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Abstract
Purpose (1) Develop a deep learning system (DLS) to identify pneumonia in pediatric chest radiographs, and (2) evaluate 
its generalizability by comparing its performance on internal versus external test datasets.
Methods Radiographs of patients between 1 and 5 years old from the Guangzhou Women and Children’s Medical Center 
(Guangzhou dataset) and NIH ChestXray14 dataset were included. We utilized 5232 radiographs from the Guangzhou 
dataset to train a ResNet-50 deep convolutional neural network (DCNN) to identify pediatric pneumonia. DCNN testing 
was performed on a holdout set of 624 radiographs from the Guangzhou dataset (internal test set) and 383 radiographs from 
the NIH ChestXray14 dataset (external test set). Receiver operating characteristic curves were generated, and area under 
the curve (AUC) was compared via DeLong parametric method. Colored heatmaps were generated using class activation 
mapping (CAM) to identify important image pixels for DCNN decision-making.
Results The DCNN achieved AUC of 0.95 and 0.54 for identifying pneumonia on internal and external test sets, respectively 
(p < 0.0001). Heatmaps generated by the DCNN showed the algorithm focused on clinically relevant features for images 
from the internal test set, but not for images from the external test set.
Conclusion Our model had high performance when tested on an internal dataset but significantly lower accuracy when tested 
on an external dataset. Likewise, marked differences existed in the clinical relevance of features highlighted by heatmaps 
generated from internal versus external datasets. This study underscores potential limitations in the generalizability of such 
DLS models.
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Introduction

Deep learning has shown great promise for automated diag-
nosis of acute conditions on medical imaging approaching 
or even exceeding the performance of human radiologists for 

conditions ranging from intracranial hemorrhage to pneumo-
thorax [1–4], with one primary proposed use case of triag-
ing cases for expedited radiologist review and subsequent 
care. Another proposed use case for deep learning is in the 
diagnosis of pneumonia in pediatric patients, for which sev-
eral proof-of-concept studies have demonstrated diagnostic 
accuracy exceeding 90% [1, 5]. Pneumonia and other res-
piratory illnesses place a relatively high burden on pediatric 
emergency departments, with these conditions accounting 
for 10% of pediatric emergency department visits and 20% 
of all pediatric hospital admissions [6, 7]. As a result, auto-
mated tools for diagnosis of pediatric pneumonia could be 
particularly useful in the emergency room setting, which 
has recently been inundated with respiratory disease burden 
amidst the COVID-19 pandemic [5].

Prior to deploying deep learning systems (DLS) for medi-
cal image diagnosis, it is important to evaluate the general-
izability of these systems on data that the algorithms have 
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never “seen” before, as DLS have been shown to often per-
form worse on external datasets than on data used to develop 
them [7–9]. This observed drop in performance of DLS is 
related to overfitting, which is when an algorithm essentially 
memorizes training data as opposed to general features of 
the predicted label/disease of interest (which would lead to 
poor performance on data from an outside institution); this 
overfitting is a complex phenomenon, having been observed 
when there is variation in the prevalence of certain con-
ditions across different datasets or hospital systems [8]. 
Although prior studies have shown promising results for 
DLS for pediatric pneumonia diagnosis [1, 10, 11], these 
studies have largely used a single dataset from China for 
both development and testing of their algorithms without 
testing on an external dataset from a different hospital [1]. 
Evaluating performance of such algorithms on external data 
is critical to ensuring the safe and responsible use of these 
potentially useful technologies.

The purpose of this study was to (1) develop a DLS for 
classification of pneumonia in pediatric chest radiographs 
and (2) compare its performance on internal versus exter-
nal test datasets. Our hypothesis was that the DLS would 
perform significantly worse on an external test dataset com-
pared to an internal test dataset.

Materials and methods

This study was a retrospective analysis of de-identified 
images that are part of the public domain. We aimed to cre-
ate a DLS model capable of performing binary classification 
(i.e., pneumonia versus no pneumonia) of pediatric chest 
radiographs. Subsequently, the DLS model’s performance 
was evaluated on internal versus external test datasets. The 
study was acknowledged by the Johns Hopkins institutional 
review board (IRB) as non-human subject research. Accord-
ingly, formal IRB review was not required per our institu-
tional policies.

Dataset curation and re‑annotation

Two datasets were used in this study. The first consisted 
of 5856 frontal pediatric chest radiographs obtained from 
retrospective cohorts of pediatrics patients between the ages 
of 1 and 5 years old (specific age distribution not available) 
from the Guangzhou Women and Children’s Medical Center 
in Guangzhou, China. These images are available on a pub-
lic online database (Link) [12]. Images in the Guangzhou 
database were curated and assigned labels previously via 
the following methods [1]: (1) all chest radiographs were 
initially screened for quality control by removing any low-
quality or unreadable scans, and (2) all images were then 
graded and assigned ground truth reference standards by 

two expert physicians (specialty not specified by the dataset 
curators) before being cleared for use in training AI systems. 
The Guangzhou database had a designated “training set” 
containing 5232 chest radiographs, of which 3883 depicted 
pneumonia (2538 bacterial, 1345 viral) and 1349 depicted 
normal findings. A holdout test set of 624 images was also 
provided (hereby referred to as “internal test set”), of which 
390 depicted pneumonia (242 bacterial, 148 viral) and 234 
depicted normal chest findings.

The second dataset was the ChestXray14 database (Link) 
[13], which contained a total of 112,120 chest radiographs 
obtained and curated by the National Institutes of Health 
(NIH) Health Center. Demographic information (e.g., age, 
ethnicity) for each image was also present in this dataset. 
Image labels were assigned by the NIH team via use of nat-
ural language processing, with a label accuracy estimated 
at ≥ 90% [2]. We utilized the 383 images in this dataset 
obtained from children between 1 and 5 years of age (to 
match the age in the Guangzhou dataset), among which 
107 (25%) cases had been labeled as positive for “pneu-
monia”, “infiltration”, and “consolidation,” whereas 276 
(65%) images had no disease labels and depicted normal 
chest findings. The dataset consisted of 26 radiographs (7%) 
from 1-year-old children, 70 (18%) from 2-year-old children, 
77 (20%) from 3-year-old children, 95 (25%) from 4-year-old 
children, and 115 (30%) from 5-year-old children. The afore-
mentioned images from the ChestXray14 database served as 
the “external test set”.

DLS development

We developed our DLS using a transfer learning approach 
with the ResNet-50 deep convolutional neural network 
(DCNN) pretrained on the ImageNet database. We split the 
5232 chest radiographs from the Guangzhou dataset into 
training and validation sets, with 90% of images assigned to 
the former and 10% assigned to the latter. Each image was 
augmented on-the-fly during each training epoch by a ran-
dom rotation between − 20º and 20º, random cropping, and 
horizontal flipping. The last linear layer of the DCNN was 
redefined to yield a binary output of the presence or absence 
of pneumonia. The solver parameters for our DCNN were 20 
epochs and stochastic gradient descent with a learning rate 
of 5.0*10−6. At the end of each training epoch, the DCNN 
was tested on the validation set, and the best-performing 
DCNN weights were chosen for final testing. The best-per-
forming DCNN configuration was then tested on both the 
internal test set, which consisted of either the 624 images 
from the Guangzhou dataset, and the external test set com-
prised of 383 images from the NIH ChestXray14 dataset.

To identify the features of each image used by the DCNN 
for its decisions in classifying each radiograph as hav-
ing pneumonia or not, we produced heatmaps using class 

108 Emergency Radiology (2022) 29:107–113



1 3

activation mapping (CAM) [14], which provide visual rep-
resentations of important image pixels for DCNN decision-
making by way of a colored heatmap; features with greater 
importance were assigned more prominent shades of blue 
according to the visualization color scheme used in our 
study.

Computer hardware and software

All image processing and DCNN development were per-
formed online in Google Colaboratory (Google, Mountain 
View, CA) using an NVIDIA K80 graphics processing unit 
(GPU). All coding was performed using the Keras deep 
learning framework (Version 2.3.0, https:// keras. io/).

Statistical analysis

Statistical analyses were performed using Microsoft Excel 
(Microsoft, Redmond, WA) and GraphPad Prism (Graph-
Pad Prism Inc., San Diego, CA). Receiver operator char-
acteristic (ROC) curves were generated for the model after 
being tested on both internal and external holdout test sets 
using GraphPad Prism. Optimal diagnostic thresholds to 
calculate sensitivity and specificity were determined via 
Youden’s J-statistic. Area under the curve (AUC), 95% con-
fidence interval (CI), and DeLong test for comparison of 
AUCs (significance defined as p < 0.05) were also calculated 
using GraphPad Prism.

Results

DCNN performance on internal test set 
versus external test set

On the internal test set, the best performing DCNN for pneu-
monia detection achieved an AUC of 0.95 (0.94–0.96, 95% 
CI). At the optimal diagnostic threshold, sensitivity was 
87%, and specificity was 90%.

On the external test set, this same DCNN achieved 
an AUC of 0.54 (0.51–0.57, 95% CI), which was signifi-
cantly lower than the performance on the internal test set 
(p < 0.0001). At the optimal diagnostic threshold, the sensi-
tivity was 100%, and specificity was 0%.

Comparison of CAM heatmaps

The localization ability of the DCNN on internal test data 
was demonstrated by CAM heatmap images that focused on 
clinically relevant features of interest, such as consolidations 
with (Fig. 1A) and without air bronchograms (Fig. 1B), as 
well as perihilar interstitial opacities and peribronchial cuff-
ing (Fig. 1C, D).

In contrast, the DCNN CAM heatmaps on the external 
test set showed poor localization ability without focus on 
clinically relevant features of interest in the lung paren-
chyma, but rather to extrapulmonary areas, such as the 
skull (Fig. 2), upper mediastinum (Fig. 2B), and abdomen 
(Fig. 2C).

Discussion

Although DLS have shown high diagnostic performance 
for identification of disease on medical images, caution has 
been recommended in deployment of such algorithms due to 
drops in performance on external datasets [7–9]. This study 
aimed to develop a DLS model for classification of pneumo-
nia in pediatric chest radiographs and subsequently evaluate 
the model’s performance on internal versus external test sets. 
Similar to prior works, we found that our DLS performed 
strongly when tested on the internal set, achieving an AUC 
of 0.95, but had significantly worse performance when tested 
on an external set, yielding an AUC of only 0.54. Likewise, 
there was marked difference in the heatmaps generated from 
the internal versus external sets, with the former showing 
emphasis of clinically relevant regions of disease and the lat-
ter showing emphasis of clinically irrelevant regions [1, 15].

The ability of our DLS model to accurately diagnose 
pediatric pneumonia on an internal set is consistent with 
findings from prior studies in both the pediatric and adult 
populations. In pediatric chest radiographs, prior studies 
trained DCNNs to identify pneumonia using the same data-
set that we used and achieved AUCs ranging from 0.82 to 
0.99 [1, 10, 11], which is comparable to our findings. In 
the adult population, Kermany et al. and Rajpurkar et al. 
demonstrated the ability of DLS models to diagnose a vari-
ety of thoracic diseases on adult chest radiographs, ranging 
from pneumonia to cardiomegaly, achieving AUCs ≥ 0.85 
[8]. Altogether, these findings suggest that deep learning 
may enable automated diagnosis of thoracic disease at levels 
approaching that of radiologists.

Despite the promising results of deep learning for detec-
tion of pneumonia, skepticism and caution have been sug-
gested towards these algorithms, due to concerns over poor 
generalizability of these models to external data not used 
to train them [7, 8, 11]. For example, Zech et al. previously 
showed that a DCNN trained on over 150,000 chest radio-
graphs achieved an AUC of 0.931 for detection of pneumo-
nia when tested on an internal dataset, but that this declined 
to 0.815 when tested on an external dataset [16]. Similarly, 
studies conducted on other imaging modalities (e.g., cardiac 
magnetic resonance imaging) have shown that while DLS 
performance is high when the training and testing images 
come from the same domain (e.g., scanner, site), perfor-
mance may degrade significantly on images from other 
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scanners or clinical sites [16]. Our findings are consistent 
with these prior cautionary results, as we found that our 
DLS significantly declined in performance when tested on 
external data, achieving an AUC of 0.54. In other words, the 
DLS performed only slightly greater than chance.

In an effort to better understand potential reasons for the 
difference in performance of our DLS on internal versus 
external test sets, we generated CAM heatmaps to visual-
ize portions of the images emphasized by the DCNNs for 
decision-making. We found that the DCNN model focused 
on different portions of a chest radiograph when evaluating 
images from the internal compared to the external datasets. 

Specifically, internal test data heatmaps showed that the 
DLS focused on clinically relevant areas of pneumonia, 
such as consolidations and perihilar opacities, while the 
external test data heatmaps showed that the DLS focused 
on clinically irrelevant areas, such as the skull and abdomen, 
which were infrequently included in the field-of-view in the 
training data. We note that there appeared to be systematic 
differences in the field-of-view of the CXRs between the 
two datasets, apparently related to institutional differences 
in radiograph acquisition protocols. Generally, the internal 
CXRs generally have a more focused field-of-view includ-
ing the thorax and upper abdomen and the external CXRs 

Fig. 1  Class activation mapping 
(CAM) heatmaps of radio-
graphs from internal test set. 
A, B Radiographs demonstrate 
bacterial pneumonia, and CAM 
heatmaps showed appropri-
ate emphasis on consolidation 
within the lung fields. C, D 
Radiographs demonstrate viral 
pneumonia, and CAM heatmaps 
showed appropriate emphasis 
on regions of perihilar thicken-
ing and peribronchial cuffing
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being more variable in coverage, often including portions 
of the neck and skull, as well as larger portions of the abdo-
men. It is thus possible that because extra-thoracic regions 
of anatomy were generally not included in the training data, 
the DLS could have become “confused” when seeing them 
in the external test set. For instance, the DLS may have inter-
preted the “areas of opacity” that represent the skull and 
intraabdominal organs as signs of pneumonia. We do cau-
tion, however, that this is a speculation, as CAM heatmaps 

show parts of the image that are emphasized in decision-
making, but they do not explain precisely what it is about 
those areas that make them important. Whatever the reason, 
it is clear that the DLS in our study interpreted the internal 
and external test images differently, as evidenced by the drop 
in performance.

There are several limitations to our study. First, the data-
sets used to train our DLS were small, with 5232 images, 
compared to much larger adult chest radiograph datasets 

Fig. 2  Class activation mapping 
(CAM) heatmaps of radiographs 
from external test set. There is 
a lack of focus on clinically rel-
evant features of interest within 
the lung parenchyma. Instead, 
extrapulmonary regions such 
as the skull (A), mediastinum 
(B), and abdomen (C) are given 
emphasis
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which have over 100,000 images, and which might be 
expected to limit generalizability of our algorithm. However, 
to our knowledge, this is the largest publicly available pedi-
atric chest radiograph dataset, and one that has been used in 
several prior studies developing DLS with high-performance 
levels exceeding 90% accuracy. Furthermore, our intention 
was, in fact, to show that highly performing DCNNs should 
be interpreted with caution when there has not been evalua-
tion on external test data; we thus recommend caution when 
training models on small datasets from a single site. Second, 
we evaluated only binary classification of chest radiographs 
into the presence or absence of pneumonia, without further 
evaluation of type of pneumonia (e.g., bacterial or viral). 
We elected not to divide the classification into bacterial 
versus viral pneumonia due to the overlapping radiographic 
appearance of these etiologies. Additionally, since classify-
ing pneumonia into smaller sub-categories is a more difficult 
task, we would expect that the differences between internal 
and test data would be accentuated. Third, without more 
detailed information about the differences in patient popu-
lation and imaging protocols of the internal and external 
datasets than that provided by the dataset curators, we are 
unable to fully assess specific demographic factors that may 
be contributing to the discrepancies and biases of our model. 
Fourth, we evaluated only a single DCNN architecture for 
our study; it is possible that other DCNN architectures may 
generalize better, although prior work has shown comparable 
performances for detection of abnormalities on chest radio-
graphs between different DCNN architectures [17].

Conclusion

In conclusion, our DLS model for identifying pneumonia 
on pediatric chest radiographs performed exceptionally well 
when tested on an internal dataset but had a far lower accu-
racy when tested on an external dataset. Likewise, there were 
marked differences in the clinical relevance of features high-
lighted by heatmaps generated from internal versus external 
datasets. Future recommended areas of research and work 
include the curation of larger and more diversified pediatric 
CXR datasets curated from multiple clinical sites (as there 
are few of these compared to datasets for adult CXRs) and 
evaluating the impact of a preprocessing pipeline to exclude 
extra-thoracic regions of CXRs (such as the head/neck) on 
generalizability of CNNs for pneumonia detection, as these 
extra-thoracic regions appeared to be confounders for our 
CNN. Given the difference in performance between internal 
and external data, we recommend caution when evaluating 
DCNNs for medical image diagnosis that have been evalu-
ated only on internal test data, and we propose that such 
algorithms should be evaluated on external test data prior 
to clinical deployment.
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