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Abstract: Proteases are involved in a broad range of physiological processes, including host invasion
by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic
activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications
in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs
of these inhibitory molecules with improved efficacy and target range has been underscored by
recent protease characterization related to infection and antimicrobial resistance. In this regard,
naturally-sourced inhibitors show promise for application in diverse biological systems due to high
stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants,
invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized
bioactive molecules involved in host defense against predators and pathogens. In this Review, we
highlight discoveries of protease inhibitors from environmental sources, propose new opportunities
for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant
fungal diseases with in vivo and clinical purpose.

Keywords: proteases; protease inhibitors; fungal pathogens; natural compounds; biomedical appli-
cations; antimicrobial resistance

1. Introduction

Proteases hydrolyze the peptide bonds of polypeptides and proteins, with proteases
accounting for 6% of total proteins in the human genome and 1–5% of microbial (e.g., bacte-
ria, fungi, and virus) genomes [1]. Proteases are used by microorganisms in many processes,
including stress response, nutrient acquisition, and protein maturation for cell division.
Likewise, pathogens use these enzymes as important virulence factors in both direct and
indirect damage of the host to: (i) gain access to nutrients [2]; (ii) destroy host cells and
tissues to facilitate invasion and dissemination [3,4]; (iii) degrade host immune molecules
for defense evasion [5–7]; (iv) promote pathogen propagation and maturation [8]; and
(v) process self-molecules for pathogenicity [9,10]. Such roles promote the development
of protease-based therapies [11] for pathogen-related diseases, including fungal meningi-
tis [12], HIV/AIDS [13], candidiasis [14], aspergillosis [15], and COVID-19 [16].

Conversely, inhibition is one of the main molecular control mechanisms regulating
proteolytic activity by which organisms use protease inhibitors to prevent self-damage [17],
and provide protection against pathogens [18–21] or predators [22,23]. Currently, there are
several protease inhibitors on the market for the management of human diseases, such as
dabigatran and angiotensin converting enzyme inhibitors (ACEI) for the management of
pulmonary embolism and hypertension, respectively [24,25]. Similarly, there are pharma-
ceuticals, such as bortezomib (clinically approved for the treatment of multiple myeloma
by inhibition of proteasome complex) [26] with potential for applications against fungal
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pathogens. For example, in the widespread human fungal pathogen, Cryptococcus neofor-
mans through regulation of virulence factor elaboration (i.e., polysaccharide capsule) [27,28].
However, such synthetic protease inhibitors can be plagued by low stability, high toxicity
effects, or encounter resistance mechanisms, supporting the discovery of novel protease
inhibitors from the natural environment [26,29]. Investigation of naturally-sourced pro-
tease inhibitors therefore, presents an alternative opportunity to expand our repertoire of
antimicrobial agents and avoid such undesired features.

In this Review, we highlight the role of proteases related to fungal virulence and the
impact of protease inhibition as an anti-virulence strategy. Next, we argue the benefits
of naturally-derived protease inhibitors through presentation of representative examples
derived from plants, invertebrates, and microbial sources with a focus on antifungal activity.
Finally, we propose opportunities to expand our current repertoire of antifungals through
discovery and characterization of naturally-sourced protease inhibitors with potential
applications in emergent diseases. The goal is to aid researchers in finding effective
strategies with greater target specificity that are less prone to the evolution of resistance.

2. Protease Inhibition Exerts Anti-Virulence Effects on Fungal Pathogens

Several natural protease inhibitors exert anti-virulence effects by targeting extracellular
proteases, impairing nutritional and/or growth functions [30–32], or hindering virulence
mechanisms, such as tissue invasion (Figure 1) [33]. For instance, secreted aspartic proteases
(SAPs), are involved in several virulence processes, including tissue invasion, growth, and
immune system evasion among the important human fungal pathogens, Candida albicans
and C. neoformans [34,35]. Additionally, SAPs have been assessed as antifungal targets using
protease inhibitors with promising results for further exploration [36–38]. Other important
anti-virulence mechanisms include cell wall disruption or membrane pore formation
initiated by protease inhibitors to deregulate ion flow and/or membrane disruption to
cause leakage of internal cellular components, affecting cell viability [30,31]. Further,
endogenous, or intracellular fungal proteases are involved in important mechanisms,
such as protein maturation for development or growth, and apoptosis regulation [39,40]
and natural protease inhibitors have reported intracellular targets (e.g., mitochondria
or nucleus), producing damage by oxidative stress or apoptosis deregulation, affecting
pathogen survival [30–32]. Notably, C. neoformans uses intracellular proteases for resistance
against current antifungal treatments (e.g., site-2 protease), which is required for virulence
and survival in the presence of azole drugs [41]. Therefore, compounds capable of crossing
fungal membranes and inhibiting endogenous proteases constitute potential antifungal
agents and perhaps opportunities to overcome resistance. However, it is important to
note that evidence of targeting intracellular organelles of fungal pathogens also poses
a risk of off-target effects with toxicity towards human cells. Therefore, investigation
into precise mechanism(s) of action and targets is needed to assess the potential and
requirement for inhibitor optimization. Recognizing the promise of targeting proteases with
protease inhibitors for treatment of fungal pathogens, we continue with the description,
identification, and examples of naturally-sourced protease inhibitors.
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Figure 1. General targets of natural antifungal protease inhibitors: Protease inhibitors with extracel-
lular targets produce nutrition or growth impairment by inhibition of nutrition related proteases 
[32,42–44]. Protease inhibitors with membrane cell targets cause disruption or pore formation lead-
ing to ion (e.g., Na+, K+, Ca2+ deregulation or leakage of cellular components [30,31]. Finally, protease 
inhibitors with intracellular targets inhibit mitochondria or nuclear proteases producing reactive 
oxygen species (ROS) or apoptosis [30,31]. Black lines correspond to antifungal compounds and red 
lines to molecules with similar antifungal or antibacterial effects. 

3. Classification of Naturally-Derived Protease Inhibitors 
Naturally-derived protease inhibitors are generally small molecules (15 to 60 amino 

acids or organic compounds) and contain a relatively high content of disulfide bridges, 
conferring higher stability [45,46]. They are classified according to enzymatic specificity, 
such as serine, aspartic, or cysteine protease inhibitors [47], or according to structural fea-
tures. For instance, natural protease inhibitors can be classified as Bowman–Birk serine 
protease inhibitors, which are typically 1.5 to 20 kDa with several sulfide bridges, com-
monly displaying specific activity towards elastase, trypsin, and chymotrypsin [48,49]. 
Kunitz-type inhibitors, which are low molecular weight proteins with two or three disul-
fide bridges and one reactive site, showing specificity towards serine proteases [50]. An-
other example includes Kazal-type inhibitors, which are double-headed and inhibit tryp-
sin and chymotrypsin simultaneously [51,52]. Compared to chemically synthesized prod-
ucts, natural inhibitors are often designated as safer with a specific mechanism of action, 
which leads to fewer off-target effects. This is a desirable trait for the development of novel 
antifungals based on the close evolutionary relationship between fungi and the mamma-
lian host [53,54]. Additionally, natural compounds have evolved to possess physiochem-
ical properties, including the ability to penetrate bacterial cells, unlike synthetic molecules 
not subject to such evolution. Although bacterial and fungal cells are highly distinct (e.g., 
cell wall composition, presence of organelles), there are several reports of protease inhib-
itors with biological activity against both types of cells, suggesting that protease inhibitors 
with antibacterial activity have the potential for similar properties against fungal cells 
[44,53,55–58]. Furthermore, the evolution towards resistance against environmentally-

Figure 1. General targets of natural antifungal protease inhibitors: Protease inhibitors with ex-
tracellular targets produce nutrition or growth impairment by inhibition of nutrition related pro-
teases [32,42–44]. Protease inhibitors with membrane cell targets cause disruption or pore formation
leading to ion (e.g., Na+, K+, Ca2+ deregulation or leakage of cellular components [30,31]. Finally,
protease inhibitors with intracellular targets inhibit mitochondria or nuclear proteases producing
reactive oxygen species (ROS) or apoptosis [30,31]. Black lines correspond to antifungal compounds
and red lines to molecules with similar antifungal or antibacterial effects.

3. Classification of Naturally-Derived Protease Inhibitors

Naturally-derived protease inhibitors are generally small molecules (15 to 60 amino
acids or organic compounds) and contain a relatively high content of disulfide bridges,
conferring higher stability [45,46]. They are classified according to enzymatic specificity,
such as serine, aspartic, or cysteine protease inhibitors [47], or according to structural
features. For instance, natural protease inhibitors can be classified as Bowman–Birk serine
protease inhibitors, which are typically 1.5 to 20 kDa with several sulfide bridges, commonly
displaying specific activity towards elastase, trypsin, and chymotrypsin [48,49]. Kunitz-
type inhibitors, which are low molecular weight proteins with two or three disulfide
bridges and one reactive site, showing specificity towards serine proteases [50]. Another
example includes Kazal-type inhibitors, which are double-headed and inhibit trypsin
and chymotrypsin simultaneously [51,52]. Compared to chemically synthesized products,
natural inhibitors are often designated as safer with a specific mechanism of action, which
leads to fewer off-target effects. This is a desirable trait for the development of novel
antifungals based on the close evolutionary relationship between fungi and the mammalian
host [53,54]. Additionally, natural compounds have evolved to possess physiochemical
properties, including the ability to penetrate bacterial cells, unlike synthetic molecules
not subject to such evolution. Although bacterial and fungal cells are highly distinct
(e.g., cell wall composition, presence of organelles), there are several reports of protease
inhibitors with biological activity against both types of cells, suggesting that protease
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inhibitors with antibacterial activity have the potential for similar properties against fungal
cells [44,53,55–58]. Furthermore, the evolution towards resistance against environmentally-
sourced protease inhibitors is often reduced given the drive by natural selection to interact
with cellular targets with high efficiency and selectivity to avoid resistance and off-target
effects [59]. Based on the variety of potential targets of protease inhibitors, and advantages
afforded by naturally-occurring protease inhibitors, we explore examples derived from
plants, invertebrates, and microbes.

4. Plant-Derived Protease Inhibitors

Natural compounds produced by plants are an important source of bioactive molecules
with a wide range of biologic targets, including protease inhibitors with regulatory roles
for endogenous proteases, storage, and defense [60–63]. Over the last 20 years, the number
of identified plant-derived protease inhibitors with anti-virulence activity has increased,
corresponding with a heightened importance in biomedicine (Table 1). Here, we outline
inhibitor activity and provide insight into mechanisms of action and potential roles against
fungal pathogens.

Table 1. Protease inhibitors derived from plants with antimicrobial activity.

Source Protease Inhibitor
Designation (Source) Enzymatic Family MW (kDa) Activity

(Mechanism of Action) Reference

Fabaceae
(Leguminosae)

IETI (Inga edulis)
Kunitz

19.7 Antifungal (Protease inhibition, membrane
disruption and oxidative stress)

[31]

ILTI (Inga laurica) 20 [30]

ApTI (A, B, C)
(Acacia plumosa) Kunitz 20 Antifungal (Secreted protease inhibition and

nutrition impairment) [32]

API
(Albizia amara) Unknown 49 Antifungal and Antibacterial [55]

Lupinine (Lupinus spp.) Quinolizidine
alkaloid 0.17

Anticryptococcal (secreted
metallopeptidase inhibition) [33]

Diosgenin (Trigonella
foenum-graecum) Steroidal sapogenin 0.41

Solanaceae

Potide-G
(S. tuberosum L. Cv.

Golden Valley)
Kunitz 5.57 Antibacterial and Antifungal (Secreted

protease inhibition and nutrition impairment) [44]

PG-2 (S. tuberosum L. Cv.
Gogu Valley) Kunitz 3.2 Antibacterial and Antifungal [56]

AFP-J (S. tuberosum L. Cv.
L. Jopung) Kunitz 13.5 Antifungal [64]

Rhamnaceae RflP-1 (Rhamnus frangula) Kunitz 22.5 Antibacterial and
Antifungal [57,58]

Rutaceae CLTI (Clausena lamsium) Unknown 54 Anti-HIV-1 reverse transcriptase activity and
Antifungal [65]

Pinaceae Abietic acid (Pinus spp.) Abietane diterpenoid 0.3 Anticryptococcal (secreted metallopeptidase
inhibition) [33,66]

MW: Molecular weight.

4.1. Fabaceae (Leguminosae) Family

Kunitz-type trypsin inhibitors, ILTI and IETI, were isolated from seeds of the tropical
trees, Inga edulis and Inga laurica, respectively [30,31]. These inhibitors have antifungal
activity, showing growth inhibition towards Candida tropicalis and Candida buinensis. This
activity is mediated by several mechanisms, including protease inhibition, alteration of
the plasma membrane causing ion flow deregulation, triggering of oxidative stress by
a mitochondrial target, or triggering of apoptosis in yeasts that block important serine
peptidases (e.g., metacaspases), and a nuclear mediator of apoptosis (Nma111p) [40,67].
Similarly, the Kunitz-type trypsin and chymotrypsin inhibitors, ApTIA, ApTIB, and Ap-
TIC, isolated from seeds of the Brazilian plant Acacia plumosa possess antifungal activity
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against Aspergillus niger, Thielaviopsis paradoxa, and Colletotrichum sp. P10 is associated
with inhibition of serine proteases secreted by the fungi in growth medium, impairing
nutritional mechanisms [32]. Another example includes the protease inhibitor, API, which
is derived from the seeds Albizia amara Boiv., possessing antibacterial activity against
Pseudomonas aeruginosa and Bacillus subtilis [55] and antifungal activity against several
pathogens, such as C. albicans with a minimal inhibitory concentration (MIC) value of
32 µg/mL (comparable to current antimicrobials). Although, the target and mechanisms of
API have not been reported, the observed inhibitory roles and relative potency support
further exploration against additional fungal pathogens or investigation of synergistic
activity with known antifungals.

Lastly, Lupinine and Diosgenin are two plant derived compounds that possess antifun-
gal properties against C. neoformans [33]. These compounds inhibit a secreted metallopepti-
dase relevant in brain invasion by cryptococcal cells causing meningoencephalitis, CnMpr-1
(Inhibitory concentration [IC50] 5.025 µM and 9.659 µM, respectively) [68]. Lupinine is a
quinolizidine alkaloid found primarily within flowering plants of the Lupinus genus [69],
whereas diosgenin is a plant steroidal sapogenin isolated from dietary fenugreek (Trigonella
foenum-graecum) seeds [70]. Interestingly, these compounds impair fungal crossing of the
blood–brain barrier without detrimental effects to the host [33]. Diosgenin also inhibits
matrix metalloproteinases (e.g., MMP-2 and MMP-9) involved in matrix integrity or cell mi-
gration [71–75]. Together, these compounds highlight the potential of plant-derived sources
for inhibition of proteases produced by cryptococcal cells and underscores an opportu-
nity for synergistic assessment with known antifungals and extrapolation to additional
fungal pathogens.

4.2. Solanaceae Family

Potatoes (Solanum tuberosum) are a worldwide food staple; however, their global
distribution also contributes to pathogen spread, affecting crop quality, and productivity.
Defense proteins and peptides with antifungal and antibacterial activities derived from
potatoes represent a reservoir for disease protection against both agricultural and medical
pathogens [76]. For example, the peptide, Potide-G, isolated from the tubers of the potato
S. tuberosum L. Cv. Golden Valley, is a Kunitz-type serine protease inhibitor that inhibits
growth of diverse pathogens, including C. albicans, Rhizoctonia solani, Staphylococcus aureus,
and Listeria monocytogenes through regulation of extracellular enzymes related to nutri-
tion [44]. Potide-G possesses MIC values less than 30 µg/mL, a similar potency to other
plant protease inhibitors and known antibiotics [44]. Similarly, PG-2, a peptide isolated
from potato tubers of cv. Gogu Valley exhibits antifungal and antibacterial activity against
C. albicans, Clavibacter michiganensis ssp. michiganense, and S. aureus [56]. In addition, PG-2
exerts minimal cytotoxic effects against human red blood cells, making the compound an
interesting option for further investigation of direct and indirect targets. Other protease
inhibitors derived from potato tubers include AFP-J, a serine protease inhibitor belonging
to the Kunitz family isolated from cv. L. Jopung [64]. This protein inhibits chymotrypsin,
pepsin, and trypsin, possessing antifungal activity against several microorganisms, in-
cluding C. albicans, Trichosporon beigelii, and Saccharomyces cerevisiae with antimicrobial
potency (MIC 6.25 µg/mL) like other antibiotics, and with no known hemolytic activity.
To date, no direct target has been reported for this compound, and therefore, these results
support further investigation to define the mechanisms of action and to uncover additional
pathogenic targets.

4.3. Rhamnaceae Family

Rhamnus frangula is a tall deciduous shrub in the family Rhamnaceae. Crude extracts of
R. frangula leaves exhibit antioxidant, antimicrobial, and free radical scavenging activities
with a Kunitz-type serine protease inhibitor, RflP-1, isolated from leaves. This inhibitor
acts on serine proteases of commercial fungal, such as Aspergillus oryzae, and bacterial
proteases isolated from B. licheniformis [57,58]. RflP-1 also possesses an appreciable an-



J. Fungi 2021, 7, 1016 6 of 13

tibacterial action against both Gram-positive and Gram-negative bacteria with similar
effectiveness of ampicillin [57]. However, no direct targets have been identified to date,
supporting exploration to define the mechanism of action and potential extrapolation to
other pathogens.

4.4. Rutaceae Family

Clausena is a genus comprising approximately 14 species of evergreen trees and the
Clausena lamsium trypsin inhibitor, CLTI, is a homodimer isolated from the seeds that exerts
anti-HIV activity (i.e., Anti-HIV-1 reverse transcriptase activity) and antifungal activity
against Physalospora piricola [65]. Importantly, no molecular targets have been described
for CLT1 to explain the antifungal activity and, considering the common co-infection of
C. neoformans within HIV/AIDS patients, this protease inhibitor, and its derivatives show
promise for synergistic antifungal properties.

4.5. Pinaceae Family

Pinus is a genus of vascular plants, commonly known as pines possessing abietic
acid, an abietane diterpenoid found primarily in pine resin with inhibitory properties
against C. neoformans by blocking crossing of the blood–brain barrier through CnMpr-1
inhibition (IC50 5.143 µM) [33,77]. Similarly, some of the derivatives possess antimycotic
and antibacterial activities [66], highlighting the potential of this compound as an important
antifungal with broad reaching activity.

5. Invertebrate-Derived Protease Inhibitors

Invertebrates are a heterogeneous group of animals (about 1.3 million species) found
ubiquitously within the environment, requiring strong defenses (e.g., production of chemi-
cals) to adapt and survive against predators and pathogens, including protease inhibitors
as self-defense systems [78,79]. For instance, many compounds with therapeutic potential
detected from invertebrates show inhibition profiles against proteases with biotechnolog-
ical and biomedical interest; although, many more remain to be studied [80–83]. Here,
we present protease inhibitors derived from invertebrates and explore their described
antimicrobial properties (Table 2).

Table 2. Protease inhibitors derived from invertebrates with antimicrobial activity.

Source Protease Inhibitor Designation
(Source)

Family/Chemical
Class MW (kDa) Activity (Mechanism of

Action) Reference

Arthropoda

MjSerp1 (Marsupenaeus japonicas) Serpin 46.3
Antibacterial

[84]

SWDPm2 (Penaeus monodon) Type III crustin 7.38 [85]

BmoSPI51 (Bombyx mori) Kunitz-type 14 Antifungal [86]

Mollusk Peptides
(Crassostrea gigas) Unknown Unknown HIV protease inhibitor

(Competitive inhibition) [87]

MW: Molecular weight.

5.1. Arthropoda Phylum

Within Marsupenaeus japonicas (a shrimp), a serpin type protease inhibitor, MjSerp1,
exhibits inhibitory activity against microbial serine proteases, such as subtilisin A and
proteinase K and, also inhibits the growth of Gram-positive (e.g., S. aureus, B. subtilis, and
Bacillus megaterium) and Gram-negative bacteria (e.g., Escherichia coli, Klebsiella pneumoniae,
and Vibrio anguillarum) [84]. Similarly found within this phylum, are the single WAP (whey
acidic protein) domain (SWD)-containing protein, SWDPm2, which is a Type III crustin
isolated from the black tiger shrimp, Penaeus monodon [85]. This molecule is a potent
competitive-type inhibitor of subtilisin A, a typical member of the S8 family, which is
widely distributed among all kingdoms and in several human pathogens [88]. The primary
functions of SWDPm2 include antimicrobial action and inhibition of bacterial peptidase to
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limit microbial infection and pathogenesis, as well as antibacterial activity against several
Gram-positive bacteria (e.g., S. aureus, Aerococcus viridans, and B. megaterium). Although a
mechanism of action remains to be defined, a potential for antifungal activity represents
a new avenue of study as some human fungal pathogens, such as C. neoformans also use
extracellular subtilisin-like proteases in their pathogenic mechanisms (e.g., Cerevisin and
Pqp1) [35,89,90]. Lastly, BmoSPI51 is Kunitz-type trypsin inhibitor isolated from silkworm
(Bombyx mori) cocoon with inhibitory growth properties against fungi, including S. cerevisiae
and C. albicans [86,91]. Following fungal infection, BmoSPI51 production increases in B. mori
supporting a role in immunity, such as protecting silk fibroin proteins from degradation by
fungal enzymes [92]. Additionally, approximately 80 potential protease inhibitors from
several families (e.g., TIL-type, Kunitz-type, and Kazal inhibitors) have been reported in
the silkworm using genomic approaches [93], highlighting this organism as a rich source
of new protease inhibitors with potential antifungal properties.

5.2. Mollusk Phylum

Mollusks present a wealth of natural compounds displaying antimicrobial activity,
including 19 within the global marine pharmaceutical clinical pipeline and four approved
by the US Food and Drug Administration to date [94]. Notably, over half of the secondary
metabolites produced by mollusks have yet to be evaluated for bioactivity, representing
a plethora of new avenues to pursue for in vitro, in vivo, and clinical studies [83,95].
For instance, protease inhibitors have been reported from oysters, such as Crassostrea
gigas peptides, which are competitive inhibitors of HIV-1 protease with an inhibitory
constant (ki) between 10 and 13 nM [87]. Inhibitory potency of these compounds is like
the first generation of synthetic HIV-1 protease inhibitors, such as Indinavir, but lower
than second generation options, such as Atazanavir (ki = 10 pM) [96,97]. Although the
potency of these peptides can be improved through development and optimization of
synthetic versions, the initial discovery and activity of naturally-produced compounds from
mollusks shows great promise for new avenues of exploration. Furthermore, several HIV-1
protease inhibitors possess antifungal activity, mainly through inhibition of SAPs [98–100];
highlighting the potential of these peptides as future antifungal compounds and warranting
further investigation.

6. Bacterial Protease Inhibitors

Protease inhibitors produced by microorganisms have protective roles against endoge-
nous proteases. Conversely, secreted microbial protease inhibitors may modulate external
proteolytic degradation to benefit the producer. For example, a microbe may secrete a pro-
tease inhibitor to regulate their own bacterial proteases (i.e., self-defense), defend against
other microbes and infections, protect from predation, or in response to host proteases
produced during invasion. Due to the importance of protease inhibitors produced by
bacterial species, they have been extensively studied with the intent for developing novel
therapeutic drugs [101,102]. Here, we highlight bacterial sources of protease inhibitors and
discuss their relevance as antimicrobial strategies against other pathogens (Table 3).

Table 3. Protease inhibitors derived from bacteria with antimicrobial activity.

Source Protease Inhibitor
Designation (Source)

Family/Chemical
Class MW (kDa) Activity (Mechanism of Action) Ref.

Actinomycetaceae Pepstatin A
(Actinomycetes spp.) Hexapeptide 0.68

Antifungal (Secreted protease
inhibition) and HIV
protease inhibitor

[42]

Bacillaceae ATBI
(Bacillus spp.) Heptapeptide 1.1 HIV-1 protease inhibitor

(Competitive inhibition) [103]

MW: Molecular weight.
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6.1. Actinomycetaceae Family

Pepstatin A is a microbial hexapeptide produced by Actinomycetes spp. and a potent
inhibitor of almost all types of aspartic proteases, including SAPs [104]. This inhibitor
modulates virulence of the SAP family and inhibits cell proliferation and adhesion to
abiotic and biotic structures of Candida spp. showing promise as an antifungal therapeu-
tic [42]. However, when administered intravenously, pepstatin A is ineffective in systemic
infections, due to its unfavorable pharmacokinetic properties, underscoring the relevance
and need for optimization [104–106]. Structural modifications may, therefore, present an
opportunity for the design of novel potent and SAP inhibitors with antifungal properties.

6.2. Bacillaceae Family

Isolated from the extremophile Bacillus spp., ATBI, is a peptide and potent inhibitor
of several aspartic proteases, including recombinant HIV-1 protease, pepsin, and fungal
Aspergillus saitoi (F-Prot) aspartic protease [103]. ATBI binds within the active site of the
HIV-1 protease (competitive inhibition), leading to inactivation of the enzyme, and thereby
suggesting pharmaceutical potential as a drug for the treatment of AIDS. As described
above, compounds such as HIV-1-protease inhibitors (e.g., indinavir or ritonavir) possess
antifungal properties [36–38,99], highlighting the need for more research using ATBI against
human fungal pathogens, such as Candida spp. and C. neoformans.

7. Future Directions and Conclusions

Our presentation of representative protease inhibitors derived from natural sources,
including plants, invertebrates, and microbes underscores the immense potential of not only
identifying and characterizing new natural compounds from these sources and others, but
also, outlines opportunities for synthetic compound design based on informed observations.
As identified here, important areas for further exploration include the search for natural
compounds that mimic current synthetic compounds with anti-HIV activity. For example,
the beneficial effects of anti-HIV protease inhibitors on the incidence of disease and the
subsequent outcome of opportunistic fungal infections, such as candidiasis [36,37,98]
and cryptococcosis [38,99,100,107,108]. This includes the off-target effects of anti-HIV
aspartic protease inhibitors (e.g., saquinavir, indinavir and ritonavir) against hydrolytic
enzymes (e.g., SAPs in C. albicans), which correspond with reduced fungal infections in HIV-
infected patients [36,37,98,109]. Additionally, the HIV aspartic protease inhibitor, indinavir,
selectively inhibits the production of proteases and urease by C. neoformans, interfering with
capsule formation and resulting in heightened susceptibility of fungal cells to intracellular
killing by natural effector cells [99]. In addition, prolonged incubation of C. neoformans with
indinavir inhibits fungal growth, reducing virulence, and enhancing susceptibility to the
endogenous antimicrobial activity of natural effector cells [108]. These unintended benefits
of treating a viral infection led to increased host response and protection against fungal
infections. Another avenue includes extrapolating the success of anti-bacterial protease
inhibitors towards fungal proteases. For instance, the Euphorbiaceae family non-competitive
trypsin inhibitor, JcTI-I demonstrates inhibitory activity against proteases from S. aureus
and Salmonella enteric [43]. This inhibition is with high potency and low cytotoxicity making
JcTI-I a pharmacologically interesting and valuable drug for the design of a novel antibiotic,
but observations against fungal pathogens have not been reported [43].

Over the last 20 years, natural protease inhibitors and their biological activities have
been reported from diverse sources (see Tables 1–3) with plants and invertebrates being
rich reservoirs of compounds with biomedical applications. However, the isolation of mi-
crobes from the environment fails to capture the relationships among microbes within that
environment (e.g., soil microbiome). Such interactions may drastically alter the production
and abundance of proteins, as well as differences in protein profiles conveyed by microbes
in the laboratory vs. the natural setting. This makes a comprehensive identification and
appreciation of the intricacies of microbe–microbe interactions nearly impossible to repli-
cate, suggesting that our current observations and discoveries are incomplete. Moreover,
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the selection criteria within clinical trials for efficacy, bioavailability, resistance, safety, and
cost are critical to monitor and assess potential harmful outcomes for the host [29,96].
Considering the need for balanced specificity, which promotes potency of the inhibitor
but allows for potential off-target effects, beneficial properties not previously anticipated
(e.g., anti-HIV protease inhibitors described above) could therefore, be uncovered.

As emphasized in this Review, the potential for exploration of diverse protease in-
hibitors against fungal pathogens exposes our limited knowledge of defined mechanisms
of antifungal activity. This Review provides insight into selectivity and off-target effects
to move the described in vitro studies from the lab bench and into the clinic [110]. Finally,
while we focus on protease inhibitors with relevance against biomedical fungal pathogens,
opportunities and applications presented in this Review extend, through crosstalk and
cross-reactivity of protease inhibitors, to the plethora of fungal pathogens currently impact-
ing the agricultural sector and threatening global food security.
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