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Abstract
Objective Pancreatic ductal adenocarcinoma (PDAC) has high mortality and poor prognosis. Pyroptosis can influence 
the prognosis of patients by regulating the proliferation, invasion, and metastasis of cancer cells. However, the role of 
pyroptosis-related genes (PRGs) in PDAC remains unclear.
Methods In this study, based on the Cancer Genome Atlas (TCGA) cohort of PDAC samples, univariate Cox analysis and 
LASSO regression analysis were used to screen the prognostic PRGs and establish the gene signature. To further evaluate 
the functional significance of CASP4 and NLRP1 in PDAC, we also conducted an in vitro study to explore the mechanism 
of CASP4 and NLRP1 regulating the occurrence and development of PDAC. Finally, we investigated the relationship 
between CASP4 and NLRP1 expression levels and drug sensitivity in pancreatic cancer cells.
Results A risk prediction model based on CASP4 and NLRP1 was established, which can distinguish high-risk patients 
from low-risk patients (P < 0.001). Both internal validation and external GEO data sets validation demonstrate good predic-
tive capability of the model (AUC = 0.732, AUC = 0.802, AUC = 0.632, P < 0.05). In vitro, CCK8 and Transwell assay suggested 
that CASP4 may accelerate the progression of PDAC by promoting proliferation and migration of pancreatic cancer cells, 
while NLRP1 has been found to have tumor suppressive effect. It should be noted that knockdown of CASP4 reduced the 
level of coke death, the expression levels of acetyl-CoA carboxylase, FASN, SREBP-1 and SREBP-2 were decreased, and the 
number of lipid droplets was also significantly reduced. Moreover, the enrichment of signaling pathways showed that 
NLRP1 was significantly correlated with MAPK and RAS/ERK signaling pathways, and knocking down NLRP1 could indeed 
up-regulate p-ERK expression. Finally, high expression of CASP4 and low expression of NLRP1 increased the sensitivity 
of pancreatic cancer cells to ERK inhibitors.
Conclusions In especial, CASP4 can promote tumor progression by promoting the synthesis and accumulation of fatty 
acids, while NLRP1 acts on RAS/ERK signaling pathway. Both of genes play an important role in the diagnosis and treat-
ment of PDAC, which may also affect the inhibitors of MAPK/ERK efficiency.
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Abbreviations
PDAC  Pancreatic ductal adenocarcinoma
PRGs  Pyroptosis-related genes
TCGA   The Cancer Genome Atlas
TME  Tumor microenvironment
LDH  Lactic dehydrogenase
GSDM  Gasdermin
GEO  Gene Expression Omnibus
OS  Overall survival
LASSO  Least absolute shrinkage and selection operator
AUC   Area under the curve
ROC  Receiver operating characteristic
K–M  Kaplan–Meier
GSEA  Gene Set Enrichment Analysis
GO  Gene Ontology
KEGG  Kyoto Encyclopedia of Gene and Genomics
IHC  Immunohistochemistry
HPA  Human protein mapping
GDSC  Genomics of Drug Sensitivity in Cancer
CCTCC   China Center for Type Culture Collection
DEGs  Differentially expressed genes
OD  Optical density

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an exceptionally lethal malignancy and 5-year relative survival rate is 11%. 
It is estimated that There will be 62,210 (3.24%) new cases of pancreatic cancer and 49,830 (8.18%) deaths in the United 
States in 2022. According to statistics, pancreatic cancer was the fourth leading cause of cancer death in the United 
States in 2019 [1]. By 2025, pancreatic cancer is estimated to become the third leading cause of cancer death in Euro-
pean countries and the second most deadly cancer in the United States [2, 3]. The only cure for PDAC is early detection 
followed by surgical removal. However, because of the insidious onset, difficulty in early diagnosis and rapid progress 
of PDAC, most patients have lost best opportunity to operate at the time of diagnosis. Although FOLFIRINOX, modified 
FOLFIRINOX and nab-paclitaxel plus gemcitabine regimens have demonstrated better response rates, developing more 
effective treatments remains challenging [4]. Advances in high-throughput sequencing technology and systems biology 
are contributing to a better understanding of the underlying molecular mechanisms of PDAC and the search for new 
molecular targets and corresponding therapies to prolong the survival time of patients [5, 6]. In addition, different PDAC 
subtype classification systems can be established according to the gene characteristics of the tumor at the molecular 
level, so as to predict the prognosis of patients and select therapeutic drugs [7–10].

Pyroptosis, a kind of programmed cell necrosis that has attracted much attention recently, performed through Gas-
dermin (GSDM) protein family directly [11]. Activated caspase releases the structural domain with the activity of binding 
membrane phospholipid membrane drilling through cleaving GSDM protein, thus inducing pyroptosis [12]. Different from 
apoptosis which is characterized by immune silencing, pyroptosis shows rupture of cell membrane and the release of 
many cytokines and danger signaling molecules, which activate the immune system and lead to inflammatory response 
[13, 14]. Pyroptosis is closely related to various diseases, especially malignant tumors [15], where pyroptosis may play 
a dual role. On the one hand, pyroptosis can activate the anti-cancer immune response and inhibit the occurrence and 
progression of cancer. On the other hand, pyroptosis, as a means of pro-inflammatory death, can promote the forma-
tion of the tumor microenvironment (TME) suitable for tumor cell growth and accelerate cancer growth [16]. Recently, 
characteristics of pyroptosis-related genes (PRGs) have been shown to be significantly associated with prognosis in 
ovarian cancer, lung adenocarcinoma, and gastric cancer [17–19]. Therefore, in recent years, researchers have attempted 
to combine PRGs with various tumor treatments to eliminate malignant cells by regulating pyroptosis [20]. Specifically, 
A large number of reports have shown that chemotherapy drugs and miRNA can induce the pyroptosis of tumor cells, 
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thus inhibiting the malignant progression of tumor [21–24]. Therefore, it is of great significance to study the relationship 
between PRGs and prognosis and to explore its expression characteristics and functional involvement in PDAC.

Based on the RNA-seq data and clinicopathological characteristics of TCGA-PAAD dataset, we proposed the signature 
of PRGs and validated the model by using multiple groups of patient data. In addition, we described the expression of the 
gene signature at the protein level, and deeply studied the signaling pathway and biochemical process involved in the 
PRGs. Besides, we inferred and studied the other functions of PRGs in pancreatic cancer cells in vitro further. Moreover, we 
analyzed the relationship between PRGs and the drug sensitivity in PDAC, which we hope can contribute to prognostic 
monitoring and treatment strategies for PDAC patients.

2  Materials and methods

2.1  Patient data acquisition

We downloaded the RNA-seq, gene mutation data of the pancreatic cancer sample (TCGA-PAAD) and relevant clinical 
data of the patient from the TCGA database (https:// portal. gdc. cancer. gov/) on July 10, 2021. RNA-seq data and clinical 
information from the external validation cohort (ID: GSE62452, GSE57495) were obtained from the Gene Expression 
Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ geo/) [25, 26]. After data cleaning, 173 patients in TCGA-PAAD, 
64 patients in GSE62452, and 63 patients in GSE57495 had complete survival data. The clinicopathological characteristics 
of patients in different cohorts were shown in Table 1, including survival time, survival status, grade, stage, and TNM. 
7 paired confirmed PDAC tissues and adjacent normal tissues were obtained from patients who underwent pancreati-
coduodenectomy in Zhongnan Hospital of Wuhan University with informed consent. None of the patients had received 
radiotherapy, chemotherapy or immunotherapy before surgery and this study was approved by the ethics committee 
of Zhongnan Hospital.

2.2  Gene signature identification and score construction

Based on previous studies and reviews, we extracted 33 PRGs [16, 17, 27–29], as shown in Table 2. In order to evaluate 
the prognostic value of PRGs, univariate Cox regression analysis was used to evaluate the correlation between each 
gene in the TCGA-PAAD cohort and the survival time and survival status of patients. Finally, 11 prognostic PRGs were 
identified for further analysis. Elastic net regularization and least absolute shrinkage and selection operator (LASSO) 
regression analysis was used to identify independent prognostic genes strongly associated with overall survival (OS) in 
PDAC patients and calculate risk scores. The risk score was calculated by the following formula:

What needs to be commented is that “n”, “Coef(i)”, E(i) represented the number of signature genes, the coefficient index, 
and the gene expression level, respectively.

2.3  Internal and external validation of models

The accuracy and specificity of the model were quantified by the area under the curve (AUC) of receiver operating char-
acteristic (ROC), and then the influence of the included factors on the prognosis of patients was evaluated. According 
to the median risk score, patients in TCGA-PAAD and GEO cohort were divided into low-risk group and high-risk group. 
The survival curve between the risk score and OS of PDAC patients was plotted by Kaplan–Meier (K–M) method, and 
log-rank was used to test the significance of difference.

2.4  Functional inference

Gene Set Enrichment Analysis (GSEA) is a software for gene sets enrichment (https:// www. gsea- msigdb. org/ gsea/ 
index. jsp) [30, 31]. To clarify differences in gene function and signalling pathways in different prognosis of PDAC 

Risk score =
∑n

i=1
Coef (i)E(i)

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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samples, we use GSEA (version 4.0.1) and “enrichplot” R package for enrichment analysis of Gene Ontology (GO) and 
Kyoto Encyclopedia of Gene and Genomics (KEGG).

2.5  Methylation of CASP4 and landscape analysis of gene mutation

The human disease methylation database, DiseaseMeth version 2.0 is an interactive database focused on the aberrant 
DNA methylation in human diseases, especially various cancers. We used this website to analyze and compare the 
differences in CASP4 methylation between PDAC and para-cancer tissues and visualized them with box diagrams. R 
packet “maftools” was used to compare the frequency of individual gene mutations in TCGA-PAAD.

2.6  Analysis of drug sensitivity related to PRGs

GSCALite (http:// bioin fo. life. hust. edu. cn/ web/ GSCAL ite/) [32] is a comprehensive cancer analysis database that com-
bines gene expression analysis, immunoinvasion analysis, mutation analysis and drug sensitivity analysis, contain-
ing 33 types of cancer from TCGA and Genomics of Drug Sensitivity in Cancer (GDSC). Through the “Drug Sensitivity 
Analysis” module of GDSC, we studied the correlation between PRGs and drug resistance in PDAC.

Table 1  The 
clinicopathological 
characteristics of patients

Characteristics TCGA-PAAD (n = 173) GSE62452 (n = 64) GSE57495 
(n = 63)

Status
 Alive 115 15 21
 Dead 58 49 42

Grade
 Grade 1 30 2
 Grade 2 92 32
 Grade 3 47 29
 Grade 4 2 1
 Unknown 2 0

Stage
 Stage I 20 4 13
 Stage II 143 44 50
 Stage III 3 10 0
 Stage IV 4 6 0
 Unknown 3 0 0

T
 T1 7
 T2 23
 T3 138
 T4 3
 Unknown 2

N
 N0 48
 N1 120
 Unknown 5

M
 M0 79
 M1 4
 Unknown 90

http://bioinfo.life.hust.edu.cn/web/GSCALite/
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2.7  Cell culture and transfection

Human pancreatic cancer cell line PANC-1 and Aspc-1, purchased from China Center for Type Culture Collection 
(CCTCC), was cultured with special medium (CM-0627, Procell Life Science & Technology Co., Ltd.) in the 37 °C cell 
incubator containing 5%  CO2. When the cell density reached 50–70%, the cells were transfected with 20 nM siRNA 
(Table S1) and GenMute™ siRNA transfection reagent (SL100568, SignaGen Laboratories, USA).

2.8  Real‑time PCR

Following the manufacturer’s instructions, total RNA was extracted from cells with Trizol reagent (Invitrogen, Carls-
bad, CA) and then measured using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific). The RNA was 
reverse transcribed into cDNA using HiScript II Q RT SuperMix for qPCR (+gDNA Wiper) (R223-01, Vazyme, China). 
ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme, China) was used for qPCR. QPCR primers include CASP4, 
NLRP1, FASN, ACC, SREBP-1 and SREBP-2. The primer sequences used are listed in Table S2. Gene expression was 

Table 2  33 pyroptosis-related 
genes

Gene Full-name

AIM2 Absent in melanoma 2
CASP1 Cysteine-aspartic acid protease-1
CASP3 Cysteine-aspartic acid protease-3
CASP4 Cysteine-aspartic acid protease-4
CASP5 Cysteine-aspartic acid protease-5
CASP6 Cysteine-aspartic acid protease-6
CASP8 Cysteine-aspartic acid protease-8
CASP9 Cysteine-aspartic acid protease-9
ELANE Elastase, neutrophil expressed
GPX4 Glutathione peroxidase 4
GSDMA Gasdermin A
GSDMB Gasdermin B
GSDMC Gasdermin C
GSDMD Gasdermin D
GSDME Gasdermin E
IL18 Interleukin 18
IL1B Interleukin 1 beta
IL6 Interleukin 6
NLRC4 NLR family CARD domain containing 4
NLRP1 NLR family pyrin domain containing 1
NLRP2 NLR family pyrin domain containing 2
NLRP3 NLR family pyrin domain containing 3
NLRP6 NLR family pyrin domain containing 6
NLRP7 NLR family pyrin domain containing 7
NOD1 Nucleotide binding oligomerization domain containing 1
NOD2 Nucleotide binding oligomerization domain containing 2
PJVK Pejvakin/deafness, autosomal recessive 59
PLCG1 Phospholipase C gamma 1
PRKACA Protein kinase cAMP-activated catalytic subunit alpha
PYCARD PYD and CARD domain containing
SCAF11 SR-related CTD associated factor 11
TIRAP TIR domain containing adaptor protein
TNF Tumor necrosis factor
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normalized to the expression of GAPDH and calculated using  2−ΔΔCT method. Three repeated experiments were set 
up in each group.

2.9  Western blotting

48 h after siRNA transfection, the cells were washed twice with PBS. RIPA Lysis Buffer (BL504A, Biosharp, China) sup-
plemented with protease and phosphatase inhibitors was added to the cells and lysed on ice for 15 min. The liquid was 
collected and centrifuged. Protein concentration was determined using BCA protein determination kit (P0012, Beyo-
time, China). Total protein was transferred to PVDF membrane (Millipore, Billerica, MA) after electrophoresis in 10% or 
7.5% SDS-PAGE. After blocking the nonspecific sites on the membrane with 5% sealant for 1 h at room temperature, the 
membrane was applied to CASP4 (1:1000, #4450, Cell Signaling Technology, USA), NLRP1(1:1000, ab36852, abcam, USA), 
Vinculin (1:100000, V9264-100UL, Sigma-Aldrich), GSDMD (1:2000, TA4012, Abmart China), p-ERK (1:2000, #4370, Cell 
Signaling Technology, USA) and incubated overnight at 4 °C. Then, the membrane was incubated with HRP-Conjugated 
Affinipure Goat Anti-Rabbit IgG(H+L) (SA00001-2, Proteintech) at room temperature for 1 h. The blots were finally visual-
ized with the ECL Chemiluminescence substrate (hypersensitive) (BL523B, Biosharp, China). The film was exposed and 
developed by X-ray in a darkroom. The film was scanned and the strips were and quantified by Image J (1.46R). Three 
repeated experiments were set up in each group.

2.10  Cell proliferation assay

24 h after siRNA transfection, the cells were transfected into a 96-well culture plate (2000 cells/well). Following the 
manufacturer’s instructions, add 100 µL/well diluted 10 times CCK-8 reagent (CA1210, Beijing Solarbio Science & 
Technology Co., Ltd.) at 0, 24, 48, 72 h after laying plate, respectively. The cells were incubated at 37 °C for 2 h and the 
optical density (OD) at 450 nm was measured with a microplate reader. Three repeated experiments were set up in 
each group.

2.11  Transwell invasion assay

Transparent PET Membrane 24 Well 8.0 μm tin (BD Biosciences, USA) was used for cell invasion ability detection. 24 h 
after siRNA transfection, 2 ×  104 cells were inoculated into the upper chamber, and 500 μL of complete medium was 
added into the lower chamber. After the cell morphology was restored, the cells were starved for 8 h. Then the medium 
containing 20%FBS was changed into the lower chamber to induce membrane penetration. 24 h later, it was fixed with 
4% paraformaldehyde for 30 min and stained with crystal violet for 15 min. Images were taken under microscope and 
analyzed by Image J (1.46R). Three repeated experiments were set up in each group.

2.12  BODIPY staining

BODIPY staining was used to observe the neutral lipid droplets in PANC-1 and Aspc-1 cells after treatment. The cells 
were inoculated on cover glass, and when the cell density reached 50–70%, they were cleaned with PBS for 3 times. 
The cells were fixed with 4% paraformaldehyde for 15 min and then cleaned with PBS again. Then, 2 μm BODIPY 
493/503 (D3922, Thermo Scientific) was used to avoid light Staining for 30 min, and DAPI Staining Solution (C1005, 
Beyotime) was used to avoid light Staining for 5 min. After staining, soak with PBS for 3 times. Place the cover slide 
lightly on the slide dripping with antifade mounting medium (P0126, Beyotime) and observe under a fluorescence 
microscope (Olympus, BX53).

2.13  Immunohistochemistry (IHC)

The fresh tissue collected during the operation was immersed in 4% paraformaldehyde and embedded in paraffin. The 
wax blocks were sectioned and dewaxed, followed by antigen repair with 3%  H2O2 and citrate buffer. The samples were 
then incubated overnight in primary antibody, followed by secondary antibody and hematoxylin. The primary antibod-
ies used in this study were: CASP4 (1:200, #4450, Cell Signaling Technology, USA), NLRP1(1:200, ab36852, abcam, USA) 
Finally, the slices were viewed under the microscope.
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Human protein mapping (HPA) (https:// www. prote inatl as. org/) [33–35] provides information on the tissue and cel-
lular distribution of almost all proteins available to the human. In this database, researchers used transcriptomic and 
proteomic techniques to study protein expression in different human tissues and organs on RNA and protein levels. HPA 
database was used to analyze the protein expression of PRGs and the immunohistochemical staining images were also 
downloaded.

2.14  Lactic dehydrogenase (LDH) release detection

In order to detect the occurrence of cell pyrosis, the LDH Release Assay Kit (C0016, Beyotime) was used to detect the 
activity of lactate dehydrogenase released during cytotoxicity according to manufacturer’s instructions and literature 
report [36, 37]. After transfection with siRNA, the cell supernatant was centrifuged and transferred to a 96-well plate. 
Add the LDH detection working solution and detect the absorbance at 490 nm after incubation at room temperature 
without light for 30 min, and LDH release (%) was calculated.

Fig. 1  The flow chart of the present study

https://www.proteinatlas.org/
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2.15  Detection of drug sensitivity

To test whether the expression of CASP4 or NLRP1 affects the sensitivity of pancreatic cancer cells to MEK inhibitors, 
Trametinib (MedChemExpress, USA) was added to siRNA-transfected PANC-1 and Aspc-1 cells. According to the prelimi-
nary experimental results and literature description [38, 39], the final concentration of Trametinib was 10 µM/L, and the 
cell survival of Aspc-1 was detected in 48 h after treatment, while PANC-1 was detected in 72 h.

2.16  Statistical analysis

The research flow chart has been shown in Fig. 1. All survival curves are displayed with p-value from log-rank test. 
Mean and median for continuous variables were compared using independent t-test when the data were normally 
distributed; otherwise, the Mann–Whitney U test was used. Comparison of clinicopathological parameters and other 
classified variables was tested by chi-square test. The correlation of gene expression was evaluated by Spearman’s 
correlation and statistical significance. All tests were two-sided and P-value < 0.05 were considered statistically 
significant.

3  Results

3.1  Gene signature identification and risk scoring model construction

The selected PRGs (Table 2) were used for GO and KEGG analysis, and the results showed that these genes regulated 
multiple IL-1β related pathways (Figure S1). Firstly, a univariate Cox regression analysis was used to identify 11 PRGs asso-
ciated with OS in TCGA-PAAD patients (P < 0.05) (Table 3). To identify the most powerful prognostic gene markers, Elastic 
net regularization and LASSO regression analysis was used to screen two PRGs and construct a prognostic gene signature 
(Fig. 2A, B), thus minimizing the risk of overfitting. Using cross-validation and minimization of the averaged error curves, 
we selected an optimal tuning parameter λ of 0.2733 with log (λ) of − 0.6. The risk score of patients was calculated based 
on the expression level and regression coefficient, which was as follows: Risk score = − 0.0105613982870017 * (the expres-
sion of NLRP1) + 0.0393442154637877 * (the expression of CASP4). Figure S2A displayed the expression levels of CASP4 
and NLRP1 in tumour samples with different T stage and lymph node status. To further evaluate the impact of risk score 

Table 3  Tree diagram of 
univariate Cox regression 
between PRGs and prognosis 
of PDAC

ID HR HR.95L HR.95H p-value

NLRP2 1.080016 1.022584 1.140673 0.005762
CASP8 1.269678 1.09664 1.470019 0.001403
PRKACA 0.89609 0.83489 0.961776 0.002368
NLRP1 0.873237 0.784275 0.97229 0.013415
PYCARD 1.023932 1.004007 1.044253 0.018333
PLCG1 0.87138 0.778094 0.975849 0.017166
CASP1 1.081328 1.006057 1.16223 0.033669
GSDMC 1.103778 1.011484 1.204493 0.026673
IL18 1.050832 1.023062 1.079355 0.000285
AIM2 1.105527 1.020615 1.197503 0.013878
CASP4 1.204421 1.110487 1.306301 7.14E−06

Fig. 2  Identification of a 2-PRGs signature for PDAC patients and detection of predictive performance. A PRGs expression selection by using 
logistic regression with elastic net. Elastic net coefficient profiles of the 11 selected features. B LASSO Cox regression was used to select the 
most powerful parameter with cross-validation. C The ROC based on risk score. The risk score was divided into high-risk group and low-risk 
group with a cut-off value of 50%. D, E The distribution of risk score and survival status. F Kaplan–Meier survival analysis of PDAC patients 
in different risk groups from TCGA-PAAD cohort. G Tree diagram of a univariate regression analysis. H Tree diagram of a multivariate regres-
sion analysis. **P < 0.01, ***P < 0.001. Patients with tumors located in the body and tail of the pancreas received distal pancreatectomy, and 
patients with tumors located in the head of the pancreas received Whipple surgery

▸
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on the prognosis of PDAC patients, K–M analysis showed that the prognosis of high-risk group (n = 86) was significantly 
poorer than that of low-risk group (n = 87) (P < 0.001) (Fig. 2F). In addition, we also compared the distribution of T stage 
and lymph node status among patients with different scores, showing that patients in the high-risk group had higher T 
stage and more lymph node metastases (Figure S2B). The distribution of survival status and risk scores of patients was 
shown in Fig. 2D, E, indicating that by the time of follow-up, more PDAC patients had died in the high-risk group than 
in the low-risk group. The ROC curve showed good predictive power of the model for predicting the prognosis of PDAC 
patients based on the gene signature (AUC = 0.732, P < 0.001) (Fig. 2C).

In order to further analyse the prognostic value of PRGs characteristics in PDAC patients, univariate and multivariate 
Cox regression analyses were performed on clinicopathological characteristics, including age at diagnosis, sex, smoking 
history, drinking history, diabetes history, history of chronic pancreatitis, tumor site, histological grade, T stage, N stage, 
residual tumor and radiotherapy, and risk score. The results indicated that risk score based on PRGs signature was an 
independent prognostic factor for PDAC patients (P = 0.002, HR = 4.899, 95% CI 1.850–6.891) (Fig. 2G, H).

3.2  External validation of the gene signature

In order to further verify the effect value of the gene signature based on PRGs, we downloaded two datasets, GSE57495 
and GSE62452 from GEO. The expression levels of CASP4 and NLRP1 in tumour samples with different stage and grade 
was shown in Figure S2E, F, which could roughly show that the higher the tumour stage and grade, the higher the expres-
sion level of CASP4, while NLRP1 is the opposite. The risk score of the sample of data set was calculated according to 
the formula, and the patients were also divided into low-risk group and high-risk group. K–M analysis showed that the 
prognosis of the high-risk group was significantly worse than that of the low-risk group (P = 0.008, P = 0.002) (Figs. 3A 
and 4A). Besides, as we can see from Figure S2C, D, the predicted high-risk group actually contained more patients with 
higher grade and higher stage. More PDAC patients in the high-risk group had died by the time of follow-up and had 
survived less than those in the low-risk group (Figs. 3C, D and 4C, D). The ROC curve showed that the model had good 
predictive ability (AUC = 0.802, AUC = 0.632, P < 0.05) (Figs. 3B and 4B). Although the sample size was limited, the risk 
score based on PRG can still be used as an independent prognostic factor for OS of PDAC patients (P < 0.05), while stage 
and grade cannot (Figs. 3E, F and 4E, F).

3.3  Expression and survival analysis of PRGs

Figure 5A, B, exhibiting the immunohistochemical staining and intensity of NLRP1 and CASP4 proteins in all PDAC 
samples, showed that NLRP1 staining was weak, while the protein expression level of CASP4 were elevated in PDAC 
samples. To further analyse the reasons for the difference in CASP4 expression between cancer and para-cancer, we used 
DiseaseMeth database to compare the methylation level of CASP4. The results showed that CASP4 was located at two 
sites on the chromosome in which the mean methylation level of CASP4 in PDAC was significantly lower than in para-
cancer tissues (P < 0.05) (Fig. 5C). Besides, the survival curve showed that high expression of NLRP1 and low expression 
of CASP4 were associated with a better prognosis (P < 0.05) (Fig. 5D). Immunohistochemistry indicated that CASP4 was 
expressed at high levels in tumor tissues but weakly expressed in adjacent normal tissues, and the difference in NLRP1 
expression between tumor and adjacent normal tissues was opposite to that of CASP4 (Fig. 5E).

3.4  PRGs regulate the proliferation and invasion of pancreatic cancer cells in vitro

To further evaluate the functional significance of CASP4 and NLRP1 in PDAC, we conducted an in vitro study to examine 
the effects of CASP4 and NLRP1 on PANC-1 and Aspc-1. First, RNA and protein expression levels of CASP4 and NLRP1 in 
cells were knocked down by transfection of siCASP4#1, siCASP4#2, siNLRP1#1 and siNLRP1#3 (P < 0.01), which were for 
all subsequent experiments (Fig. 6A, B). CCK-8 showed that CASP4 knockdown significantly inhibited the cell viability 
of PANC-1 and Aspc-1, while NLRP1 knockdown significantly enhanced the cell viability (P < 0.01) (Fig. 6C). In addition, 
Transwell results showed that knocking down CASP4 significantly inhibited the invasion and migration of PDAC cells, 
which were promoted by knocking down NLRP1 (P < 0.05) (Fig. 6D). These results suggested that CASP4 may accelerate 
the progression of PDAC by promoting proliferation, invasion and migration of pancreatic cancer cells, while NLRP1 has 
been found to have tumor suppressive effect in vitro.
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Fig. 3  External validation of the risk prediction model using GSE57495 dataset. A Kaplan–Meier survival analysis of PDAC patients in the 
high-risk group and low-risk group. B The ROC based on risk score. C, D The distribution of risk score and survival status. E Tree diagram of a 
univariate regression analysis. F Tree diagram of a multivariate regression analysis
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Fig. 4  External validation of the risk prediction model using GSE62452 dataset. A Kaplan–Meier survival analysis of PDAC patients in the 
high-risk group and low-risk group. B The ROC based on risk score. C, D The distribution of risk score and survival status. E Tree diagram of a 
univariate regression analysis. F Tree diagram of a multivariate regression analysis
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3.5  CASP4 could regulate accumulation of lipid droplets

KRAS and P53 mutations are most common in pancreatic cancer (Fig. 7A, B). Based on this, PDAC samples were grouped 
according to KRAS and P53 mutations, and we compared the expression level of CASP4 in mutant and wild-type tumors. 
We found that the expression level of CASP4 was higher in both KRAS mutated samples and P53 mutated samples than 
in wild-type samples (P < 0.001) (Fig. 7C). Meanwhile, correlation analysis also showed that CASP4 was significantly posi-
tively correlated with KRAS and P53 expression level respectively (R = 0.45, R = 0.19, P < 0.001) (Fig. 7D). In addition, gene 
sets enrichment analysis also suggested that the differentially expressed genes (DEGs) in CASP4 high expression samples 
were mainly involved in regulating programmed cell death, nucleotide metabolism and P53 signaling pathway (Fig. 7E).

To further explore the mechanism of CASP4 promoting cancer, we knocked down CASP4 by transfection with shRNA 
in PANC-1 and Aspc-1 cells, and then detected the expression of key enzyme molecules in fatty acid synthesis. The results 
showed that low CASP4 expression significantly reduced the RNA levels of acetyl-CoA carboxylase (ACC), FASN, SREBP-1 

Fig. 5  Expression and survival analysis of PRGs in PDAC. A The protein expression score of staining and intensity of NLRP1 and CASP4 pro-
teins in all PDAC samples (HPA database). Protein expression score is based on immunohistochemical data manually scored with regard 
to staining intensity (negative, weak, moderate or strong) and fraction of stained cells (< 25%, 25–75% or > 75%). B  Immunohistochemi-
cal staining of NLRP1 and CASP4 proteins in PDAC. C Methylation levels of CASP4 at chr11:104838825–104841325 and chr11:104826922–
104829422 in PDAC and para-cancer tissues. D The OS survival curves of NLRP1 and CASP4 mRNA expression level in PDAC. E CASP4 and 
NLRP1 immunohistochemistry for patients from Zhongnan Hospital (×200)
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Fig. 6  PRGs regulated the proliferation and invasion of pancreatic cancer cells in vitro. A, B After siRNA transfection, qPCR and western blot 
was used to detect RNA and protein expression levels of CASP4 and NLRP1 respectively in PANC-1 and Aspc-1 cells. C CCK8 assay was used 
to detect the proliferation of PANC-1 and Aspc-1 cells after transfection with siRNA. D Transwell was used to detect the change of cell inva-
sion ability after transfection with siRNA (*P < 0.05, **P < 0.01, ***P < 0.001)
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and SREBP-2 (P < 0.05) (Fig. 8A). In addition, immunofluorescent staining displayed that the number of lipid droplets 
decreased significantly after CASP4 knockdown (P < 0.05) (Fig. 8B, C). Meanwhile, knockdown of CASP4 caused a decrease 
% of LDH released and GSDMD-N in cells (P < 0.01), suggesting that the degree of cell pyroptosis was reduced (Fig. 8D, E).

3.6  NLRP1 was involved in the regulation of RAS/ERK signaling in pancreatic cancer

To investigate the mechanism of NLRP1 involved in the regulation of pancreatic cancer progression, the same analysis 
was performed for NLRP1 to test whether NLRP1 was associated with KRAS mutation. The results showed that NLRP1 
expression level was significantly decreased in pancreatic cancer samples with KRAS or P53 mutations (P < 0.05) (Fig. 9A). 
Moreover, NLRP1 was significantly negatively correlated with KRAS or P53 (R = − 0.21, R = − 0.16, P < 0.05) (Fig. 9B). Gene 
set enrichment analysis also showed that NLRP1 may be involved in the regulation of MAPK, mTOR and JAK/STAT sign-
aling pathways (Fig. 9C). We further verified this result in vitro and found that after siNLRP1 knockdown, the expression 
level of p-ERK in cells was significantly increased (Fig. 9E). Meanwhile, knockdown of NLRP1 caused a decrease % of LDH 
released and GSDMD-N in cells (P < 0.05), suggesting that the degree of cell pyroptosis was reduced (Fig. 9D, E). However, 
knocking down NLRP1 did not significantly affect the number of lipid droplets in either type of cell (P > 0.05) (Figure S3).

3.7  Analysis of drug sensitivity of PRGs

Figure 10A, displaying the correlation analysis between PRGs and drug sensitivity in PDAC, showed that CASP4 was 
significantly positively related with FK866, the inhibitor of nicotinamide phosphoribosyltransferase and vorinostat, the 
inhibitor of histone deacetylase inhibitors of sensitivity, and NLRP1 negatively correlated with them. In addition, CASP4 
was negatively correlated with 17-AAG, the inhibitor of AKT, Mirdametinib (PD-0325901), Refametinib (RDEA-119), 
Cl-1040, and Trametinib, the inhibitors of MEK. Trametinib was used to treat siCASP4-transfected Aspc-1 and PANC-1, 
and the cell viability was significantly increased compared with the control group 48 or 72 h later, while the viability of 
siNLRP1 transfected cells was significantly decreased (P < 0.05) (Fig. 10B). These results suggested that up-regulation of 
CASP4 or inhibition of NLRP1 expression can enhance the sensitivity of pancreatic cancer cells to trametinib.

4  Discussion

PDAC is one of the most common and deadly solid tumors. Despite significant advances in diagnosis and treatment, 
the clinical outcome of PDAC is still poor, mainly due to low surgical resection rate and postoperative recurrence. Other 
therapeutic strategies, such as combination chemotherapy, molecularly targeted agents, and immune checkpoint inhibi-
tors, have limited efficacy due to tumor heterogeneity and inherent resistance [40, 41]. Tumorigenesis is associated with 
a variety of factors, including activation of proto-oncogenes and anticancer genes, TME, oxidative stress, and chronic 
inflammatory stimuli. Activation of pyroptosis leads to the release of the inflammatory mediators IL-1 and IL-18, which 
can contribute to the development of cancer in a number of ways. For another, pyroptosis can promote tumor cell 
death, making it a potential prognostic marker and therapeutic target for cancer. Therefore, PRGs play different roles in 
the occurrence and progression of different cancers. For example, pyroptosis inhibits the progression of hepatocellular 
carcinoma, colorectal cancer and gastric cancer [42–47], but it promotes the proliferation and metastasis of breast cancer 
cells [48]. However, the role of PRGs in PDAC has not been clarified. Therefore, in this study, we aimed to discover a novel 
prognostic marker and therapeutic target related to pyroptosis through data analysis and mechanism exploration to 
provide potential approaches in the treatment of PDAC.

In order to further evaluate the prognostic value of these PRGs, we constructed a risk score model based on NLRP1 
and CASP4 gene signature through univariate Cox analysis and LASSO regression analysis, and then verified their 
good predictive performance in external datasets. Previous studies have shown that NLRP1 is considered a tumor 
suppressor gene. NLRP1 is one of inflammasome sensors, the activator of which induces the proteasome-mediated 
destruction of the N-terminal fragment and liberates the C-terminal fragment to form an inflammasome [49]. Inflam-
masome represents a group of protein complexes that induce inflammation and pyroptosis, and its abnormal and 
chronic activation is the pathological basis for many common inflammatory diseases and tumorigenesis [50]. Tar-
geting the activation of NLRP1 in epidermal keratinocytes represented a potential therapeutic strategy for NLRP1-
dependent inflammatory skin disease and cancer [51, 52]. In our study, NLRP1 was believed to inhibit the occurrence 
and progression of PDAC, which may be due to NLRP1’s involvement in the regulation of MAPK, mTOR and JAK/
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Fig. 7  CASP4 was associated with KRAS and P53 mutations potentially. A, B Cloud plot and waterfall plot of mutant landscape in TCGA-
PAAD samples. C The expression levels of CASP4 were different in KRAS mutation, P53 mutation and wild-type tumor tissues respectively. 
D  Correlation curve between CASP4, KRAS and P53 expression levels based on TCGA database. E  GSEA analysis of DEGs  in high CASP4 
expression group. ***P < 0.001

▸

Fig. 8  CASP4 promoted tumor progression by regulating accumulation of lipid droplets. A RNA expression level of key enzyme molecules 
in fatty acid synthesis after transfecting shCASP4 in PANC-1 and Aspc-1 cells. B, C The mean number of lipid vesicles per cell. The lipid 
droplets were counted randomly (≥ 50 cells were counted per condition). D PANC-1 and Aspc-1 cells were tested for LDH release 24 h after 
siCASP4 transfection. E Cleavage of GSDMD were monitored by immunoblot analysis 48 h after siCASP4 transfection (*P < 0.05, **P < 0.01, 
***P < 0.001)
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STAT signaling pathways. Notably, NLRP1 was negatively correlated with KRAS, and inhibition of NLRP1 expression 
enhanced the effect of ERK inhibitors, which was potentially valuable for the treatment of PDAC. There have been 
few studies on the regulation of NLRP1 and RAS/ERK signaling pathways in tumors. Zhai et al. [53] found that NLRP1 
functioned downstream of the MAPK/ERK signaling and contributed to acquired targeted therapy resistance in 
human metastatic melanoma, which was consistent with our findings.

The prognostic significance of CASP4 overexpression in cancers remains controversial. For example, the clinical 
cohort study of Shibamoto et al. showed that CASP4 may play a role as a tumor suppressor gene in esophageal 
cancer and as a potential biomarker for predicting esophageal cancer prognosis [54, 55]. However, silencing CASP4 
gene inhibited the migration, adhesion, and invasion of epithelial cancer cells [56]. Meng et al. found that CASP4 
was highly expressed in renal clear cell carcinoma based on TCGA data, suggesting poor prognosis, and was associ-
ated with tumor drug resistance [57]. In our study, CCK8 and transwell assay suggested that CASP4 may accelerate 
the progression of PDAC by promoting proliferation and migration of pancreatic cancer cells. It is noteworthy that 
CASP4 is commonly known as a cell pyroptosis gene, but it has been found to promote cancer in some experimental 

Fig. 9  NLRP1 was associated with KRAS and P53 mutations potentially. A The expression levels of NLRP1 were different in KRAS mutation, 
P53 mutation and wild-type tumor tissues respectively. B  Correlation curve between NLRP1, KRAS and P53 expression levels based on 
TCGA database. C GSEA analysis of DEGs in high NLRP1 expression group. D PANC-1 and Aspc-1 cells were tested for LDH release 24 h after 
siNLRP1 transfection. E Cleavage of GSDMD and p-ERK were monitored by immunoblot analysis 48 h after siNLRP1 transfection (*P < 0.05, 
***P < 0.001)
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and clinical studies, the mechanism of which has not been explored. KRAS and P53 mutations, the most common 
mutation in pancreatic cancer, can change normal metabolic pathways and initiate metabolic reprogramming by 
activating transcription factors and enhancing enzyme activity [58, 59]. By grouping pancreatic cancer samples in 
TCGA, we found that the expression level of CASP4 was higher in both KRAS and P53 mutation samples than in wild-
type samples. In addition, Michela Terlizzi analyzed changes in lipid metabolism characteristics in CASP4-positive 
non-small cell lung cancer and found increased palmitic acid and malonic acid in tissues of CASP4-positive patients, 
which are important for fatty acid biosynthesis and elongation [60, 61]. Therefore, it is reasonable to speculate that 
CASP4 may be one of the factors in the synergistic regulatory network of KRAS and P53 and promoted the biosyn-
thesis of fatty acids in pancreatic cancer and reserves productive substrates for the proliferation and migration of 
tumor cells in addition to the occurrence of pyroptosis. Our experiment results suggested that CASP4 knockdown 
in PANC-1 and Aspc-1 cells significantly reduced the number of lipid droplets, and the expression of key enzymes 
and transcription factors involved in fatty acid synthesis, which was the first in vitro study of CASP4 regulation of 
pancreatic cancer lipid metabolism.

We tried to apply the results of this study into clinical practice, not only establishing a prognostic risk model, but also 
exploring the correlation between PRGs and tumor drug resistance. Through drug sensitivity analysis, CASP4 and NLRP1 
were significantly related with the inhibitors of AKT and MEK and elevated CASP4 or inhibited NLRP1 may enhanced 
efficiency of trametinib as the CCK8 results suggested. But it was the limitation of this study that we haven’t conducted 
experiments to investigate whether the expression of CASP4/NLRP1 influenced the sensitivity of pancreatic cancer to 
these drugs., such as comparing tumor growth by using MEK or AKT inhibitors in vivo with animals. As a continuation 

Fig. 10  Analysis of drug sensitivity associated with PEGs. A Correlation of CASP4 and NLRP1 expression with multidrug sensitivity in GDSC. 
Red is positive correlation, which means the higher the gene expression, the more sensitive to the drug, while the blue is the opposite. The 
Spearman correlation represent the gene expression correlates with the drug. The positive correlation means that the gene high expression 
is resistant to the drug, vise verse. B Survival rate of cells exposed to trametinib at the concentrations of 10 µM/L for 48 or 72 h (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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of future research, we will supplement it in future research. Besides, because this is a retrospective study, we call for a 
prospective study with a larger sample size to verify the clinical application of PRGs in personalized management of 
PDAC patients.

5  Conclusions

In this study, we used TCGA-PAAD RNA-seq data and clinical data to construct a risk prediction model based on PRGs, 
including NLRP1 and CASP4. In addition to pyroptosis, CASP4 may promote pancreatic cancer cell migration by promot-
ing fatty acid synthesis, as well as NLRP1 was also closely related to the RAS/ERK signaling pathway. CASP4 and NLRP1 
are expected to be important prognostic markers and therapeutic targets for PDAC, and corresponding targeted drugs 
are emerging.
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