a way that could be com-
putationally exploited. The analysis will be based on three main aspects identified in the literature: types
of enhancers, type of evidence about the enhancers, and methods for detecting enhancer-promoter inter-
actions. Our results show that no single database facilitates the optimal exploitation of enhancer data,
most types of enhancers are not represented in the databases and there is need for a standardized model
for enhancers. We have identified major gaps and challenges for the computational exploitation of
enhancer data.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Enhancers are distal cis-regulatory sequences capable of
increasing the transcription of genes that they regulate indepen-
dently of their orientation and distance to the transcription start
site (TSS) [1–3]. Moreover, they have been shown to be fundamen-
tal sequences in the regulation of genes and processes of relevance
such as cell identity and disease development. In fact, the term
enhancerophaties has been used to refer to diseases associated
with these sequences, and they have been studied as possible ther-
apeutic targets [4–8].

Literature estimates that the human genome contains more
enhancers than protein-coding genes, because one gene can be reg-
ulated by multiple enhancers, although one enhancer can also con-
trol multiple genes [3,9,10] (Fig. 1). Some studies have found that
each enhancer interacts with approximately two promoters and
each promoter interacts with 4–5 enhancer elements [9]. Further-
more, the specificity of species and tissue implies that different
combinations of enhancers can be used to control the expression
of a gene and that they can be different depending on the cellular
state and environmental factors [3,9,11,12]. Even at the enhancer
level, the existence of multiple transcription factor binding
sequences (TFBS) means that combinations of transcription factors
(TF) and mechanisms of action can be even more varied and con-
text dependent [13].

Initially, enhancer sequences have followed a functional defini-
tion. They have traditionally been characterised as nucleosome-
free regions (NFR or DHS) enriched with TFBS that allow the
recruitment of molecular elements. In turn, they collaborate in
the gene transcription process when these molecular elements
can interact through chromatin loops that approximate the
sequences or through the formation of hubs [14–16] (Fig. 1). Mul-
tiple mechanisms have been observed and suggested to explain
how enhancers are able to increase the expression of target genes
[17]. We find modes of action based on the nature of the sequence
that performs the enhancer action (enhancer action based on the
DNA sequence or transcribed eRNA), the environment of action

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.05.045&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.05.045
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jfernand@um.es
https://doi.org/10.1016/j.csbj.2022.05.045
http://www.elsevier.com/locate/csbj


Fig. 1. Traditional chromatin loop model (A). The enhancer physically interacts
with the promoter through chromatin flexibility and mechanisms like the loop
extrusion model. In this way, the enhancer can provide molecular elements that
increase transcription of the target gene. Alternatively, in the hub model, the spatial
proximity of multiple regulatory sequences allows the recruitment of high
concentrations of molecular elements that can generate a network and a microen-
vironment, even phase-separated, that increases the transcription of target genes.
This model can explain phenomena like the regulation of multiple genes by the
same sequence (B) and the regulation of the same gene by multiple sequences (C).
Modified from www.addgene.org and [42].
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(cis/trans action), the mode of linking between regulatory
sequences (chromatin loop, transcription factories or hubs, facili-
tate tracking, linking/chaining), the mechanism that initiates the
enhancer action (recruitment of transcription factors, cofactors,
chromatin modifiers, RNAPII transfer, liberation of the transcrip-
tional pause and eRNA action) or the consequence of the enhancer
activity (increase the initiation or elongation of the transcription or
reduce the pause of the transcription). It has also been proposed
that they can increase splicing, polyadenylation, transcription ter-
mination rate and RNAPII recycling, but the implication of enhan-
cers in post-transcriptional regulatory steps requires more study
[11,17–23]. In short, enhancers have the capacity to regulate by
increasing the transcription of a gene, increasing the activity of a
promoter or providing essential information that the promoter
does not provide.

With the development of genomics and next generation
sequencing (NGS), studies have tried to identify genomic features
in these sequences to study their function, their mechanisms of
action and to perform a massive screening of these sequences in
the genome using these correlated physical properties [24,25]. In
this task, high-throughput genomics methods have allowed us to
study in depth the chromatin properties of enhancers [26] and
the transcripts that they can generate (eRNA) [27–30], while chro-
matin conformation capture and high-resolution microscopy tech-
niques have allowed the determination of distal chromosomal
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contacts between promoter and enhancer sequences (EPI), as well
as the mechanisms of action [31–34]. However, deeper exploration
of these properties has also shown that there is no homogeneous
profile of features in the enhancers [26,35] and, therefore, the dif-
ferent methodologies provide a partial view of the regulatory land-
scape [36]. The same situation applies to the identification of EPI
[37]. In addition, the different characteristics identified in the
enhancers have also generated different classifications and termi-
nologies that have extended in the literature, whose validity of
use generates controversy due to the lack of consensus in the def-
inition of the enhancers [12] and the absence of a controlled vocab-
ulary by models of knowledge representation.

The study of regulatory elements has advanced quickly in
recent years with the development and use of new techniques,
and this progress has been paralleled with the clinical purpose of
detecting and studying diseases [25,38–41].

As a result, a large volume of data and knowledge about human
enhancer sequences has been generated and has been stored in a
growing number of biological databases. Given the increasing
bioinformatics processing of these data, reviewing the content of
the databases will show how well the content in databases covers
the knowledge generated by the scientific community and which
are the main limitations for the computational exploitation of
enhancer data. Hence, we will first describe a model for represent-
ing human enhancer sequences derived from the analysis of the lit-
erature. That model will drive the analysis of the content of 25
biological databases, which will focus on three main aspects: types
of enhancers, type of evidence about the enhancers, and methods
for detecting enhancer-promoter interactions. Finally, we identify
the main challenges in this area.

This work aims at contributing to describe the current land-
scape of human enhancers data and to the development of the
Gene Regulation Knowledge Commons targeted by the GREEKC
COST Action (https://greekc.org/). The GREEKC focus is on the gen-
eration, curation and analysis of data and knowledge about gene
regulation processes. The current article is focused on the data
resources, but discussion on the need for enhancer data interoper-
ability is also provided in this article.
2. Materials and methods

2.1. A model for representing enhancers

After a review of the literature, we propose a model to represent
the fundamental information about enhancers (Fig. 2). In the fol-
lowing subsections we describe the main elements which should
be covered and which will drive our analysis of bioinformatics data
resources: types of enhancer, methodologies to generate evidence,
enhancer-promoter interactions (EPI) and other annotations of
interest. Furthermore, any enhancer must have, at least, the coor-
dinates that allow mapping this sequence in the genome and the
biosample. As we will see below, the type of enhancer may vary
according to the biological sample, because enhancers are regula-
tory sequences specific to cell type, but also to environmental
stimuli [3,13].
2.1.1. Types of enhancers
Enhancers do not have homogeneous characteristics, but have a

variable profile [26]. Enhancers are dynamic and specific of species
and tissue, even TFBS that make up the enhancers can be specific
(pleiotropic sequences) [13]. Therefore, annotating a sequence as
enhancer is not sufficient to represent the description of its biology
and multiple typologies have emerged in the scientific literature to
classify different patterns of features. Fig. 3 includes the types of
enhancers which have been described in the literature and shows



Fig. 2. Proposed model for the representation of enhancers. Each enhancer is located in a region of the genome and belongs to one or more classifications of enhancers, which
may differ according to the biological sample in question, because enhancers are sequence specific. The identification of the enhancer has evidence derived from the
methodology used and must have a bibliographic reference that allows to verify the information. As regulatory sequences, enhancers regulate genes and this regulation is also
supported by evidence. In addition, the enhancers can be enriched with information of interest such as their link to diseases or the TFBS that compose the sequence.

Fig. 3. Classification of the main types of enhancers found in the literature. The characteristics of enhancers do not have a homogeneous profile. For this reason, we find
different classifications in the literature, which have been compiled in this figure. Each classification is based on different properties, so an enhancer can belong to several
types at the same time.
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different ways of classifying and subtyping enhancers, so one
enhancer can belong to different types at the same time. We
describe next those types:
2730
Enhancers by distance: This classification is based on the dis-
tance of the enhancer to promoters or target genes. Primary and
shadow enhancers are likely to be one of the most frequently
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mentioned types of enhancer in the related literature [11,6]. Ini-
tially, enhancers that were close to promoters were considered
as primary or principal enhancers in the regulation of gene expres-
sion, while more remote enhancers that exhibited the same regu-
latory activity were considered as secondary or redundant [43].
However, studies have shown that the genomic characteristics of
primary and shadow enhancers do not differ significantly [11].
The selective restriction of shadow enhancers can be as great or
even greater than that of other enhancers [44] and they can act
simultaneously with other enhancers and over large distances
[45]. Other studies have also shown that they can contribute to
the accuracy and robustness of gene transcription against environ-
mental and genetic variability, as well as stochastic perturbations,
by reducing the level of transcription noise [22,46,44,47]. There-
fore, their contribution may be relevant, meaning that this classifi-
cation based on the position of the sequence with respect to the
target gene is not the most useful. In addition, because one enhan-
cer can regulate more than one gene, an enhancer could be labeled
as both a primary and a shadow enhancer depending on the gene.

Proximal and distal enhancers are part of this hierarchy, and
they differ on the distance to the target gene. If the distance is lar-
ger than a certain value, then the enhancer is classified as distal,
otherwise it is proximal. There is no consensus on the threshold
distance. For example, the threshold in SCREEN ENCODE is 2 kb.

Enhancers by location: This classification is based on the location
of the enhancers in the genome. Since enhancers are regulatory
sequences, they have been typically searched in intergenic regions
(intergenic enhancers), which represent approximately 98–99%
of the genome [48]. However, studies have shown that there are
also intragenic enhancers, which can be located in intronic (in-
tronic enhancers) and exonic sequences (exonic enhnacers or
eExons) and modulate gene expression, e.g. by acting as alterna-
tive promoters [49,50]. Furthermore, there are intragenic enhan-
cers which are capable of recruiting TF that increase the
recruitment of RNAPII and other GTF to the promoter of the gene
itself [51] or to other genes [52]. On the other hand, other studies
showed that the presence of enhancers in intragenic sequences can
also attenuate the expression in the gene itself, possibly by an
interference between the elongation of the gene transcript and
the transcription of the enhancer [52]. Thus, the transcriptionally
active intragenic enhancers could have disparate functions and
improve transcription of one or more distal genes while limiting
transcription of the gene itself (double function, as enhancer and
silencer).

Enhancers by clustering: Enhancers can be found proximate and
linked to the same regulatory process. For this reason, the idea was
to cluster and merge these sequences to consider them as a single
regulatory elements.

The term distributed enhancers has been coined to represent
that multiple enhancers can regulate the same gene and to elimi-
nate the controversy about the classification of enhancers as pri-
mary or secondary based on the distance to the target gene [11].
However, currently we know that multiple enhancers can act on
the same gene and that one enhancer can act on more than one
gene [9,53,54], so a deeper investigation of the regulatory profile
may result in a generalization of this distributed or collaborative
property that eliminates this concept as a subtype of enhancer.
In general, it is common that when one enhancer explains a large
part of an expression pattern is found, the search for more
sequences is not carried out, so the number of genes with dis-
tributed enhancers could be high.

Superenhancers (SE) are the type of cluster of merged enhan-
cers located proximally in the genome, typically within 12.5 kb,
and have unusually high levels of master TF, RNAPII, cofactors like
the mediator and integrator complex and other enhancer-
associated features, such as H3K27ac and H3K4me1. They are also
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associated with high transcription values of eRNA and associated
target genes, but also with a higher frequency of chromatin inter-
actions with respect to individual enhancers [55–61]. In addition,
the enhancers that compose the SE (constituent enhancers) are
usually linked to the same regulatory process. In the identification
of SE, first the enhancers located within a distance of 12.5 kb are
joined and then, those sequences that exceed the inflection point
in the signal level plot [55] are selected. After this process, enhan-
cers not classified as SE are called typical enhancers.

SE are the most studied type of enhancer due to their relation-
ship with important regulatory processes such as cell development
and cell identity. This relevance derives from their ability to bind
master transcription factors and their association with the expres-
sion of pluripotent genes and tissue-specific genes [55–57]. These
characteristics and relevance also result in the association of these
sequences with the development of diseases like cancer, and their
consideration as therapeutic targets [62–64,7,65]. Other studies
also suggest other aspects: individual enhancers may have a role
equivalent to SE [66], a cooperative profile in SE sequences, not
all elements have to act at the same time and under the same con-
ditions, and a hierarchical structure within SE [66,13,67,42].

Some studies have tried to dissect this hierarchy in SE to deter-
mine which sequences are essential and which are more dispens-
able [61]. In turn, this organization has also included new terms
or subtypes: hierarchical and non-hierarchical SE. Non-
hierarchical SE have enhancers with similar contact frequencies
and, therefore, they are more homogeneous. The hierarchical SE
are more heterogeneous and have some enhancers with a higher
frequency of interactions (hub enhancers) than the rest of the con-
stituent enhancers (non-hub enhancers). Hub enhancers share
similar histone marks with the non-hub enhancers, but have more
CTCF and cohesin binding sites. Therefore, it has been suggested
that hub enhancers act as organizational centers within the SE, that
coordinate contacts with the rest of the non-hub enhancers and
with other distal regulatory elements [61]. In addition, hub enhan-
cers are more associated with SE function and disease-related vari-
ants, so their manipulation or deletion has demonstrated deep
effects on gene activation and local chromatin state [61].

Enhancers by sequence length: This classification is based on the
length of the sequence of the enhancer. 800 bp is the average
length identified, stretch enhancers were defined as those longer
than P3 kb [68], otherwise they are standard enhancers. These
sequences were also associated with genes with higher expression
levels and with cell type-specific genes [69].

Enhancers by sequence overlap: This classification is based on the
existence of overlap in the position and sequence of the enhancers.
The classifications by sequence length and by clustering have iden-
tified SE and stretch enhancers. Around 85% of the SE overlap with
stretch enhancers, SE being the set of stretch enhancers with
higher activity and with higher enrichment values in analyzed tags.
The overlapping sequences of SE and stretch enhancers were des-
ignated as super-stretch enhancers [68].

Other enhancers are overlapped with known promoters and
exhibit enhancer activity because they can interact with other pro-
moters [70,71] and have bidirectional transcription [72]. With the
improvement in gene editing systems and high-throughput repor-
ter assays, distal enhancer activity in promoter sequences was ver-
ified [73–77]. Epromoters is the term used for these sequences
and some works consider that 2–3% of promoters are of this type
[76].

We also find overlapping enhancers with Locus Control Regions
(LCR), because they are structures composed of different regulatory
modules that can include enhancers [78,79]. However, they have
also mapped onto sequences annotated as silencers, which have
the opposite biological function to enhancers. This is because reg-
ulatory sequences sometimes have a bifunctional function depend-
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ing on cellular context [80,81]. However, a special nomenclature is
not used for these sequences. We represent these cases in the Fig. 3
as LCR enhancer and silencer/enhancer.

Enhancers by chromatin profile: Different terminologies and clas-
sifications have been established according to the chromatin pro-
file [26,82–86]. This classification is one of the most important
because the activity of enhancers is not usually measured directly,
but their activity is inferred from the chromatin profile of the
sequences. As the activity of enhancers varies depending on the
biological context, this classification is directly linked to the bio-
logical sample used.

Previously, the community thought that when a cell had
completed its terminal differentiation, the regulatory repertoire
was established and maintained by lineage-specific TF. Thus,
internal or external stimuli could not change the regulatory pool,
but acted within it through the cooperation with the master TF
that were already bound to the sequences. However, cellular
plasticity has shown that stimuli can create new functional
properties through the activation of regulatory sequences that
are not pre-established by the cell lineage, even to the point
of defining a new cellular subtype [85]. In response to stimuli,
some enhancers without histone masks characteristic and with-
out bound TF (inactive enhancers) can recruit master TF that
provide chromatin accessibility and allow the acquisition of a
chromatin profile associated with enhancer activity, such as
H3K4me1 and H3K27ac. These inactive enhancers without marks
that can get activated after a stimulus are called latent enhan-
cers [85]. After the loss of the stimulus, some chromatin marks
may be lost, like acetylation and TF binding, as well as regula-
tory activity, but the sequences can retain marks like
H3K4me1. Subsequently, when cells receive a stimulus again,
the sequences can be re-stimulated with a faster and stronger
response [85].

Sequences with H3K4me1 were initially considered as enhan-
cers with little or no activity, but predisposed to acquire acetyla-
tion and transition to a more active state. These sequences were
named as primed/poised enhancers [85,26]. However, studies
have shown that the activity of sequences labeled with
H3K4me1 is not lower because of lacking H3K27ac, but they
could contribute to expression in a similar or even superior way
to the enhancers labeled with acetylation and called as active
enhancers [87]. On the other hand, it was also observed that
these predisposed enhancers can also present marks associated
with the silencing, like H3K27me3, H3K9me3 and PRC2 binding,
but also P300 (associated with activity) [88,89,83,90,91]. These
bivalent sequences have been found close to inactive genes that
are important during development and can be activated during
differentiation by deletion of H3K27me3 and gain of H3K27ac.
In addition, chromosome conformation capture assays have
shown that these sequences can be detected interacting physi-
cally with their target genes through the PRC2 complex even
before activation [90,20,92,93].

The observed variability has led to different subdivisions of
this set, but also to different nomenclatures due to the lack of
consensus and controlled vocabulary. Some studies classify and
name the enhancers without tags as inactive enhancers, the
enhancers H3K4me1+ as primed enhancers or intermediate
enhancers, the enhancers with marks like H3K27me3 and PRC2
a subset of this primed enhancers are called poised enhancers
or bivalent enhancers, and the enhancers H3K4me1+ and
H3K27ac+ as active enhancers [26,83,94,95]. Other classifications
and nomenclatures are common in the chromatin state annota-
tion of different studies and projects, like Roadmap epigenomics,
which have generated datasets widely used in other research and
public sources [96,82,86,97]. In these annotations we find cate-
gories such as:
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� Strong and weak enhancers [82], similar to a classification
reduced to active and primed enhancers.

� Genetic enhancers, enhancers and bivalent enhancers [96],
equivalent to active, primed and poised enhancers.

� Enhancer, permissive regulatory region and bivalent enhancer
[95], also equivalent to active, primed and poised enhancers.

� Active, poised, repressed and inactive enhancers, similar to
active, primed, poised and inactive enhancers, respectively [98].

It is important to note that, although some labels are closer to a
classification by activity, these labels correspond to a classification
by chromatin profile, because they are assigned on the basis of
chromatin properties. These properties are correlated with activity,
but activity must be confirmed experimentally and it has also been
shown that these tags are not strictly necessary to identify activity
in enhancer sequences [35,99,87].

Enhancers by transcription: Transcription has been observed in
some enhancers, mainly those considered to be active
[29,53,100,101]. Therefore, enhancers can also be classified into
transcribed enhancers (T-Enh) and non-transcribed enhancers
(NT-Enh). This transcription is initiated in the NFR of the enhan-
cers and is mainly bidirectional, although eRNAs with structural
heterogeneity and different combinations of properties have been
observed: unidirectional, bidirectional, polyadenylated and non-
polyadenyadenylated [27,29,102,103]. Within this heterogeneity,
the most usual subdivision is between enhancers with unidirec-
tional (1D-Enh) and bidirectional transcription (2D-Enh),
although a recent single-cell CAGE sequencing suggests that the
directionality of transcription could be more complex than unidi-
rectional or bidirectional in absolute terms [29,102]. Different
functions have been proposed for the transcripts [17,29,103–
105], such as formation and stabilisation of the chromatin loop
[106], liberation of the transcriptional pause [107] or increasing
the occupancy of TF and coactivators in enhancer sequences
[108]. Even eRNA function can be different depending on the
transcribed strand [109].

2.1.2. Methodologies to generate evidence
The variety of enhancer features also results in a variety of dif-

ferent experimental approaches for their detection, which provide
different levels of evidence. Comparative studies of enhancers
obtained by different methodologies have shown that, currently,
there is no preferential method for the detection of enhancers
[36]. Each methodology provides a set of candidate sequences
because they have genomic characteristics that make them
potential enhancers [24]. Nevertheless, each of them only provide
a partial view of the profile of enhancers due to technical limita-
tions, and because most techniques identify sequences indirectly,
through characteristics correlated with enhancer identity and
activity. For this reason, the inclusion of supporting methodolo-
gies is essential in an enhancer representation model, because
they provide the level of evidence to candidate sequences that
need to be verified. Fig. 4 shows the two groups of evidence gen-
eration methodologies identified in the literature according to the
identification strategy used, namely, based on chromatin charac-
teristics and based on reporter assays. Next, we describe both
types.

Evidence based on chromatin characteristics: The objective is to
identify sequences according to chromatin properties correlated
to enhancers. The development of high-throughput genomic meth-
ods has been fundamental to capture these properties, while bioin-
formatics tools have allowed us to analyze, to search patterns in
the data and to generate models to classify sequences according
to chromatin properties [110–112,86,96]. Therefore, these proper-
ties are the evidence supporting the enhancers and we distinguish
different approaches or levels of evidence which we cover below.



Fig. 4. Enhancers can be identified through different methodologies, which follow a certain strategy or approach that provides the level of evidence for the sequence. We can
distinguish two main types of evidence. Based on chromatin features: they appeal to sequence features, thus correlated properties that are not a direct measure of enhancer
activity. Reporter-based: these measure enhancer activity directly, but the interpretation of the results can be complex.

J. Mulero Hernández and Jesualdo Tomás Fernández-Breis Computational and Structural Biotechnology Journal 20 (2022) 2728–2744
� Detection of sequence conservation involves finding con-
served sequences between species and over time. It was one
of the first approaches used for the identification of enhancers
and followed in the early repositories. The detection of con-
served sequences has been successful in the discovery of enhan-
cers involved in biological processes of high importance in most
organisms, like sequences active during early development,
where enhancers have represented almost 50% of the highly
conserved sequences analyzed [113]. However, this approach
presents problems in the detection of sequences with species
specificity, where evolutionary conservation is lower [3]. In
addition, studies show that enhancers have different levels of
evolutionary conservation when they are obtained by different
identification methods. All of them show a higher overlap with
conserved elements than randomly, but the enhancers detected
by eRNA transcription were the most conserved, while the
enhancers obtained by PTMmarks were the less conserved [36].

� The identification of TFBS is an approach based on the fact that
the activity of many enhancers depend on their ability to bind
TF and coactivators that, by different possible mechanisms,
increasing the transcription of target genes [17,114]. For this
purpose, ChIP-seq has been used to capture and sequence those
DNA fragments bound to a specific TF, p300 and the mediator
complex being the most commonly used [115,58]. However,
this method may have low specificity because, in addition to
non-specific binding, can capture those sequences that have
complementary sequence and chromatin accessibility. This is
also an antibody-dependent method with its associated prob-
lems [23]. Therefore, it is not a method typically used isolated
for the identification of enhancers, rather it is used to generate
chromatin profiles that integrate different chromatin properties
in order to classify and predict sequences.

� The identification of accessible chromatin (DHS) is another
approach used in the identification of enhancers. If many
enhancers base their activity on their ability to bind TF and on
the mechanisms of action of the eRNAs [17], these sequences
must be accessible, at least during their period of activity. This
approach has low specificity, because multiple non-enhancer
sequences share this property [116,117]. Therefore, as for TFBS,
the identification of DHS is generally used for chromatin
profiling.

� The detection of PTM in histones, such as methylations and
acetylations, has been widely used both as individual approach
and for building chromatin profiles [26]. For this, chromatin
immunoprecipitation followed by microarrays or sequencing
is the technique most popular [118]. However, there is not
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strictly necessary and reliable methylation or acetylation mark
to identify unambiguously enhancer sequences [35,99,87]. In
the beginning, H3K4me3 was associated with promoter
sequences and H3K4me1 with enhancer sequences, while
dimethylations were observed in both types of sequences with-
out a clear distinction [119]. H3K4me1 and H3K4me3 are not
mutually exclusive marks in a genomic region, so the
H3K4me1/H3K4me3 signal ratio has also been used [120,121].
However, this criterion was affected by the detection of enhan-
cers with high H3K4me3 values [120,122] as well as enhancers
without H3K4me1 [123–125]. On the other hand, H3K4me1 is
not a mark capable of discerning enhancer activity. Acetylation
analysis associated the H3K27ac mark with the activity of the
enhancers, so this mark has been widely used in the identifica-
tion of active enhancers [88,89]. However, other studies have
also shown that H3K27ac is also not a strictly necessary mark
for enhancer activity [126,87]. For these reasons, histone PTM
are also used with DHS and TF binding data for the development
of computational models that annotate chromatin following
chromatin profiles.

� Detection of eRNA. Since transcription has been correlated
with sequence activity, eRNA detection has been used to iden-
tify active enhancers [53,127–129]. The methods employed
for the sequencing of these RNAs are varied. There are tech-
niques that allow the detection of RNA already produced, either
the full length of the sequence (e.g., flcDNA-seq) or the first
nucleotides (e.g., CAGE and TSS-seq). Other techniques use the
transcription rate (e.g., GRO-seq, PRO-seq or Start-seq). These
nascent RNA sequencing techniques allow to measure tran-
script levels, so they have the advantage of quantifying RNA
sequences which are not very stable and are rapidly degraded.
This is the case of eRNAs and PROMPT sequences of promoters
[99].

� Computational genome annotation. The development of algo-
rithms able to work efficiently with large volumes of data has
also made it possible to work with multiple experimental evi-
dence rather than individual chromatin properties. These mod-
els or algorithms have presented the problem of enhancer
identification from a computational point of view and their goal
is to determine if a sequence can function as an enhancer or not
according to a set of multiple types of data that provide a
description of the sequence [130,131]. Therefore, the first step
in these algorithms is the integration of different types of data
that provide information about the sequences. Subsequently,
these data are preprocessed (normalisation and scaling) to gen-
erate a feature vector that serves as input for an enhancer iden-
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tification and analysis system, which is responsible to annotate
the DNA regions based on these feature vectors. The computa-
tional models used have been developed following different
computational strategies and we find supervised and unsuper-
vised methods. Some tools developed include clustering algo-
rithms, like K-means or bi-clustering; others use regression
models, like least absolute shrinkage and selection operator
(LASSO); probabilistic graphical models (PGMs), like Dynamic
Bayesian Networks (DBNs) and Hidden Markov Models
(HMM); or classification systems like artificial neural networks
(ANNs), support vector machines (SVMs), random forests (RFs)
and decision trees (DTs) [130].

Evidence based on reporter essays: The objective is to identify
whether a sequence can increase the expression of a reporter
under the control of a minimal promoter. With the development
of high-throughput methods like MPRA and STARR-seq, this
approach can now be used for massive sequence identification
[132–134,24,135]. According to the reporter method used, the
enhancer can drive the expression of: a given sequence, such as a
barcode used as a reference; its own expression, through eRNA
measurement; or the expression of an alternative reporter gene,
like a fluorescent reporter. The vector used also varies the
methodology.

� Assays based on plasmids. This is a simple approach with
higher throughput, but is unable to replicate the complexity
of gene regulation in chromosomes. Examples are episomal
reporter assays, STARR-seq and MPRA.

� Assays based on integration. The integration into the genome is
a complicated process and can be done randomly or in a guided
manner. If random integration is chosen, the genomic context
can be lost, while in guided integration the context can be main-
tained, but at the cost of low efficiency due to the limitation of the
number of sequences that we can analyse in parallel. On the other
hand, in vivo systems are more reliable than in vitro, although we
should not ignore the technical limitations and problems thatmay
arise from the genomic context, cell and organism specificity
when we use model organisms [132,133].

� Gene editingwith CRISPR-Cas9 technology and the use of guide
RNAs (sgRNA) have also facilitated the endogenous manipula-
tion of enhancers [136,66] and can help to screen sequences
even at the TFBS level. The main advantage of this method is
the possibility to work in vivo at a high scale, in a targeted man-
ner and to maintain the local chromatin context by using tar-
geted sgRNA libraries [137,138]. It also allows other molecules
to be incorporated into the Cas9 nuclease, so many technical
variants have been developed to activate and silence sequences
[139,74,140]. However, the main problem is to be able to eval-
uate the causality and impact of the alterations of the enhancers
on expression, as well as the scaling of the technique.

2.1.3. Enhancer-promoter interactions
The public sources often include information that enriches the

knowledge about enhancers. Within this information, enhancer-
promoter relationships are one of the most important because they
inform about the potential regulatory role of the enhancer, either
by regulating the transcription of protein-coding sequences or non-
coding sequences, such as lncRNA or miRNA [141–144]. The distance
between enhancers and promoters that interact can be very large,
with a distance of one megabase or more, but they are usually closer
[10,71]. The majority of enhancer-promoter interactions (EPI) are less
than 200 kb and the most numerous are usually around 20–50 kb
[71,20]. Chromatin conformation capture methods (3C and derived
methodologies) and high-throughput microscopy techniques, such
as fluorescence in situ hybridization (FISH) experiments, are experi-
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mental tools used to study the three-dimensional structure of chro-
matin and to determine the contacts between sequences
[145,31,146,147,32–34]. Computational methodologies are also used
to predict EPI [141,145].

Therefore, similar to enhancer identification, the strategies used
in the different sources for EPI identification are varied (Fig. 5) and,
despite advances in new technologies, comparison of different
methods against a curated reference set has found that they still
need to be improved [37]. The association methods can be classi-
fied in two groups: unsupervised machine learning and supervised
machine learning [145].

Unsupervised methods: In unsupervised models, machine learn-
ing is based on a model that is adjusted according to the observa-
tions, so there is no a priori knowledge. Within this type we
highlight the methods based on distance, correlations and scores.

� Distance-based methods link enhancers to target according to
one or more distance functions. Linkage to the closest TSS has
been the most widely used strategy and estimates have deter-
mined that approximately 40% of EPIs are established with
the gene linked to this gene [53]. The association with the clos-
est gene could happen for different reasons, such as a low speci-
ficity of the enhancer for its target sequence [20]. Other widely
used distance-based strategies include: overlapping genes with
the enhancer, proximal genes or genes within a distance win-
dow, flanking genes or closest genes on both sides of the
sequence. Distance-based models can be useful for generating
an initial list of possible target genes, but it is a method that
can be inefficient because it does not consider other aspects like
interactions at large distances, cooperatively between
sequences or the specificity [13,45,9,148].

� Correlation-based methods evaluate the correlation of proper-
ties between pairs of sequences, such as correlation between
eRNA transcription and gene transcription [53], or correlation
between eQTL values and active chromatin marks [82]. A signif-
icant advantage of these methods is that they can identify mul-
tiple targets for one enhancer and measure quantitatively the
power of the association [141]. In contrast, a major problem is
the need for a large number of samples with sufficient quality
for comparisons, because correlation methods assume that
enhancer activity changes between conditions and between
cells [141]. They are also very sensitive to outliers and can
therefore generate a large number of false positive predictions,
but some algorithms have been developed to deal with this out-
lier problem [149].

� Score-basedmethods integrate data of different types and each
feature is associated with a quantitative value that is used to
generate a total quantitative score to establish an association
ranking for enhancer-gene interactions [141]. These methods
have also been defined as Decomposition-based methods in
other sources [145]. An advantage of these methods is that all
possible interactions between sequences can be quantified,
you can adjust the level of significance and allow different pri-
orities for each of the features. However, the need to adjust
weight values to the features is also one of the main problems,
because this can be arbitrary.

Supervised methods: In supervised learning models, we start
with a set of data that are true EPI, i.e. true positives and negatives,
and we use them as a training set to find patterns and create mod-
els that can be a classifier or a regression model.

� Classifiers use the patterns found in genomic features to create
a model that generates labels that are then applied to new data-
sets. As with correlation and scoring methods, the number and
type of features used for the predictor can be highly variable,



Fig. 5. Similar to the identification of enhancers, the determination of EPI can follow different strategies, which provide the level of evidence for the regulatory relationship.
Two main groups are also distinguished. Experimental methods determine the relationship directly. Computational methods make predictions and can follow two main
approaches. Supervised methods generate a model from a training set, while unsupervised methods lack this set.
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and the potential of these models will depend on the data used
for training and the quality of the variables [145,141]. The main
advantage of these systems is that they can find hidden patterns
in the data that are difficult to see when we have a large amount
of data, while the main problem is that they are very dependent
on the dataset used for training.

� Regression-based methods differ from classifiers primarily in
their ability to quantify potential. These methods systematically
evaluate the quantitative contributions of enhancers that can
regulate a gene within a genomic window by exploiting a large
number of genomic features that are assigned contribution
weights. These methods work with the logic that multiple
enhancers can regulate one gene. Therefore, a combinatorial
approach is applied for sequence pairing [141]. This has the
advantage of the cooperative effect of the enhancers under con-
sideration. However, they have the disadvantage typical of
supervised machine learning methods in terms of training data.
Besides, it also requires the definition of a genomic window,
which is set by a distance criterion, and a maximum number
of enhancers to be considered around a TSS.

2.1.4. Other annotations of interest
In the annotation of enhancers, besides the sequence coordi-

nates, we have emphasized the importance of the different types,
which in the case of a chromatin profile classification depends on
the biological sample. That is because the activity of the enhancer
sequences can be cell-specific, but also stimulus-dependent
[13,9,3,150]. Therefore, the chromatin profile of the sequences also
varies between biological samples and, consequently, the type. All
cells in an organism have the same genetic information and there-
fore all cells have the same enhancers. Thus, simply identifying
enhancers in the genome tells us nothing about possible enhancer
activity and cell-to-cell variability. In this way, the annotation of
the type of enhancer and the biological source is essential for a
model of enhancer representation that aims to study gene
regulation.
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We have also pointed out the importance of the methods which
support the sequences as well as possible target genes, because
they are the target of regulation, and their corresponding EPI pre-
dictor methods, because they also support the prediction. How-
ever, the representation model can be enriched with other
annotations of interest that increase its value. The activity of
enhancers derives mainly from their ability to bind TFs and to gen-
erate functional eRNAs [17]. Alteration of enhancer activity can
also contribute to the disruption of regulatory networks and the
development of diseases [4]. Therefore, including information
about TFBS, eRNA transcription, mutations and linking enhancers
to biological networks and diseases enriches the value of the
model, also the annotation of chromatin profiles, mechanisms of
action and other useful information.
2.2. Databases

Databases store the information generated by the scientific
community about enhancers. The volume of sequences obtained
by the different research efforts varies according to the identifica-
tion method used, because most methods use different correlated
features, or combinations of correlated features, to identify enhan-
cer sequences in the genome. The consequence is that the results
can differ in several orders of magnitude [36] and this variability
is also reflected in the repositories, because each source identifies
and stores sequences according to different criteria and data
inputs. Thus, while the RefSeq reference genome GRCh38.p13 (re-
lease 109.20211119) contains around 5,000 enhancers, FANTOM5
contains around 50,000 sequences [53] and SCREEN ENCODE
around 1 million [151].

For our study, we have selected 25 publicly available and acces-
sible repositories specialized in identifying and annotating human
enhancer sequences and which annotate, at least, the coordinates
of the sequences (see Table 1). The data was collected in February
2022.



Table 1
Brief description of the databases included in this study.

Repository Focus Short Description

CancerEnD Diseases Set of enhancers for TCGA cancer types
dbInDel Mutations Enhancer-associated insertion and deletion variants
dbSUPER SE general annotation Super-enhancers archive
ENdb Diseases A manually curated database of experimentally supported enhancers for human and

mouse
EnDisease 2.0 Diseases A manually curated database for enhancer-disease associations
EnhancerAtlas 2.0 General annotation General annotation of enhancers in different human biosamples and other species
EnhancerDB General annotation General annotation of enhancers in different human biosamples
EnhFFL Feed-forward loops (FFL) with

enhancers
A database of enhancer mediated feed-forward loops for human and mouse

Ensembl Regulatory Build
v105

General annotation Set of regions of the genome that probably are involved in gene regulation

ETph Pig-human homology General enhancers and their targets in pig and human
FANTOM5 Transcribed enhancers Transcription-capable enhancers
FOCS EPI Method for inferring an extended enhancer-promoter and predicted set
GeneHancer 4.8 (UCSC) General annotation Integration of enhancer sequences to generate a consensus set
HACER Transcribed enhancers Transcription-capable enhancers
HEDD Diseases Human enhancers with a focus on their links to diseases
HeRA Transcribed enhancers Transcription-capable enhancers
RAEdb Enhancers identified by reporter assays Enhancers identified by high-throughput reporter assays
SCREEN V3 General annotation Set of regions of the genome that probably are involved in gene regulation
Roadmap epigenomics General annotation Genome annotation in states
SEA 3.0 SE general annotation Super-enhancers archive
SEanalysis Biological networks with SE Super-enhancers associated with regulatory networks
SEdb 1.03 SE general annotation Super-enhancers archive
RefSeq GRCh38.p13 General annotation Annotation of functional elements in the reference genome
TiED General annotation Identification and annotation of active and transcribed enhancers in 10 tissues
VISTA Enhancer General annotation Validated enhancers with transgenic mice
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3. Results

In this section we describe how the selected databases cover the
information about enhancers included in our model.
3.1. Types of enhancers

Table 2 shows that the majority of the databases do not cover
the types of enhancers, but annotate the sequences as general
enhancers (see bar plot in Fig. 6A). Therefore, both the type of
enhancer and its possible activity profile have to be inferred mainly
from the methodology used for sequence identification, through an
analysis or by other means. Due to their relevance, the most cov-
ered enhancer type in the repositories are SE and transcribed
enhancers, although the constituent enhancers are not always
included. dbSUPER [152], ENdb [153], SEA [154], SEdb [155],
SEanalysis [156] and EnhFFL [157] are repositories which contain
Table 2
Type of enhancers hosted by each database. The types of enhancers not included in
this table are not covered by any database included in this study.

Enhancer types
according to model

Repositories

Enhancers (without
classification)

CancerEnD, dbInDel, ENdb, EnDisease 2.0,
EnhancerAtlas 2.0, EnhancerDB, Etph, FOCS,
GeneHancer 4.8, HEDD, RAEdb, RefSeq GRCh38.
p13, VISTA Enhancer

Super-enhancers dbSUPER, ENdb, EnhFFL, SEA 3.0, SEanalysis, SEdb
Typical enhancers EnhFFL, SEA 3.0, SEanalysis, SEdb
Constituent enhancers dbSUPER, SEanalysis, SEdb
Epromoters RAEdb
Proximal enhancers SCREEN V3
Distal enhancers SCREEN V3
Active enhancers Ensembl Regulatory Build v105, Roadmap, TiED
Primed enhancers Ensembl Regulatory Build v105, Roadmap
Poised enhancers Ensembl Regulatory Build v105, Roadmap
Inactive enhancers Ensembl Regulatory Build v105
Transcribed enhancers FANTOM5, HACER, HeRA, TiED
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SE. RAEdb [158] is the only source that covers epromoters, while
SCREEN [151] distinguishes between proximal and distal enhan-
cers according to their distance to the nearest TSS (2 kb limit).
On the other hand, according to chromatin profile we find mainly
two sources: Ensembl [98] and Roadmap [96]. The first distin-
guishes between Active, Poised, Repressed, Inactive and NA. The
second does it between Genetic enhancers, Enhancers and Bivalent
enhancers.

Furthermore, while Ensembl first annotates the consensus
enhancer sequence in the genome and then profiles the type of
enhancer according to the biological sample, the other repositories
usually annotate the sequences by biological sample, without find-
ing a reference sequence. Therefore, the amount of enhancers in
databases is usually very high, because each biological sample
annotates enhancers that may coincide with those of another bio-
logical sample or overlap and differ in sequence boundaries. There-
fore, this amount is reduced when we obtain sequences with
unique coordinates, and could be further reduced if we search for
consensus sequences from overlapping sequences that differ at
the boundaries.
3.2. Methodologies to generate evidence

The first aspect studied was the origin of the data in the
resources (see supplementary material) and whether the resources
that included data from different databases perform an integration
of the data or preserve original sequences. First, we found reposi-
tories that store data from their own study, such as FANTOM5,
and repositories that integrate data from different sources, such
as ENdb. In turn, these integrative repositories can enrich the infor-
mation with their own contributions or include new sequences.
Regarding the sequences, we can find examples of both situations.
On the one hand, we find repositories that compile enhancers from
different sources to generate a new set, such as Genehancer [159],
EnhancerAtlas [160] or HEDD [161]. On the other hand, there are
repositories that preserve the original sequences, such as dbSUPER



Fig. 6. Coverage of the different items in the 25 biological databases analyzed with information about human enhancers.
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[152], EnDisease [162] and ENdb [153]. In addition, in both cases,
the sequences do not usually provide information or cross-
references to the original source records, which makes it difficult
to contrast and integrate the information and to follow a historical
record of the evolution of the data. Table 3 summarizes the results
obtained for each identification method and that are described
next. In quantitative terms, repositories that integrate data and
generate new sequences are more frequent, while the most used
evidence use strategies based on chromatin properties. Fig. 6B
shows that 14 of the 25 databases analyzed have enhancers with
eRNA transcription evidence. This is because FANTOM5 is a repos-
itory widely used by other repositories as a source (13 repositories
use the FANTOM5 sequences, see supplementary). On the other
hand, by volume of data, strategies based on PTM and computa-
tional annotation provide the highest number of sequences (see
supplementary material).
Table 3
Databases classified by the experimental evidence supporting the sequences that they con

Repository Seq conservation TFBS NFR/DHS

CancerEnD
dbInDel
dbSUPER X
ENdb X X X
EnDisease 2.0
EnhancerAtlas 2.0 X X
EnhancerDB X X
EnhFFL X X
Ensembl Regulatory Build v105 X
ETph
FANTOM5
FOCS X
GeneHancer 4.8 (UCSC) X
HACER
HEDD
HeRA
RAEdb
Roadmap epigenomics
SCREEN V3
SEA 3.0 X
SEanalysis
SEdb 1.05
RefSeq GRCh38.p13 X
TiED X
VISTA Enhancer X
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3.2.1. Evidence based on chromatin characteristics
Detection of sequence conservation: This is the case of VISTA

Enhancer, which selects candidate sequences by sequence conser-
vation and subsequently validates them by reporter gene assays in
mouse embryos [163]. It is also used by GeneHancer for enhancer
confidence scoring [159].

Identification of sequences that bind TF: This is the case of the
methodology used by sources like dbSUPER [152], which contains
SE identified by Med1 and BRD4, and sequences included in Enhan-
cerAtlas [160]. It is also a methodology used to generate genome
annotations in repositories such as SCREEN ENCODE [151],
Ensembl [98] or RoadMap [96] and, therefore, by the sources that
use these sequences (see supplementary material). In addition,
many repositories enrich their enhancers with information about
TFBS obtained from ChIP-seq experiments or by computational
prediction, because this is relevant information in the study of
tain.

PTM eRNA Computational annot. Reporter essays

X
X
X
X X X

X X X
X X X
X

X X X
X X
X

X
X X X
X
X X
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X
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X

X
X X X
X X X

X
X X

X
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enhancers and regulatory networks. However, this enrichment
information is not always available for download (see supplemen-
tary material).

Identification of DHS: The identification of DHS is used more for
chromatin profiling to identify enhancers. It is also a useful type of
information to enrich sequence information, like is done in EnDi-
sease source [162].

Detection of PTM in histones: The dbSUPER is an example of
source that used PTM for the identification of SE, specifically the
H3K27ac signal [152]. This mark is also used in other sources such
as SEdb [155], SEanalysis [156], SEA [154], dbInDel [164] and
EnhFFL [157]. On the other hand, EnhancerDB identified enhancers
using high levels of H3K27ac and H3K4me1 and low levels of
H3K4me3 [165]. Furthermore, histone PTM are also used with
DHS and TF binding data for the development of computational
models that annotate chromatin following chromatin profiles.

Detection of eRNA: The CAGE technique was the methodology
used, for example, by the FANTOM5 consortium [53], so it is the
technique that provides the level of evidence for these sequences.
In addition, the dataset obtained by FANTOM5 has been widely
used by other sources, both for sequence integration purposes
and to add transcript enrichment. This is the case of repositories
like CancerEnD [166], HeRA [167], FOCS [168], Ensembl Regulatory
Build [98], EnhancerDB [165], HACER [169], SEdb [155], SEanalysis
[156], EnhancerAtlas [160], GeneHancer [159] and TiED [101]. On
the other hand, GRO-seq and PRO-seq technologies were used for
the identification of enhancers in the HACER source [169].

Computational genome annotation: ENCODE, Roadmap and
Ensembl are examples of repositories that follow this approach
of computational genome annotation through integration of differ-
ent experimental evidence, mainly PTM, DHS and TF binding
[151,98,96].
3.2.2. Reporter-based methods
Reporter-based assays are not widely represented in the enhan-

cer databases. We summarize next the results for this type.
Assays based on plasmids: ENdb source collects enhancers from

the literature, some of which have reporter gene assays of this type
as evidence [153].

Assays based on integration: After the identification of candidate
enhancers by evolutionary conservation, the VISTA Enhancer
repository validated the sequences using transgenic mice by repor-
ter gene assays.

STARR-seq and MPRA high-throughput methodologies: These were
used in the identification of RAEdb sequences [158], so Enhancer-
Table 4
Experimental approach used in the identification of EPI, which constitute the evidence of

Repository Experimental evidence Distance

CancerEnD X
dbInDel X
dbSUPER X
ENdb X
EnhancerAtlas 2.0
EnhancerDB X
EnhFFL X
ETph X
FANTOM 5
FOCS
GeneHancer 4.8 (UCSC)
HACER X X
HEDD
HeRA
SEA 3.0 X
SEanalysis X
SEdb 1.03 X
TiED X
VistaEnhancer X
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Atlas also contains information of this type because it integrates
enhancers from this database [160]. The ENdb source collects
enhancers from the literature, some of which have reporter gene
assays as evidence [153].
3.3. Enhancer-promoter interactions

We have distinguished between experimental methods and
computational predictions. Similar to enhancer identification, the
strategies used in the different databases for EPI identification
are varied (Table 4). It is important to note that repositories usually
include both coding and non-coding sequences such as miRNA or
lncRNA as target genes. HACER [169], GeneHancer [159] and ENdb
[153] are sources of enhancers that incorporate data from 3C
experiments and derivatives to annotate and predict potential tar-
get genes. Only ENdb contains EPI with evidences based on repor-
ter assays and gene editing, which are the most commonly used
experimental techniques to verify enhancer-gene regulation
[24,141,145].

Regarding computational methods, distance-based methods are
still the most used by biological databases (12/25), followed by
correlation-based methods (6/25) (see Fig. 6C and Table 4). We
can also note that not all databases include EPI (see supplementary
material).
3.3.1. Unsupervised methods
Distance-based methods: Some sources annotate the closest

genes, like SEA [170], VISTA Enhancer [163] or dbInDel [164].
Others use a window that varies in size according to the source.
In EnhancerDB this window is �100 kb [165], while in dbSUPER
it is �50 kb [152]. There are also sources that use a combination
of distances. SEdb [155] and SEanalysis [156] include the strategies
of nearest active gene, genes overlapping with the enhancer, prox-
imal genes and results obtained by the Lasso [171] and PreSTIGE
[172] algorithms. In the case of HACER [169], the closest gene
and genes within a distance of 50 kb are included.

Correlation-based methods: FANTOM5 used correlation between
eRNA and gene transcription to link enhancer and genes within a
500 kb window [53]. This set of associations established by FAN-
TOM5 has been used to enrich other repositories, such as HEDD
[161] and HACER [169], but also as part of other models. This is
the case of the scoring system used by GeneHancer [159]. On the
other hand, Roadmap [96] used a method based on correlation
between eQTL values and active chromatin marks.
the regulatory relationship between sequences.

Correlation Score Supervised method

X

X
X

X
X
X
X

X
X
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Score-based methods: The GeneHancer repository is one exam-
ple of a source that uses this system (based on eQTLs, CHi-C, eRNA
co-expression, TF co-expression and distance) [159].

3.3.2. Supervised methods
Not many databases register EPI detected by applying super-

vised methods. The EAGLE algorithm, a classifier, was used by
the EnhancerAtlas database [160], while FOCS is an example of a
regression-based method that uses ordinary least squares to pre-
dict promoter activity as a function of k nearby enhancers within
a window of �500 kb [168].

3.4. Other annotations of interest

Our supplementary data file includes the main annotations
included in each of the public sources analyzed with information
about human enhancer sequences. However, most of them are
available in the web version of the databases, but not for down-
loading. Fig. 6D shows that, statistically, the different annotations
are covered by less than half of the databases analyzed.
4. Discussion

Enhancer are distal regulatory sequences that have been shown
to be able to modulate gene expression, even over large distances,
and to be fundamental in important regulatory processes such as
development, cell identity, but also in pathologies that have been
termed enhancerophaties [4]. Enhancers do not have a homoge-
neous profile, but there is a great diversity even between different
tissues due to cell specificity [13]. For this reason, there are also
different methodologies for the identification of enhancers that
provide a partial view of the regulatory landscape. Identifying
the relationship between genes and enhancers is not a simple task
and different approaches have been used. All this variability of
information has been transferred to the different databases.

This study has included 25 publicly available databases. There
are more resources about enhancers in the literature, but they
were excluded because of unavailability (e.g., DENdb, DiseaseEn-
hancer and SELER), not containing human data (e.g. Animal-
eRNAdb and Zenbase) or containing non-specific sequences (e.g.,
PReMod and UCNE). The current situation is that there is no central
repository, that each database has a different model and there is no
cross-referencing between these databases. This makes the collec-
tion of information about enhancer sequences difficult and justifies
the need for the analysis carried out in this work, which has been
done based on a model for enhancer sequences extracted from lit-
erature. Next, we describe the major findings, gaps and challenges
that can be drawn from our work.

4.1. Findings

These are the major findings drawn from our research. None of
the existing databases can be considered the main entry point
when searching for information about enhancers, since no data-
base includes every type of information. The choice of database
(s) will depend on the requirements and goals of our study. Given
that the databases do not share a unified model, they are not inter-
operable, which makes it difficult to combine the information from
the different resources.

The classification of enhancers is poorly covered in the data-
bases. The classification into SE and typical enhancers is the most
popular in databases, but the majority of repositories annotate
the sequences in a general way by biosamples. SCREEN, SEdb,
HACER and EnhancerAtlas exhibit the largest diversity in biological
sources. We highlight the Ensembl annotation, because annotates
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the enhancers in the genome and subsequently classifies them
according to their chromatin profile, a classification that allows
us to estimate the activity of the enhancers in each biosample.
However, this type of annotation could be expanded to cover the
different types of enhancers.

Regarding the identification of enhancers, each database
includes enhancers identified by different methodologies, provid-
ing a partial view of the regulatory landscape. For this, the strategy
followed by EnhancerAtlas is of great interest, because it integrates
enhancers obtained by different approaches, which can provide a
broader view of the current knowledge. However, in the generation
of the consensus set, the database does not provide the original
sequences that produce the new enhancers and their methodolo-
gies, so we cannot keep track of the historical record and support
for the sequence prediction.

The majority of databases use basic distance strategies for
enhancer-promoter interactions. Since there is no preferred predic-
tion method according to the literature, it is positive to have pre-
dictions developed by different strategies. Therefore, in a similar
way to enhancer identification, we should highlight the annotation
of repositories such as HACER, because includes EPI identified by
different strategies.

With respect to the other annotations of interest, only the
SEanalysis and EnhFFL databases includes biological networks.
The number of repositories about enhancers-diseases relationship
is also small, as well as the volume of information they contain
(see Fig. 6D and the supplementary material). Therefore, the study
of the influence of enhancers on diseases is limited with these spe-
cialized databases. However, other databases without a focus on
diseases contain biological biosamples associated with patholo-
gies. Thus, against this situation, the comparative study of the
enhancer profile between pathological and healthy biosamples
may be an alternative.

Enrichments related to other data of interest such as TFBS or
mutations also vary between repositories. Moreover, many of these
enrichments are only available in the web version of the databases
and are not available for download. This complicates the use of this
information, because the repositories also do not usually have APIs
to program queries.

4.2. Challenges and future directions

Next, we describe the main challenges in the field that we have
identified due to our study. We also propose research directions of
interest in this area.

4.2.1. Identification of enhancers
The study of enhancers also confronts other challenges associ-

ated with the identification of sequences, their target genes and
the validation of candidates. In addition to the limitations associ-
ated with the experimental and computational techniques used,
these challenges derive fundamentally from the identification
and association of genes by indirect methods, because most of
the methods use correlated properties that are not a direct mea-
sure and that only offer a partial view of the enhancer profile, as
well as false predictions. Therefore, the validation of results also
becomes a fundamental pillar that is also limited by the interpre-
tation of the results, because the specificity of the regulatory
sequences and their genomic context-dependent activity make this
task difficult.

In this context, progress in high-throughput reporter assays
such as MPRA, STARR-seq and gene editing with CRISPR-Cas9
would be a potential tool for a massive screening of candidate
enhancers to validate their role as regulatory elements. In the
meantime, the enhancer sequences hosted in the different
resources should be considered candidate sequences, whose exper-
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imental validation is pending. The contribution of the scientific
community is essential to submit scientific results to the databases
to update existing knowledge, as well as keeping the databases
updated and working, avoiding the obsolescence of the content
and/or the shutdown of the databases.

On the other hand, novel software to identify enhancer
sequences is being developed [173,174]. Comparative studies of
algorithms and revisions about these tools have been previously
elaborated in other works [130,175,176], although a more recent
in-depth review regarding this issue would be of interest. In the
supplementary material we have included the main algorithms
that have been used to identify the enhancers provided in each
repository. It is remarkable that the majority of these software
are not specific tools for enhancer detection, but are common tools
for peak identification, alignment and sequence processing due to
the approach/strategy used for the detection of these sequences
(Fig. 4 and Table 3). Moreover, the databases do not annotate this
information, but users must check the original papers for more
information on this issue. In addition, some papers report the iden-
tification process in the methodology but do not go into the soft-
ware used, or use their own code, so the inclusion of this data is
difficult and may not be complete. Therefore, the annotation of
these tools that provide evidence is also an aspect that databases
should improve and include in future repositories.

4.2.2. Underrepresented concepts in biological databases
With the exception of SE, the types of enhancers are underrep-

resented. In this case, the annotation of SE also needs to be
improved, because the constitutive enhancers that compose the
sequence are often not included. The classification by chromatin
profile is particularly interesting, because chromatin marks are
correlated with enhancer activity. Since the majority of reposito-
ries do not label the type of enhancer, the type has to be inferred
based on the methodology used in the identification of the
sequences and, therefore, the activity of the enhancers has also
to be inferred. However, this annotation is not usually included
in the databases either, but must be obtained from reading the cor-
responding article, a situation which becomes more complicated
when the repository uses different experimental approaches,
because the experimental evidence of the sequences may be lost.
Therefore, an interesting area of further research is to explore the
diversity of those sequences and their different profiles, which
would increase the knowledge about the different typologies of
enhancers. Also, the annotation of the type of evidence that sup-
ports the sequences is usually missing in the databases. That type
of evidence is needed to properly report the validity of the data.
The use of resources such as the Evidence Ontology should be con-
sidered [177].

A similar situation is found in the integration of sequences.
Many repositories integrate information from different sources
(see supplementary material), either to generate a new dataset,
to increase the volume of data in the repository, or to use these
sequences to add new useful information. However, databases lack
cross-references between sources and do not keep the identifiers
used in the reference sources. This representation complicates
the identification of sequences and the monitoring of the evolution
of information. This is an important aspect because each database
has a different approach and does not provide all the annotations
that may be of interest. It is therefore necessary to consult
sequences in different repositories and the lack of linking between
sources and the use of common identifiers makes this task difficult.
Therefore, future work on the definition of community standards
identifying, for instance, the minimal amount of information
[178] that should be reported in the databases and how to repre-
sent that minimal information and those cross-references would
help to have more homogeneous datasets and to facilitate link dis-
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covery. In this context, our model is offered as a tool for the repre-
sentation and structuring of knowledge, as well as the use of
identifiers instead of variable string variables between sources.

Biological networks are the least covered aspect of enhancer
annotations. The association between enhancers and diseases is
also an under-covered aspect. However, repositories often contain
both healthy and pathological biosamples, so the information pre-
sent can be explored for comparative studies. It is important to
note that, although the annotation of biological samples is often
carried out, the system of representation is suboptimal, strings
are annotated instead of instances corresponding to a knowledge
model. Therefore, choosing biosamples of interest between hun-
dreds of possibilities in the repositories can be a complex task,
because it is an unstructured annotation. In this task, the annota-
tion of ontology instances can help, as it would allow to obtain
the samples belonging to a level of granularity level of interest to
the user.

4.2.3. Formal knowledge model for enhancers
The variety of characteristics detected in enhancers has led to a

lack of consensus on the definition of these sequences [12] and the
proliferation of different subtypes of enhancers described in the lit-
erature [26], some of which overlap between them and make the
understanding of the regulatory landscape complex. The represen-
tation of enhancers by biological sample in the repositories also
contributes to this problem, because millions of overlapping
sequences have been generated that vary in their boundaries.

In this article, we have provided a model that captures relevant
information about enhancer sequences. However, that kind of
model should evolve towards a knowledge model. Formalizing
enhancer related knowledge in the form of an ontology would con-
tribute to eliminate controversy, duplicity and to have a consensus.
Ontologies are a useful tool both for structuring information and
for its representation and are used in Life Sciences, the Gene Ontol-
ogy being the most successful example of biological ontology
[179]. That enhancer-related ontology would be the knowledge
reference that would facilitate the comprehension and appropriate
transmission of scientific knowledge. Currently, the Sequence
Ontology (SO) [180] is the most relevant ontology about features
and attributes of biological sequences. SO includes the enhancer
class (SO:0000165), but does not contain the most common sub-
types of the literature. The SO have recently been extended with
new terms related to gene regulation as part of the collaborative
research carried out in the GREEKC consortium [181]. More con-
cretely, the terminology related gene expression has been updated
in the cis-regulatory module (CRM) [182]. A similar effort should
be pursued in order to incorporate in the Sequence Ontology the
terminology related to enhancers included in our model and
extracted from the literature.

4.2.4. Integrated data exploitation
In a search for information about enhancer sequences located in

a region or that control the regulation of a certain gene, the current
database landscape requires the user to query a wide variety of
biological databases that are not interoperable with each other,
which means that they cannot easily exchange information and
that their information cannot be easily combined. The search tools
provided by web portals are often simple, so performing multiple
queries requires the download of the full dataset. This is also due
to the fact that the majority of databases do not have APIs that
allow programming queries. These general downloads are not
always available or only offer a partial dataset. In addition to this,
many annotations are made using free text strings, which makes
integration and contrasting of information difficult. In this context,
the availability of the aforementioned ontology would provide the
terms for describing the data of the different resources which
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would facilitate data exchange and interoperability. The interoper-
ability of the datasets would generate a virtual global repository
which would enable a powerful exploitation of the large volume
of isolated, existing data about enhancers. Such data interoperabil-
ity should also be rooted on the FAIR principles (Findable, Accessi-
ble, Interoperable and Reusable) for data management [183].
Methodological aspects discussed and proposed by the GREEKC
consortium [181] for the development of the Gene Regulation
Knowledge Commons would be applicable here. This would also
contribute to facilitate to keep track of the evolution of the infor-
mation about enhancers.
5. Conclusions

There is an increasing interest in the exploitation of information
about enhancers for generating new knowledge about regulatory
processes due to their potential relation with disorders. We have
analyzed the landscape of databases that contain information
about enhancers. Our study shows that the resources are highly
heterogeneous in the types of information about enhancers, which
makes the integrated exploitation of the resources very difficult.
The annotation of the data should also be improved to reflect the
content of the literature. The development of knowledge models
about enhancers and their integration in existing ontologies should
contribute to the interoperability of the databases and to improve
the usability and the landscape of biological databases with infor-
mation about enhancer sequences.
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