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Abstract

The continuing HIV pandemic calls for broad, multi-sectoral responses that foster commu-

nity control of local prevention and care services, with the goal of leveraging high quality

treatment as a means of reducing HIV incidence. Service system improvements require

stakeholder input from across the care continuum to identify gaps and to inform strategic

plans that improve HIV service integration and delivery. System dynamics modeling offers a

participatory research approach through which stakeholders learn about system complexity

and about ways to achieve sustainable system-level improvements. Via an intensive group

model building process with a task force of community stakeholders with diverse roles and

responsibilities for HIV service implementation, delivery and surveillance, we designed and

validated a multi-module system dynamics model of the HIV care continuum, in relation to

local prevention and care service capacities. Multiple sources of data were used to calibrate

the model for a three-county catchment area of central Connecticut. We feature a core mod-

ule of the model for the purpose of illustrating its utility in understanding the dynamics of

treatment as prevention at the community level. We also describe the methods used to vali-

date the model and support its underlying assumptions to improve confidence in its use by

stakeholders for systems understanding and decision making. The model’s generalizability

and implications of using it for future community-driven strategic planning and implementa-

tion efforts are discussed.

Introduction

As the HIV pandemic approaches four decades, nations, states, and communities increasingly

seek broad, multi-sectoral responses to prevent new infections while caring for those infected

in order to achieve the goal of controlling the epidemic [1–3]. Community health outcomes
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depend on a coordinated, highly effective local HIV testing, treatment, and care service system

to find, treat, and maintain viral suppression in all people living with HIV (PLWH) [4, 5]. To

reduce or eliminate the epidemic, this healthcare delivery and support system must address

the “treatment cascade,” in which PLWH fall out of care [6–8], and effectively stop new infec-

tions through both primary prevention and treatment-as-prevention (TasP) [9, 10].

System improvements require stakeholders from across the care continuum to identify ser-

vice gaps and develop and carry out strategic plans to improve HIV service integration and

delivery [11–13]. However, such plans may suffer from stakeholders’ incomplete “mental mod-

els,” that is, their internal conceptual representation of the HIV care system [14, 15], and their

insufficient recognition of system complexity and limited understanding of system dynamics

that affect population health outcomes [16, 17]. They need tools to help them recognize inter-

dependence, engage together to envision possible solutions, and plan the most promising set

of strategies to avoid misdirecting limited resources or proposing simple solutions for complex

problems.

Participatory system dynamics (SD) modeling brings stakeholders together to examine

complex problems at the community level [18, 19]. The approach has been used to examine

various public health concerns [20–24], including HIV/AIDS [25–27]. Participatory SD

modeling engages stakeholders in an iterative “systems thinking” process that contributes to

model building by diagraming, critiquing, seeking data to quantify and calibrate, and simulat-

ing interactive systems-level dynamics with the aid of computer tools [28–30]. It also allows

community stakeholders to learn about system complexity and service gaps from each other

and through the modeling process, in order to identify mechanisms likely to lead to or impede

system improvements. SD simulation models that have been developed and validated through

a participatory stakeholder model building process offer conceptual, methodological, and ana-

lytical tools to support identification of system-level strategies to achieve public health goals

[31–34]. Stakeholders can generate hypothetical single, multiple, or sequential evidence-based

and locally generated interventions and other actions expected to attain optimal outcomes.

They can then test these strategies virtually through simulation before expending effort and

resources to implement them [20, 27, 35].

We used group model building (GMB) [36–39] to develop, calibrate, and validate a compu-

tational tool [40] representing the HIV health and social services care continuum (CC). The

overarching purpose of the tool is to use it to inform effective, community-driven ways of

leveraging TasP, which can be visualized as an omnipresent (although not always apparent)

feedback loop. In this loop, improvements in viral suppression among PLWH serve to decrease

likelihood of HIV exposure and infection, theoretically to the point of any further new cases in

the total population. Our resultant model is organized into nine interdependent modules (A-I,

see Table 1 and Fig 1). Modules that illustrate interdependencies among Basic Services (such

as HIV medical care and access to substance use treatment, Modules B-E) and Action Strate-

gies (such as peer outreach and community initiatives, Modules F-I) shape patterns of HIV

infection, diagnosis, access to care, and viral suppression in a given community or targeted

catchment area over time (HIV Infection and Treatment as Prevention, Module A).

This article provides an overview of the full HIV CC SD model, with a more detailed focus

on the structure and behavior of Module A, and implications of using the full model for future

community-driven strategic planning and implementation efforts. Full documentation of each

module’s equations, parameter estimates, and other supportive materials are available at

https://github.com/mweeks56/ICR_HIV_Care_SDM (the project’s on-line repository) and at

the protocols website dx.doi.org/10.17504/protocols.io.bcm6iu9e.
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Table 1. Modules of the HIV Care Continuum (CC) System Dynamics (SD) simulation model.

Module Name Module

Type

Module Description

A. HIV Infection and Treatment as

Prevention (TasP)

TasP This is the central HIV test, treat, and retention in care

module representing the stages of the care continuum and

the “treatment cascade,” from HIV exposure and infection,

to diagnosis, linkage to care, initiation of anti-retroviral

treatment (ART), and viral suppression, or lost to care and

mortality. In this module, the effectiveness of TasP impacts

the rate of new HIV infections at the population level,

thereby representing the primary TasP balancing feedback

loop.

B. HIV Testing and Prevention Services Basic

Service

This module aggregates all community HIV testing and

prevention programs including: “General HIV Testing in

Low Prevalence Settings,” “General HIV Testing in High

Prevalence Settings,” “Targeted HIV Testing Services” to

reach high-risk groups (who often do not use other testing

services), “PrEP Referral and Implementation for HIV-

negative people at high risk,” and “Partner Services Referral

for HIV-positive People” to seek their partners for HIV

testing. People who test HIV-positive also link to the

“Medical Care Services” module to enter medical care for

HIV.

C. Medical Care Services for People

Living with HIV (PLWH)

Basic

Service

This module links newly diagnosed people with HIV to

medical care and simulates their repeated medical

appointments, missed appointments, and lost to care

dynamics. Outcomes of Medical Care Services link to the

central “HIV TasP” module to increase viral suppression in

PLWH.

D. Ryan White Case Management

Services

Basic

Service

This module represents case management needs among

PLWH and provision and limitations of Ryan White (RW)

case management services. Unmet case management needs

link to the “Medical Care Services” module as an effect on

the linked to care and lost to care rates.

E. Housing, Substance Use Treatment,

& Mental Health Services for PLWH

Basic

Service

This module includes three designated service models,

including: 1) “Housing Needs and Services,” 2) “Substance

Use Treatment Needs and Services,” and 3) “Mental Health

Care Needs and Services.” Unmet needs for these services

link to the “Medical Care Services” module to affect the lost

to care rate.

F. Peer Outreach to Promote HIV

Testing

Action

Strategy

This module represents a program to increase the

community HIV testing rate by engaging people who get

tested for HIV to recruit their peer network members to get

tested as well. Effects of this program increase the monthly

HIV testing rate in the “HIV Testing and Prevention”

module in all three test settings.

G. Peer Advocacy to Support PLWH Action

Strategy

This module represents a program to train and deploy Peer

Advocates (sometimes called Peer Navigators) to support

and empower other PLWH to access and stay in medical

care and adhere to their HIV medications. Effects of this

program link to the “Medical Care Services” module to

reduce the lost to care rate.

H. Expanding HIV Testing & Sexual

Health Screening in Primary Care

Action

Strategy

This module represents expanded HIV testing and

comprehensive sexual health screenings by primary care

providers to their patients. Effects of this action strategy

increase HIV testing in all general testing settings and

increase PrEP implementation and potential uptake.

(Continued)
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Methods

Overview of system dynamics (SD) model building

SD models specify interdependencies among key constructs that define complex feedback

structures for a given problem of interest. Feedback structures, or loops, are of two types,

namely, reinforcing, which generate an acceleration effect, and balancing, which generate a

buffering effect or equilibrium. SD models explicitly identify time delays that underlie sys-

tems-level processes, which often help explain problematic or counterintuitive patterns of sys-

tem behavior (outcomes) [41, 42].

SD modeling projects often begin by sketching qualitative causal loop diagrams (CLD) [37,

43] and by formulating a quantitative computational model, or “scoping” model [40], applying

stakeholders’ knowledge of the focal problem and relevant available quantitative and qualita-

tive secondary sources of evidence. CLDs are used to develop stock-and-flow diagrams, which

are coded using graphical software (we used Stella Architect 1.9.41). Stock-and-flow diagrams

hold a set of algebraic and differential equations, with key parameter estimates chosen from

the highest quality empirical and historical data [40]. Stocks specify accumulations of units,

Table 1. (Continued)

Module Name Module

Type

Module Description

I. Mobilizing Community Programming

to Support PLWH

Action

Strategy

This module represents implementation of programs to

reach community members broadly as well as to target high

risk individuals and families of PLWH with HIV

information and supportive programs. The module

simulates impacts of those programs to increase

community-level HIV knowledge, and to reduce HIV

related stigma and medical mistrust in the community.

Effects of these programs link to the “Medical Care

Services” module to reduce the lost to care rate, and to the

“HIV Testing and Prevention” module to increase the HIV

testing rate in all test settings.

https://doi.org/10.1371/journal.pone.0230568.t001

Fig 1. Modules comprising the system dynamics model of the HIV care continuum. Treatment as Prevention

(Module A, center); Basic Services (Modules B-E, left); Action Strategies (Modules F-I, right).

https://doi.org/10.1371/journal.pone.0230568.g001
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such as people, things, or information. Flows specify rates of change of units from one stock,

or condition or state, to another.

The behavior of the model is assessed, in part, by comparing simulated output to major

“reference modes,” which are typically historical trends and future anticipated outcomes over

a specific time horizon for important constructs in the model (e.g., HIV incidence or preva-

lence). Reference modes may also depict hypothesized patterns or behaviors over time for

unmeasured constructs, such as the level of stigma in the community. Once the model is

deemed adequate in terms of its scope and purpose by participating stakeholders, and once it

passes fundamental structural and behavioral (pattern) tests, it can be used to compare and

contrast various simulated policy or intervention solutions [40].

Study design

Our research team conducted a 3-year study (R01-MH103176; 2015–2018) using mixed meth-

ods and GMB to examine barriers and facilitators to HIV prevention and care in a three-

county area in central Connecticut [39]. Study methods included group and individual inter-

views with HIV medical and social service providers and PLWH about barriers and facilitators

to HIV care delivery, and repeated surveys (baseline, 6-month, 12-month) with a cohort of

PLWH (N = 200) and high risk uninfected persons (N = 56) about their HIV service utilization

and the community context that affects their interactions with the HIV CC. They also included

a series of GMB sessions (described below) to conceptualize and design the SD model of the

HIV CC system. Data from qualitative interviews and surveys informed several components of

the SD model structure [39]. A concurrent 2-year study (R21-MH110335; 2016–2018) pro-

vided resources to translate stakeholders’ visual models (CLDs) into validated stock-and-flow

structures [15, 44, 45], which formed our full computational model of the HIV CC [39].

To design and test the model structure, we engaged a 25-member group representing HIV

community organizations in the region, public and private health institutions, and PLWH in

an iterative, GMB process of systems thinking and SD model development. This “SD Modeling

Task Force” included 5 HIV-positive peer advocates, 5 direct medical service providers, 4 case

managers, 7 directors of community-based service organizations or HIV prevention or sup-

port programs, 3 public health HIV program directors at the state and city levels, and a local

pharmaceutical company community liaison. We conducted an iterative sequence of sixteen

2½-hour monthly GMB sessions over an 18-month period (2017–2018). Stakeholders were

tasked with critiquing and mapping the regional HIV CC system using SD visual modeling

and qualitative narrative [39] to identify both effective services and gaps or disconnects in ser-

vice delivery and to inform model parameterization. Throughout the SD model development

period, we retained all but two Task Force members, and session attendance ranged from 70%

- 100% [39].

All protocols for the protection of human subjects in research were followed during these

studies, which received full review and approval by the Institutional Review Board of the Insti-

tute for Community Research. All study participants and the SD Modeling Task Force mem-

bers provided written informed consent before initiating research activities on this study.

Model conceptualization, calibration and validation

Designing and calibrating the model. Prior to initiating the GMB sessions with the SD

Modeling Task Force, the project’s primary SD modeler (second author) developed an initial

computational (scoping) model of the HIV treatment cascade to represent the HIV CC for the

purpose of demonstration and to initiate the modeling effort. The structure of the scoping

model included the stages of the care continuum, from HIV incidence and undiagnosed status,
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to testing and diagnosis, linkage of PLWH to medical care, engagement in care and on ART,

and achievement of viral suppression. This initial scoping model was parameterized using data

from the CT Department of Public Health (DPH) 2015 HIV Surveillance Report [46] and cali-

brated to reproduce the subsequent two years of epidemiological patterns in the three-county

area.

During GMB sessions, we distilled and refined Task Force members’ narratives and concept

maps to specify and integrate services, programs, and other system contributors [39]. The

structure of the initial HIV CC scoping model was expanded to incorporate the commonly

available healthcare and social service resources (Basic Services, Modules B-E in Table 1 and

Fig 1) and potential or hypothesized community intervention programs (Action Strategies,

Modules F-I in Table 1 and Fig 1) that contribute to system dynamics and health outcomes.

After modifying the initial scoping model and updating initial parameters, we chose start and

end points for a 60-month time horizon (5 years; corresponding to calendar months t0 = 01/

01/2018 and t60 = 01/01/2023). Stakeholder input and deliberation was elicited regarding the

values assigned to initial parameter estimates of stocks and flows, as well as other ancillary var-

iables or cofactors used to formulate model equations. To demonstrate effective SD model per-

formance, we compared base case scenario simulated output for the prior calendar year (2017;

t-12 = 01/01/2017 to t-1 = 12/31/2017) with reported trends over the same period in the catch-

ment area (described more fully below). This technique was also used to resolve any computa-

tional anomalies due to initial parameter values [47].

Model validation process. SD model validation occurs through an iterative process of

model conceptualization, calibration, and simulation, via cycles of deliberation, data input,

review, and decision-making by key stakeholders [24, 45, 48–53]. Our iterative model develop-

ment and revision process focused on four types of model validity.

Structural validation determines that the model has been formulated with accuracy and

adequately represents the model developers’ conceptual description of the system. This was

achieved during iterative GMB sessions for model conceptualization and revision, with sup-

port from the theoretical and empirical literature. Specifically, as we developed the model

designs of each of the subsystems (modules in Table 1), which we derived from Task Force

narratives and from known relationships supported by extant literature on TasP, we presented

them at subsequent meetings for Task Force member deliberation and feedback on model

components and the causal relationships among those elements. Our research team also itera-

tively rechecked variable parameters and formulations for inaccuracies, redundancies, and

omissions to discuss and resolve them during weekly modeling sessions.

Behavioral validation involves assessing the model’s simulated behavior and assuring that it

has sufficient accuracy for its intended purpose over the scope of its intended applicability.

Behavioral validity supports the model’s credibility with stakeholders and others. This was ini-

tiated during the GMB process by comparing simulated reference modes (output graphs) with

epidemiological trend data to assure correct initial calibration to the local context. We exam-

ined preliminary simulation runs iteratively in sessions with the SD Modeling Task Force to

check and re-check the extent to which the model’s behavior (simulated output) conformed to

key assumptions and sources of evidence guiding the study [39]. For example, we compared

simulated output of new infection rates to historical 5-year trends in the catchment area, as

well as state-wide trends in the epidemic as appropriate, both of which have plateaued into a

steady state during the past 4–6 years. Other TasP outcomes calibrated to replicate effective-

ness of the regional HIV CC included the numbers of PLWH engaged in and lost to care over

time and the percent virally suppressed. Parameter estimates derived from these sources were

evaluated by running the model. (We present and discuss this comparison of our base case

simulation to epidemiological reference modes more fully below.)
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Construct validation involves assessing the extent to which the model is supported by rele-

vant theories, frameworks and assumptions underlying the problem of interest. In this case,

we relied on a growing body of literature regarding the concept of TasP, which posits that

infections at the community level can be reduced by identifying all PLWH in the community

and providing them continuous ART to achieve and permanently maintain viral suppression,

thereby reducing “community viral load” [54, 55]. This literature focuses on community, orga-

nizational, and individual level factors that facilitate moving PLWH quickly through all stages

of the HIV CC (i.e., minimizing delays in achieving viral suppression), and retaining them in

medical care over time [4, 8, 56, 57].

Data validation ensures that the data (and/or special knowledge) necessary for model for-

mulation and calibration (capturing past trends), evaluation (predicting future trends), and

application (virtual experiments and policy analyses) are adequate and reliable for the intended

purpose of the model. Use of primary and secondary data, literature review, and stakeholders’

best estimates are common practices in the parameterization of SD model components [58].

This was assured through our use of key regional epidemiological and health services utiliza-

tion data, including CT DPH surveillance data (e.g., state reportable viral load counts of

PLWH in care, treatment cascade data, linked to care and late testing rates, etc. [46, 59]) and

Ryan White health services data (e.g., case management, housing, and transportation needs,

and gaps in substance use treatment and mental health services [60]). These sources generally

use metrics commonly used state-wide and nationally [61–63], thereby increasing generaliz-

ability and potential applicability of the SD model beyond the geographic region in which it

was developed.

We also analyzed qualitative and quantitative data from our concurrent study to identify

variables for the model and parameters for some variables. For example, data from the study’s

cohort provided estimates for some transition rates of PLWH through care continuum stages

and global measures of perceived external stigma. Task Force members’ experiential knowl-

edge of the service delivery process and other contextual factors that have no known or stan-

dard metrics provided a means to parameterize initial (starting) values of other variables, such

as time delays, caseloads, missed appointment rates, and community attitudes like medical

mistrust and HIV knowledge, among others.

HIV Infection and treatment as prevention (Module A)

Causal Loop Diagram (CLD)

Module A reflects the main structure of the HIV CC model. It represents the significance of

delays and feedback loops in the HIV CC system that could diminish or improve community-

level health outcomes over time. The conceptual design of this structure, which reflects TasP

[4, 8], is represented by the CLD in Fig 2.

This SD conceptual model comprises five feedback loops evident in the CLD. The “Risk/

Infection Loop” (R1) is a reinforcing feedback loop representing the rate of infection of people

in the local population who are at risk. As more of the at-risk population is infected but has

not yet achieved viral suppression, HIV incidence rises. This, in turn, increases the likelihood

of people being at risk of exposure and infection. This reinforcing feedback loop can only be

slowed by reducing HIV incidence through prevention efforts, including TasP. The “HIV

Treatment as Prevention Loop” (B1) is a balancing feedback loop. In this loop, undiagnosed

HIV infected people become diagnosed, linked to care, in medical care, on ART, and adherent

to ART, thereby achieving viral suppression, resulting in lower HIV incidence [4, 56, 64]. The

reinforcing “HIV Treatment Cascade Loop” (R2) begins with HIV incidence and undiag-

nosed PLWH being diagnosed and linked to care, but then becoming lost to care and non-
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adherent to medication. This likely results in high “community viral load” [54, 55] and high

potential for increased HIV incidence. Preventing this treatment cascade is the goal of the

whole HIV CC system and community efforts to support and care for PLWH. The balancing

“Lost to Care Loop” (B2) reduces the total number of PLWH in the care system, as does the

balancing “Mortality Loop,” (B3) representing the death rate of PLWH.

The CLD additionally depicts two kinds of community resources outside direct HIV medi-

cal care services that contribute to system outcomes. These include Basic Services, such as

Ryan White medical case management, housing, substance use treatment, and mental health

services. These community resources are expected to increase the rate of PLWH being linked

to medical care and the number who achieve and maintain viral suppression by keeping them

on their medications and preventing them from becoming lost to care. In addition, many com-

munities conduct evidence-based and other community interventions to supplement and

improve the HIV CC system. These may include community and peer programing designed to

support PLWH and their families by increasing HIV awareness and reducing stigma and med-

ical mistrust at the community level. These hypothetical Action Strategies are expected to keep

PLWH on their medication and reduce the number lost to care, as well as increase overall

community support for and improve wellness of PLWH and their families.

Stock-and-flow diagram

Two linked computational stock and flow components of the HIV Infection and Treatment as

Prevention Module are shown in Figs 3 and 4. In these diagrams, stocks are represented by

boxes, and flows are represented by uni-directional or bi-directional pipes with valves symbol-

izing regulators of speed or volume into or out of the stock. Converters, or auxiliary variables,

(circles) are linked to stocks, flows, and each other (indicated by directional arrows) in under-

lying equations that generate the inter-relational system dynamics over time, such as rates of

flow, delays, and accelerators or decelerators that contribute to dynamic system outputs.

Every stock has an initial value based on data or information used to define that variable at

a specific starting time point for the catchment area. All model parameters are held constant

throughout the simulated time horizon. Each flow in the model is calibrated with a formula

Fig 2. Causal loop diagram: HIV treatment as prevention. This CLD shows two reinforcing feedback structures (R1

and R2) and three balancing feedback structures (B1, B2 and B3) that collectively represent HIV burden in the

community, in relation to basic services and action strategies that serve to foster access to HIV care, use of

antiretroviral therapy (ART), and HIV testing. Positively associated connections (+) indicate variables that change in

the same direction as each other; negatively associated connections (-) indicate variables that change in the opposite

direction as each other.

https://doi.org/10.1371/journal.pone.0230568.g002
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that factors in either a time variable (e.g., number of persons per month) or a proportion vari-

able (e.g., proportion of PLWH in a particular state who move to the another state), or both,

and may also include other factors assumed to affect those rates of change.

The full set of initial parameters and formulas for Module A is included in the S1 Table in

the supplemental materials of this article. Some factors have been imported into this module

from other modules in the full HIV CC SD model listed in Table 1, where they are being gener-

ated by the complex dynamics in those subsystems. These and all variables in the stock and

flow models in each of the nine modules are available in similar tables in our online repository

(https://github.com/mweeks56/ICR_HIV_Care_SDM) and on the project’s protocols website

at dx.doi.org/10.17504/protocols.io.bcm6iu9e.

To begin the flow of people through the HIV Infection and Treatment as Prevention mod-

ule, the Population and HIV Incidence subsection (Fig 3) generates the HIV incidence rate

from the total population in the catchment area. Because of the greater likelihood of having a

transmission encounter where HIV is more prevalent, we divided the total population into

those living in a locale with high HIV prevalence (defined as>500 PLWH per 10,000 resi-

dents) and those living in low HIV prevalence areas. In our catchment area, two cities met the

criterion of high prevalence (16.2% of the total population in the catchment area), and the

remainder of the population lives in low prevalence areas. These two stocks have the same in-/

out-migration rates as the total population for the purpose of our base case scenario.

An additional outflow from these stocks calibrates the monthly rate of infection, which is

driven by three key variables in the model: the “risky contacts per month” in high and low

prevalence areas, the “per contact risk of HIV infection,” and the “proportion of PLWH who

are VS [virally suppressed] among all PLWH.” Risky contacts per month is set at .009 in high

Fig 3. Stock-and-flow diagram: Population and HIV incidence (Module A, partial). Depicts total population in the

catchment area, disaggregated into ‘high’ and ‘low’ HIV prevalence communities, and the factors driving HIV

infection, or incidence, over time.

https://doi.org/10.1371/journal.pone.0230568.g003
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prevalence areas and .003 in low prevalence areas (per 10,000 risky encounters, in a ratio of 3:1

high: low; risky contacts in high prevalence areas is discussed in more detail below.) Per con-

tact risk of infection is set at .0049 in both types of settings, calibrated as the mean likelihood

of infection from any kind of sexual and injection risk, as developed by the CDC [65]. The pro-

portion of all PLWH who are VS is a dynamic variable generated by model simulation, formu-

lated as diagnosed PLWH known to be virally suppressed in the numerator (initial value in the

catchment area is 0.65 of diagnosed PLWH by 2017 [59], see S1 Table) and the total number of

diagnosed plus estimated undiagnosed PLWH as the denominator. Taken together, the HIV

infection rates in high plus low prevalence areas generate the HIV infection rate for the total

model (see Fig 4).

The flows in Fig 4, the HIV Treatment Cascade subsection of Module A, represent the

number of PLWH per month who transfer from one status along the cascade to another. The

HIV infection rate, generated in the Population and HIV Incidence subsection (Fig 3), begins

the flow of PLWH into the treatment cascade. HIV incidence in our base case scenario was cal-

ibrated to produce the number of new cases in the catchment area documented in state surveil-

lance, with the addition of the estimated rate of undiagnosed infected. To estimate

undiagnosed PLWH, the CT DPH uses a procedure adopted by the U.S. CDC based on sur-

veillance data and CD4 counts [66, 67]. By the end of 2016 in CT, the annual estimated diag-

nosed PLWH was 90.2% (CI 77.9–100%), and preliminary data through 2018 indicated 90.7%

(CI 78.8–100%) [67]. Therefore, we applied the state estimate of 10% undiagnosed to produce

the total number of new infections for our catchment area (see S1 Table).

Incidence feeds into the stock of undiagnosed PLWH, who are then separated into two

important outflows, the HIV late test positive rate and the HIV early test positive rate. Late

testing is defined as having received an AIDS diagnosis concurrent with or within 12 months

of an HIV diagnosis, reported as 22% of newly diagnosed in CT in 2017 [46]. Late testing is a

significant problem for the HIV CC because of the high likelihood that late testers will unwit-

tingly spread the virus over a longer period of time and because their burden of disease and

mortality outcomes are significantly worse than for early testers [68]. We used the “ghosting”

tool in Stella Architect1, whereby a variable in one module can be brought into a formulation

in another, in order to import the HIV testing rate in the catchment area from Module B, HIV

Prevention and Testing. This rate was approximately 8.1 persons per month, or 97–100 new

diagnoses per year matching the 2012–2017 average number of annual new infections in the

area (range: 73–120, M = 97.33/year).

Fig 4. Stock-and-flow diagram: HIV treatment cascade (Module A, partial). Newly infected persons transition

through the treatment cascade over time, moving from being UNDIAGNOSED, to DIAGNOSED, to ENGAGED IN

CARE, to achieving VIRAL SUPPRESSION.

https://doi.org/10.1371/journal.pone.0230568.g004
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Linking diagnosed PLWH to their initial medical appointment is a significant transition in

the HIV care continuum, and one subject to substantial delays in the past. However, new CDC

“test and treat” protocols to start medication for newly diagnosed PLWH immediately [69,

70], coupled with U.S. HRSA-funded social supports such as Ryan White medical case man-

agement, have dramatically reduced wait time between HIV diagnosis and an initial medical

visit in Connecticut and many other states over the past two decades. Case management ser-

vices have long been demonstrated to reduce time between HIV diagnosis and linkage to care

and facilitate retention in care [63, 71]. The linked to care rate (defined by the CDC as having

had an initial CD4 and VL count reported to the state DPH), is generated by dynamics pro-

duced in Module C, Medical Care Services, and imported into this module. This linked to care

rate was applied to both early and late testers, which were divided according to the proportion

of late testers in the catchment area. These in-flows feed the stock of PLWH Engaged in HIV

Medical Care, the primary goal of the care continuum needed to achieve viral suppression in

all infected persons. PLWH who pass through all earlier stages of the treatment cascade cannot

return to a previous stage, though they might remain in any one stage (stock) for a significant

period of time. Death (mortality rate) is the only way PLWH are permanently removed after

having been engaged in care. The number in the Engaged in Care stock is generally expected

to rise for some time to come, with more newly infected coming in and efficacious ART treat-

ment significantly extending the lifespan of infected persons, thereby slowing the outflow

through mortality.

A portion of those engaged in care are also represented in the stock of PLWH using ART,

the inflow into which is determined by the expected number of PLWH using ART multiplied

by the time it takes to start ART. Further, a proportion of the PLWH Engaged in Care who are

using ART is represented in the stock of virally suppressed (VS) PLWH. The rate of flow into

that stock is determined by the estimated proportion who are adherent to their medication

regimen and the time it takes to become VS after starting ART (see S1 Table for all these

parameters and formulas).

However, despite initial engagement in care, many PLWH do not achieve or cannot main-

tain VS. Protocols for when to initiate ART and protocol implementation continue to vary

despite CDC recommendations to begin treatment immediately upon diagnosis, as well as

increasingly popular state and community campaigns to promote TasP (e.g., U = U:

Undetectable = Untransmittable) [72] and setting the goal of treating 100% of PLWH. Further,

patients face many challenges and limitations to lifelong consistent adherence to ART [73].

Bidirectional flows represent net change of PLWH using ART and PLWH who are VS. Signifi-

cant federal, state and local resources are brought to bear on keeping patients on their medica-

tion and attending medical appointments to achieve and sustain VS. This component of the

HIV CC illustrates the fundamental assumption of TasP, i.e., that medical engagement and

treatment adherence contribute to the goal of achieving VS in all PLWH, which is expected to

reduce new HIV incidence at the community level.

The biggest challenge to achieving the benefit of the HIV care continuum on TasP is the

problem of patients being lost to HIV medical care and therefore assumed to be non-adherent

to ART and likely to increase community viral load. The two opposing flows between the

stocks of Engaged in Care and Lost to Care represent the potential for someone who has been

linked to care initially to move back and forth between these two states. The lost to care rate

that feeds the stock of lost to care patients, the rate of their return to care, and the dynamics

associated with these processes, are imported here from Module C, Medical Care Services.

There, they are driven by several factors, including the “Effect of unmet service needs on risk

of being lost to care” (imported from the four Basic Services Modules B-E) and the “Effect of

action strategies on the risk of being lost to care” (imported from Module G, Peer Advocacy,
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and Module I, Mobilizing Community Initiatives). (Details on these inputs from each of these

modules can be found on our on-line repository and protocol websites indicated above.)

Taken together, these positive and negative dynamics have significant impact on the success of

the HIV CC to achieve viral suppression in all PLWH by keeping them in medical care over

time.

TasP dynamics

As shown in the stock-and-flow diagram (Fig 4), the primary HIV TasP balancing feedback

loop (B1 in Fig 2) can be seen in the flow of the newly infected (HIV incidence rate) into the

stock of undiagnosed PLWH, through early or late diagnosis and linkage to care into the stock

of PLWH engaged in HIV medical care and viral suppression. Success of the system contrib-

utes to a higher proportion of VS PLWH in the community and ultimately a reduction in the

HIV incidence rate. We represent the proportion of VS PLWH in two ways. One is described

above, in which PLWH in the Virally Suppressed stock provides the numerator and all stocks

of diagnosed and undiagnosed PLWH along the care continuum form the denominator, the

full circle of the balancing HIV CC feedback loop. We also represented the proportion VS of

those diagnosed with HIV (absent the undiagnosed), which is the figure reported by state

departments of health, to assist with validation of our model in comparison to known trends

in VS.

Also evident is the reinforcing treatment cascade feedback loop (R2 in Fig 2). This is the

result of the “vicious cycle” of being lost to care on ART adherence and the number of PLWH

who are VS. This contributes to an overall reduction in the proportion VS among all infected

persons, and potentially to increased HIV incidence.

Pattern tests: Comparison of reported to simulated reference

modes for key variables

The computational model structure allows for user specification of key epidemiological

parameters and other conditional variables in the model to reflect local conditions at the start

of the intended time horizon. As indicated above, our SD model parameters and equations

were calibrated to simulate the base case scenario over a time horizon of 60 months (5 years;

corresponding to calendar months t0 = 01/01/2018 and t60 = 01/01/2023). The prior calendar

year (2017; t-12 = 01/01/2017 to t-1 = 12/31/2017) was used to confirm model production of

local HIV CC outcomes by comparing base case simulated output with reported data trends

over the same period. As indicated above, the prior year was also used to resolve any computa-

tional anomalies due to initial parameter values ahead of T0. All initial parameter values were

derived from publicly available demographics and CT HIV surveillance data for 2015–2017

[46].

Fig 5 presents line graphs in four panels for: (a) HIV infection rate, (b) Undiagnosed HIV

positive persons, (c) HIV test positive rates, and (d) HIV-related mortality. By observation,

simulated HIV infection rates at T-1 differ from reported HIV incidence by 0.7 persons/

month, with simulated output at 9.3 persons/month and reported data at 8.6 persons/month.

The flat pattern and minor difference in magnitude suggest that the model performs well for

incidence, with the slightly higher simulated output reflecting inclusion of those persons who

are living with HIV but who have yet to be diagnosed. Applying CT reports indicating that

estimates of the number of undiagnosed persons is approximately 10% of all know PLWH, our

model is well calibrated, showing no difference in pattern or magnitude for this category. Like-

wise, simulated data for both early and late HIV positive test rates is negligibly dissimilar.

Notably, our model over simulated HIV mortality relative to reported data (+3 persons/
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month). This over-estimate may reflect that our model includes deaths among persons still

undiagnosed whose cause of death may have been misclassified.

Fig 6 presents line graphs in four additional panels for: (a) PLWH engaged in HIV medical

care, (b) PLWH engaged and virally suppressed, (c) PLWH lost to HIV medical care, and (d)

the proportion of PLWH who are virally suppressed (among diagnosed only). Again by obser-

vation, we see that simulated to reported data trends are negligibly different in pattern and

magnitude for all featured variables.

Sensitivity analysis: Proportion of PLWH who are virally suppressed

To further validate model behavior associated with the effect of TasP, we conducted a sensitiv-

ity analysis comprising three key parameters for which there is limited evidence, namely: (1)

Risky Contacts per Month in High Prevalence Communities, (2) the Proportion of PLWH

Fig 5. Pattern tests: Comparison of reported to simulated reference modes, 1-Jan-2017 to 1-Jul-2018 (T-12 to T6).

(a) HIV infection rate; (b) Undiagnosed HIV positive persons; (c) HIV test positive rate; and (d) HIV-specific

mortality.

https://doi.org/10.1371/journal.pone.0230568.g005

Fig 6. Pattern tests: Comparison of reported to simulated reference modes, 1-Jan-2017 to 1-Jul-2018 (T-12 to T6).

(a) Engaged in care; (b) Engaged in care and virally suppressed; (c) Lost to care; and (d) Proportion virally suppressed.

https://doi.org/10.1371/journal.pone.0230568.g006
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Engaged in Care who are adherent to ART, and (3) the Initial Proportion of No Shows Lost to

Care (see Table 2). The first variable is in the Population and HIV Incidence segment of Mod-

ule A (Fig 3), the second is in the HIV Treatment Cascade segment of Module A (Fig 4), and

the third is in Module C, Medical Care Services (not shown).

Our base case value for “Risky Contacts per Month in High Prevalence Areas” (.009 per-

sons/person/month) is the rate of HIV exposure among residents living in a high HIV preva-

lence community within our targeted catchment area. The base case estimate was determined

via model calibration to reflect known historical HIV diagnosis rates for the total catchment

area (8.6 persons/month) and known difference in diagnosed cases of HIV in high to low prev-

alence communities (we used a 3:1 ratio for high: low HIV prevalence communities). Our base

case value for the “Proportion of PLWH Engaged in Care who are Adherent to ART” (95%) is

the expected proportion of virally suppressed PLWH out of all PLWH who were engaged in

care in the catchment area (Hartford TGA) in 2017. This estimate is reported by the CT DPH

[59]. Finally, the base case value for the “Initial Proportion of No Shows Lost to Care” was esti-

mated to be 60% by our Task Force members. This stakeholder-estimated proportion applies

HRSA’s definition of lost to care (not having seen a medical provider within a 12-month

reporting period) as well as local medical provider protocols and clinical experiences (fre-

quency of missed appointments of PLWH patients who have been scheduled for 6-month or

12-month clinical visits).

We selected upper and lower bounds for each parameter included in the sensitivity analysis

around our base case estimate (see Table 2). The upper and lower bounds for “Risky contacts

per month in high prevalence areas” (contacts/person/month) was set to +/- 10% of the base

case value. For the “Proportion of PLWH Engaged in Care who are ADHERENT to ART,” the

upper bound was set to 100% and the lower bound was set to -10% of the base case value

(85%). Similarly, for “Initial Proportion of No Shows Lost to Care,” upper and lower bounds

were set to +/- 10% of the base case value. Decisions regarding the range for each parameter

were based upon available reports and opinion of participating public health experts.

Fig 7 displays a 95% confidence interval based upon N = 27 sample runs (3 parameters x 3

values [low, base case, high] x 3 combinations per value) for the variable “Proportion of

PLWH who are Virally Suppressed (VS) among Diagnosed PLWH.” Results indicate that sim-

ulated outcomes are relatively stable across this set of sample runs, with base case values rang-

ing between 63.7% and 78.2% (Mean = 70.9%) by Month T60.

Discussion and model applications

A growing body of literature affirms the benefits of using participatory SD modeling and GMB

in partnership with relevant stakeholders to examine and seek strategies to address complex

problems like the HIV epidemic [32, 74–76]. As described above, we followed best practice

protocols widely acknowledged by the SD modeling community for iterative model develop-

ment and validation in partnership with our community stakeholder SD Modeling Task Force

[45, 48, 51]. Our GMB sessions were designed to systematically build segments of the model

structure, based on group narrative of the HIV CC system and healthcare and service delivery

Table 2. Parameters selected for sensitivity analysis of proportion of PLWH who are virally suppressed.

Parameter Lower Base case estimate Upper

Risky contacts per month in high prevalence areas .008 .009 .010

Prop of PLWH Engaged in Care who are ADHERENT to ART .850 .950 1.0

Initial Prop of No Shows Lost to Care .500 .600 .700

https://doi.org/10.1371/journal.pone.0230568.t002
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processes, and to critique that model structure as it was being built [39]. As Task Force mem-

bers gained more SD modeling knowledge and insight over time, their input into model

conceptualization improved greatly. GMB scripts solicited their input and critiques of draft

models and the need for and utility of adding or removing specific variables, defining new

feedback structures, or checking equation dimensions and parameter estimates. Reliability of

model behavior was tested through repeated simulations of the base case scenario until it

approximated current epidemiological trends in the catchment area and other system dynam-

ics that resonated with participants and their experiences with the HIV care and support

system.

An important aspect of model construct validity hinges on acceptance of underlying

assumptions about TasP, which is an increasingly accepted framework, both in the public

health literature and in communities, for understanding and improving community level

efforts to control the HIV epidemic [77]. The HIV CC SD model is designed to include all key

constructs relevant to the concept of TasP, including those that define the basic care contin-

uum and treatment cascade, as well as typically available basic services for HIV testing, medical

care, case management, and supportive housing, substance use treatment, and mental health

care. It also includes Task Force identified and commonly available community level interven-

tions designed as optional action strategies, which can be left inactive or turned on to simulate

the effects of these types of programs when implemented in the local area.

Data validity was assured by relying heavily on DPH surveillance reports and available data

on Ryan White and other resources that support PLWH in the catchment area, as well as our

own primary data of local HIV care service utilization, time delays, and experiences of stigma

from our study’s cohort participants. A series of tests of our base case scenario against known

epidemiological and service utilization trends and patterns provided confidence in our model

structure and behavior. Variables with no known data were deliberated to seek a method of

calibration that was consistent with Task Force members’ real world experiences. Selected

parameters with greater uncertainty were used in sensitivity analyses; these analyses indicated

Fig 7. Sensitivity analysis. 95% Confidence Interval about the Proportion of PLWH who are Virally Suppressed (VS)

among Diagnosed PLWH. Three parameters: (1) Risky contacts per month in high prevalence areas (range: .008 –.010;

base case value = .009); (2) Prop of PLWH Engaged in Care who are ADHERENT to ART (range: .85–1.0; base case

value = .95); and (3) Initial Proportion of No Shows Lost to Care (range: .50 –.70; base case value = .60). Sample runs: 3

parameters x 3 values x 3 combinations = 27.

https://doi.org/10.1371/journal.pone.0230568.g007
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that the model performed well for a wide range of plausible values for the catchment area. This

comprehensive approach to model data validation helped our research team and the commu-

nity SD Modeling Task Force to feel confident in the content, structure, parameters, and out-

puts of the model.

The significance and value of a validated SD model hinges on its usability and usefulness by

community stakeholder groups. In general, SD models can be used for three main purposes: 1)

for stakeholders to learn about system complexity; 2) to identify drivers of system dynamics

and leverage points expected to generate desired system change; and 3) to test strategies and

seek optimal resource allocations through simulation in order to deliberate priorities and pref-

erences for improving system outcomes.

The construction and validation of the HIV CC SD model makes it possible for stakehold-

ers to propose, run simulations of, and test potential impacts of various hypothetical scenarios

representing intervention strategies and other leverage expected to increase viral suppression

in PLWH and reduce HIV incidence at the population level. An unlimited number of scenar-

ios can be hypothesized and simulated. Some could include modifying parameters of the basic

epidemiological variables, revising time estimates of moving PLWH through stages of the HIV

care continuum, or changing other proportional variables set by the community (e.g., those

listed in S1 Table in the appendix and other variable tables on the project’s online repository

and protocol websites indicated above). These allow tailoring the base case scenario to later

time points in the same catchment area or local conditions in other communities. Other simu-

lations are done for the purpose of generating “what if” scenarios [27, 32, 78, 79] to examine

the effects of changes expected to achieve system improvements. These could include pro-

grammatic changes, such as increasing available human resources for provision of basic ser-

vices, like case managers, early intervention specialists, or medical providers, in the basic

services modules. Or they could include initiating (“turning on”) or strengthening peer and

community programs and other hypothetical “action strategies” to increase support for

PLWH and reverse the impacts of stigma and other negative community norms, among other

possibilities. “What if” scenarios can be initiated at the start of the run, part way into the run,

concurrently, or sequentially to examine impacts on key health indicators or test various strat-

egies or combinations anticipated to improve health outcomes. Decisions on which scenarios

to simulate are best achieved through deliberation by a stakeholder group, whose common

goal it is to improve system functioning [80, 81].

With the option of locally tailoring key modifiable variables in the model, the whole HIV

CC SD model is designed to be used in other communities besides the one in which it was

developed. Further, our systematic comparison of simulated output with reported trend data

on key HIV CC metrics provides a viable method to assess the degree to which model tailoring

can improve applicability and generalizability of the whole model structure to other communi-

ties. The primary benefit of the model is to foster deeper understanding about the feedback

that drives complex community-based HIV care delivery in any community.

Nevertheless, generalizability of the model has several limitations. First, confirmation of the

model’s behavioral validity is limited until it can be tested in a setting other than the one in

which it was originally calibrated. Additionally, this model focuses on the HIV CC service sys-

tem at the community and total population level. Many communities and potential model

users are interested in specific experiences of subpopulations with disproportionate risk or

rates of infection and other disparities. Though it may be possible to calibrate the model to

examine one or another specific subpopulation, it is not intended for that purpose, but rather

to illustrate and simulate the dynamics of the whole community’s effectiveness in achieving

TasP and overall care for PLWH in that community. Further, as indicated above, some vari-

ables have no known metric, and are informed by best estimates provided by the literature or
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community experiences and perceptions. Our initial tests of the model through comparison of

the DPH documented HIV epidemiological trends with our simulated base case scenario and

the sensitivity analyses we conducted have helped to affirm that many of these “soft” variables

(e.g., risky contacts per month in high/low prevalence areas, proportion of PLWH adherent to

ART, proportion of no-shows who are lost to medical care, etc.) are within reasonable approxi-

mation of real world conditions in the local setting. Finally, simulation runs can forecast likely

trends and changes in direction of key system variables, but the number of interacting factors

and potential for exogenous factors to impact system dynamics suggests caution for predicting

future system changes.

Model application is often limited by the technical complicatedness of its use and complex-

ity or ambiguity of modeling results. User friendly tools, such as apps, dashboards, and other

model interfaces designed to facilitate layperson use of the simulation model, are often needed

to make SD models available to publics that can benefit from their use. At the time of this writ-

ing, we were in the initial phase of developing a user interface with features built into Stella

Architect1 to help streamline public use of our HIV CC SD simulation model. We were also

testing application of the model in collaboration with a regional planning council to assist

them with their priority-setting and strategic planning needs. We anticipate learning more

about the process, benefits, and limitations of using this model in a community group plan-

ning process and its potential applications for others.

Our experiences with building, validating, and testing the use of this SD simulation model

of the HIV CC service system has demonstrated the importance of engaging diverse stakehold-

ers in a process of visualizing, critiquing, and seeking ways to comprehend the vast complexity

of a healthcare delivery system. Such broad and deep vision is necessary to identify game

changing actions to achieve the elimination of an epidemic like HIV.

Supporting information

S1 Table. HIV care continuum system dynamics model variables, definitions, and calibra-

tions: HIV infection and treatment as prevention module.
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