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Abstract: Here, the constituents of coffee with estrogenic activity are summarized by a comprehensive
literature search, and their mechanisms of action for their physiological effects are discussed at the
molecular and cellular levels. The estrogenic activity of coffee constituents, such as acids, caramelized
products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids), and others, such
as volatile compounds, was first evaluated by activity assays, such as animal tests, cell assay,
ligand-binding assay, protein assay, reporter-gene assay, transcription assay, and yeast two-hybrid
assay. Second, the health benefits associated with the estrogenic coffee constituents, such as bone
protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement of
menopausal syndromes, were summarized, including their potential therapeutic/clinical applications.
Inconsistent results regarding mixed estrogenic/anti-estrogenic/non-estrogenic or biphasic activity,
and unbeneficial effects associated with the constituents, such as endocrine disruption, increase the
complexity of the effects of estrogenic coffee constituents. However, as the increase of the knowledge
about estrogenic cell signaling, such as the types of specific signaling pathways, selective modulations
of cell signaling, signal crosstalk, and intercellular/intracellular networks, pathway-based assessment
will become a more realistic means in the future to more reliably evaluate the beneficial applications
of estrogenic coffee constituents.

Keywords: coffee constituents; phytoestrogens; estrogenicity; signal transduction pathway;
estrogen assay

1. Introduction

Coffee is the third most abundant beverage in the world after water and tea, and is prepared
by brewing roasted coffee beans; most often of the Coffea arabica (arabica coffee) and C. canephora
(robusta coffee) species [1]. Its consumption has been increasing worldwide (162 million bags in the
2017 to 2018 period [2]) following the increase in its trade because of increasing needs based on taste,
aroma, and health benefits. Coffee constituents, except water, are classified into the following materials:
Acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds, oil (lipids),
and others, such as volatile compounds (Table 1). Dried green coffee beans contain carbohydrates
(59–62%), lipids (10–16%), proteins (10%), chlorogenic acids (7–10%), minerals (4%), aliphatic acids
(2%), caffeine (1–2%), trigonelline (1%), and free amino acids (<1%), but roasting coffee beans reduces
the amounts of carbohydrates, proteins, chlorogenic acids, and free amino acids [3] and increases those
of alkaloids (mostly caffeine), minerals, oil, and aliphatic acids [4]. In contrast, there is no change in the
amount of lignin [4]. As a result, roasting coffee beans changes their bioactivity, such as the induction
of apoptosis [5] and alteration of gene expression [6].
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Table 1. List of major coffee constituents.

Chemical
Amount (%w/w)

Green a Roasted a Roasted b

Acids
Chlorogenic acids 5.5–8.0 1.2–2.3 2.5
Quinic acid 0.7
Aliphatic acids (citric acid, malic acid, lactic acid, acetic acid, etc.) 1.5–2.0 1.0–1.5 1.5

Caramelized products 0 16.0–17.0 23.2
Humic acids, melanoidins, etc.

Carbohydrates
Sucrose 0
Reducing sugars (glucose, fructose, arabinose, etc.) 0.3
Polysaccharides (glucan, galactan, araban, mannan, etc.) 50.0–55.0 24.0–39.0 32.0
Pectin (galacturonon) 3.0

Lignin 2.0
Minerals 3.0–4.2 3.5–4.5 5.0

K, Ca2+, Mg2+, etc.
Nitrogenous compounds

Alkaloids (caffeine, theobromine, theophylline, etc.) 0.9–1.2 ~1.0 1.4
Amino acid 2.0 0 0
Nicotinic acid 0.015
Protein 11.0–13.0 13.0–15.0 10.0
Trigonelline 1.0–1.2 0.5–1.2 0.4
Others (choline, serotonin amides, etc.)

Oil 12.0–18.0 14.5–20.0 18.0
Diterpene alcohols/esters, phosphatides, sterols, tocopherols, triglycerides,
Tryptamine derivatives, etc.

Others
Volatile compounds (pyridines, quinolines, pyrazines, pyrroles, etc.) 0.1

The list of chemicals was made from the information in Clarke (1987) [4] and Viani (1988) [7], where typical
compositions of green and roasted arabica coffee are shown (a Smith, 1985 [8]; b Clarke, 1987 [4]). The chemicals
included in the respective category are detailed in Clifford (1985) [9] (chlorogenic acid), Woodman (1985) [10]
(aliphatic acids), Trugo (1985) [11] (carbohydrates), Clarke (1985) [12] (minerals), Macrae (1985) [13] (nitrogenous
compounds), Folstar (1985) [14] (oil), and Dart and Nursten (1985) [15] (volatile compounds).

Coffee contains hundreds of biologically active compounds, which result in different outcomes
on human health, as revealed by epidemiological and clinical studies. For example, an inverse
association between coffee consumption (3 to 4 cups/day) and all-cause mortality was observed, in
addition to lower risks for cardiovascular diseases, such as coronary heart disease; congestive heart
failure; hypertension and stroke; neurodegenerative diseases, such as Parkinson’s and Alzheimer’s
diseases; liver diseases, such as hepatic steatosis and fibrosis; inflammatory diseases; and cancer [16–21].
Therapeutic outcomes of coffee were also observed, such as improvements in diabetes, metabolic
syndrome, depression, obesity, and asthma control [20,22], and in slowing the progression of sarcopenia
and promoting the regeneration of injured muscle [23]. Moreover, improvements can be observed in
many tissues/organs, such as bone, heart, kidney, liver, lung, the nervous system, and the reproductive
system/endometrium [24,25]. However, coffee may increase the risks of anxiety; insomnia; headaches;
tremulousness; palpitations and hypertension, especially for heavy drinkers; the risk of fracture in
women; and the risk of low birth weight and preterm birth when consumed during pregnancy due to
the high caffeine content or the lack of appropriate metabolic enzymes [17,20,21,26,27]. On the other
hand, studies in humans and animal models have produced controversial results about the safety and
beneficial roles of caffeine, which may be due to the population, type and dose of caffeine, and low
statistical power [28]. The accumulation of data from epidemiological and clinical studies and their
meta-analysis gives more clear views with more statistical stability, such as the contribution of smoking
to the association between coffee consumption and risk of hypertension [21], and the association of
coffee consumption with all-cause/cardiovascular disease mortality [29], although there are limitations
to such analyses, attributable to genetic variations among the individuals investigated, their habitual
changes, and the duration effects of coffee consumption [29].
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The beneficial effects of coffee could be mediated by varying mechanisms, such as inducing
autophagy, improving insulin sensitivity, stimulating glucose uptake, slowing the progression of
sarcopenia, and promoting the regeneration of injured muscle [23], and pathways, such as the
AMP-activated protein kinase (AMPK) pathway for metabolic control [30] and the Nrf2/antioxidant
regulatory element (ARE) pathway for the oxidative stress response [26]. Anti-angiogenic and
anti-inflammatory properties of coffee could be partly mediated by the inhibition of cyclooxygenase-2
(COX-2) expression and monocyte chemoattractant protein-1 (MCP-1) secretion [31]. The effects of
coffee are attributable to biologically active compounds, such as caffeine, diterpenes, chlorogenic
acids, and melanoidins, although their amounts vary depending on the coffee species, roasting degree,
brewing method, and serving size [32], and the nutritional constituents, such as milk and sugar, added
to coffee may cause additional effects [22]. On the other hand, coffee contains potentially harmful
compounds, such as acrylamide, which is formed during the process of roasting at high temperatures
by the Maillard reaction and may have carcinogenic activity [33].

A number of natural chemicals have been reported to exhibit estrogenic activity, where effects, such
as physiological/endocrinological, neurological, developmental, and behavioral effects, are combined
unexpectedly or intentionally with hormone activity [34]. Estrogenic chemicals are classified by
structure, such as phenolics, anilines, carboranes, indoles, metalloestrogens, perfluorinated compounds,
phthalates, polycyclic aromatic hydrocarbons, and terpenes/terpenoids, or by the usages and effects,
such as food additives/dietary supplements, pesticides, pharmacological estrogens, plasticizers, and
pollutants [35]. An original idea that estrogen activity is initiated by binding estrogenic chemicals
to the estrogen receptor (ER) via complex mechanisms involving several types of ERs and receptors
other than ERs, along with signal crosstalk and intercellular/intracellular networks, compounds the
complexity of estrogenic activity, resulting in more complex pathways and outcomes. Estrogen may
also act as a mammary-gland carcinogen through estrogen metabolites, and the signaling pathways for
cell proliferation and apoptosis [36], potentiating estrogenic chemicals to act similarly.

Assays to detect and evaluate estrogenic activity have been developed and classified according
to their mechanisms: Animal tests, cell assays, ligand-binding assay, protein assays, reporter-gene
assays, transcription assays, and the yeast two-hybrid assay (Table 2; for details, see Kiyama, 2017 [37]).
Complex states of the estrogenic activity of chemicals partly originate from the methods or assays
because they sometimes give inconsistent results, which is likely due to the inconsistencies between
assays or conditions, such as temperature, concentrations, and time periods, and even between
researchers employing the same protocols.

Estrogenic activity is mediated by many molecular mechanisms and cell signaling pathways,
such as angiogenesis, ErbB/HER, mitogen-activated protein kinase (MAPK), nuclear receptor,
and ubiquitin/proteasome signaling pathways, and resulting in cell functions, such as apoptosis,
autophagy, cell cycle/DNA damage/cytoskeletal formation, cellular metabolism, chromatin/epigenesis,
development/differentiation, immunology/inflammation response, neurological diseases, and
translational control [35].

Coffee contains a number of estrogenic constituents, although they have not been focused on
previously. Here, estrogenic coffee constituents are summarized in detail to explore future applications
to consider new products as food supplements or new medical applications based on the beneficial
applications of the constituents.
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Table 2. Assays used to detect estrogenic activity.

Assay Category (Symbol)/Description Example a

Animal test (A)

Animal tests quantitate reproductive, developmental and behavioral
effects in animals.

Medaka assay
Zebrafish assay
Rainbow trout assay
Rodent uterotrophic assay
Xenopus assay

Cell assay (C)

Cell assays quantitate cell growth and proliferation.

Cell counter assay
Cell density/viability assay (SRB
assay/AlamarBlue assay/MTS assay/MTT
assay/WST-8 assay)
Dye exclusion method (Trypan blue assay)
E-screen assay
Flow cytometry

Ligand-binding assay (L)

Ligand-binding assays quantitate the receptor–ligand interaction.

Assay with ERs in cells
Assay with ERs in tissues (uterus, etc.)
Assay with recombinant ERs
Assay with Venus fluorescent protein
Competitive enzyme immunoassay
Fluorescence polarization assay
Molecular docking
QSAR

Protein assay (P)

Protein assays quantitate protein amounts and functions.

ChIP assay
ELISA
Immunoassay (ICC, IHC)
Western blotting (ERα/ERβ)
Western blotting (Akt/ERK)

Reporter-gene assay (R)

Reporter-gene assays quantitate the transcription upon ligand-dependent
binding of the receptor to an estrogen response element on DNA.

CALUX assay
GFP-based assay
Luciferase-based assay
MVLN cell assay
YES assay

Transcription assay (T)

Transcription assays quantitate the transcription of ER or marker genes.
DNA microarray assay
Northern blotting
RT-PCR

Yeast two-hybrid assay (Y)
Yeast two-hybrid assays quantitate the ligand-dependent interaction

between the receptor and the transcriptional activator.
GAL4-based assay
Whole hERα-based assay

a The examples are adapted from Kiyama (2017) [37]. For details of estrogenic chemicals analyzed by each assay, see
Kiyama and Wada-Kiyama (2015) [35]. Abbreviations: CALUX: chemically activated luciferase expression; ChIP:
chromatin immunoprecipitation; ELISA: enzyme-linked immunosorbent assay; ER: estrogen receptor; ERK: extracellular
signal-regulated kinase; GFP: green fluorescent protein; ICC: immunocytochemistry; IHC: immunohistochemistry;
MTS: (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); MTT:
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; QSAR: quantitative structure-activity
relationship; RT-PCR: reverse transcription polymerase chain reaction; SRB: sulforhodamine B; WST-8:
(2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium); YES: yeast estrogen screen.

2. Estrogenic Activity of Coffee Constituents

2.1. Estrogenic Activity of Coffee Constituents

The estrogenic activity of coffee constituents has been known for more than 80 years [38].
Although epidemiological studies suggested the toxicity and complications associated with coffee, an
understanding of the constituents responsible for such effects or health-promoting effects has become
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of interest to explore their beneficial applications. Here, the estrogenic activity of coffee constituents is
summarized according to their chemical type.

2.1.1. Acids

Acids affect the taste and flavor of brewed coffee. Coffee contains many aromatic acids, such as
chlorogenic acid and other quinic acid esters containing cinnamic acid/hydroxycinnamic acid, ferulic
acid/isoferulic acid, gallic acid, hippuric acid, sinapic acid, and vanillic acid, and aliphatic acids, such
as acetic acid, citric acid, lactic acid, and malic acid, some of which have been reported to exhibit
estrogenic activity (Table 3, Figure 1).

Chlorogenic acid is an ester of caffeic acid and quinic acid, and was found to exhibit estrogenic
activity [39], although weak [40] or too weak to be detected by other assays [41]. In contrast to quinic
acid, which is a cyclic polyol unlikely to have estrogenic activity, caffeic acid is likely estrogenic,
although this has not been confirmed [42,43]. Estrogen-dependent activities can sometimes appear
as anti-estrogenic activity or modulator activities, as with selective estrogen receptor degraders
(SERDs) and selective estrogen receptor modulators (SERMs), which are shown by a cinnamic acid
ester/moiety [44,45] or caffeic acid phenethyl ester [46,47]. Furthermore, estrogenic/anti-estrogenic
activity of caffeic acid is stronger when an aromatic ring is added by esterification with phenethyl
alcohol [46,47]. Similarly, other acids found in coffee, such as ferulic acid/isoferulic acid [48], hippuric
acid [49], sinapic acid [50], and vanillic acid [51,52], exhibited estrogenic/anti-estrogenic activity. Gallic
acid is a phenolic acid with three hydroxyl groups and may therefore function in the estrogenicity,
as observed for octyl gallate [53]; however, because of its simple structure, its estrogenic activity was
unclear [54,55].

2.1.2. Caramelized Products

Heating sucrose and other polysaccharides in the presence of amino acids, proteins, or acids
produces caramels and colored products with a complex structure, which have been referred to as
humic acids and melanoidins [11]. Although there were no reports regarding the estrogenic activity
of humic acids from coffee, there were some regarding it from other sources, such as plant debris
(Table 3). Humic substances are mainly composed of humic and fulvic acids, and lead to a decrease
in estrogenic activity, as demonstrated in ER-dependent assays [56–58], although the mechanisms
can be explained alternatively by direct interaction between them and estrogens through hydrogen
bonding for chemicals highly rich in phenolic groups and/or π–π interactions for chemicals with greater
aromaticity [59]. On the other hand, a synthetic humic substance containing dominant aromatic and
quinoide structures exhibited estrogenicity [60]. Melanoidins are high molecular weight heterogeneous
polymers that are formed through the Maillard reaction with sugars and amino acids, and add flavor
to foods [61]. Many health-promoting effects, such as those against inflammation, diabetes, and
hypertension, have been reported [3,32], although there have been no reports on the estrogenicity
of melanoidins.
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Table 3. Estrogenic coffee constituents.

Chemical Receptor/Pathway Estro-Genicity a Function or Subject Reference (Assay b)

Acids

Caffeic acid ER E Menopausal
syndrome/Obesity Zych et al., 2009 [42] (A)

Caffeic acid ER E/A Bone protection Folwarczna et al., 2015 [43] (A)

Caffeic acid ER N Breast
cancer/Chemoprevention Nunes et al., 2017 [62] (C, T)

Caffeic acid phenethyl
ester ERβ S Menopausal syndrome Jung et al., 2010 [46] (A, L, R)

Caffeic acid phenethyl
ester ERα/β (crosstalk) S Prostate

cancer/Chemoprevention Tolba et al., 2013 [47] (C, P, T)

Caffeic acid/Ferulic
acid derivatives ER A Breast

cancer/Chemoprevention Serafim et al., 2011 [63] (A, C, P)

Chlorogenic acid ER N Menopausal syndrome Innocenti et al., 2007 [41] (R)
Chlorogenic acid ER E/N Bone protection Folwarczna et al., 2009 [40] (A)

Chlorogenic acid ERβ E Osteoporosis/Bone
protection Zhou et al., 2016 [39] (A, C, P)

Cinnamic acid esters ER A Breast
cancer/Chemoprevention Hostanska et al., 2004 [44] (C)

Cinnamic acid (moiety) ERα S Breast
cancer/Chemoprevention Kieser et al., 2010 [45] (L, P, T)

Ferulic acid ERα (crosstalk) E Breast
cancer/Chemoprevention Chang et al., 2006 [64] (C, P, T)

Ferulic acid ER N Menopausal syndrome Wen et al., 2011 [65] (R, T)

Ferulic acid ERα E Breast
cancer/Chemoprevention Belkaid et al., 2016 [66] (C, P)

Ferulic acid/Isoferulic
acid ER E Menopausal syndrome Stromeier et al., 2005 [48] (C)

Gallate (Octyl) ERα E Alzheimer’s disease Zhang et al., 2013 [53] (A, P)
Gallic acid ER N Endocrine disruption Miller et al., 2001 [54] (R)

Gallic acid ERα/β N Phytoestrogen/Health
benefits Mallavadhani et al., 2006 [55] (L)

Hippuric acid ER E Endocrine disruption Picard et al., 2001 [49] (C, L)
Sinapic acid ER E Metabolic disorders Zych et al., 2018 [50] (A, P)

Vanillic acid ERα/β E Osteoporosis/Bone
protection Xiao et al., 2014 [51] (C, L, P, T)

Vanillic acid ERα A Benign prostatic hyperplasia Jung et al., 2017 [52] (A, C, P, T)

Caramelized products

Humic acids ER A Endocrine disruption Janosek et al., 2007 [56] (R)
Humic acids ER A Endocrine disruption Tang et al., 2014 [58] (Y)
Humic acids ER A Endocrine disruption Bedard et al., 2014 [57] (P, R)
Humic substance
(synthetic) ER E Endocrine disruption Lutz et al., 2005 [60] (A, T)

Carbohydrates

None

Lignin

Lignin ER A Enterohepatic circulation Arts et al., 1991 [67] (L)
Lignin (methanol) ER N Endocrine disruption Nakamura et al., 2001 [68] (C)

Nitrogenous compounds

Caffeine ER (crosstalk) A Parkinson’s disease Xu et al., 2006 [69] (A)

Caffeine ERα (crosstalk) A Breast
cancer/Chemoprevention Rosendahl et al., 2015 [70] (C, P)

Nicotinic acid (Niacin) GPER E Cardioprotection Santolla et al., 2014 [71] (C, L, P, T)
Serotonin GPER (crosstalk) E Depressive disorder Li et al., 2013 [72] (A, P)
Theophylline ER E Estrogenic response Steinsapir et al., 1982 [73] (A, L)
Theophylline
derivative (TPBM) ERα A Breast

cancer/Chemoprevention Mao et al., 2008 [74] (C, P, R)

Trigonelline ER E Carcinogenesis/Phytoestrogen Allred et al., 2009 [75] (C, L, R, T)
Trigonelline ER E/A Bone protection Folwarczna et al., 2014 [76] (A)

Trigonelline ER E Colon
cancer/Chemoprevention Yoo and Allred, 2016 [77] (C, R, T)
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Table 3. Cont.

Chemical Receptor/Pathway Estro-Genicity a Function or Subject Reference (Assay b)

Oil

Campesterol/β-Sito-
sterol/Stigmasterol ER N Endocrine disruption Baker et al., 1999 [78] (A, L, R)

Campesterol/β-Sito-
sterol/Stigmasterol ERα N Endocrine disruption Procházková et al., 2017 [79] (R)

Citrostadienol ER N Reproductive dysfunction Mellanen et al., 1996 [80] (A, C, T)
Lecithin (soy) ERα E Endocrine disruption Behr et al., 2011 [81] (R)
β-Sitosterol ER B Feminization Rosenblum et al., 1993 [82] (A, L)
β-Sitosterol ERα/β E Endocrine disruption Gutendorf and Westendorf, 2001 [83] (C, L, R)

β-Sitosterol ER E Breast
cancer/Chemoprevention Ju et al., 2004 [84] (A, C, T)

β-Sitosterol ER N Cell proliferation Shappell et al., 2012 [85] (C)
β-Sitosterol ERα E Alzheimer’s disease Shi et al., 2013 [86] (C, P)
Stigmastanol ER N Endocrine disruption Monteverdi and Di Giulio, 1999 [87] (C, P)

Stigmasterol ER E Estrogen replacement
therapy Boldrin et al., 2013 [88] (R)

γ-Tocopherol (mixture) ERα A Cancer/Chemoprevention Smolarek et al., 2013 [89] (A, P, T)
γ/δ-Tocopherol ER A Cancer/Chemoprevention Bak et al., 2017 [90] (A, P, T)
γ/δ-Tocotrienol ERβ E Cancer/Chemoprevention Comitato et al., 2009 [91] (L, P, T)
δ-Tocotrienol ERβ E Parkinson’s disease Nakaso et al., 2016 [92] (A, P)

Other (volatile components and mixtures of chemicals)

Coffee extract (ethanol) ER E Endocrine disruption Kitts, 1987 [38] (A, L)
Coffee extract (80%
methanol) ER E Endocrine disruption Takamura-Enya et al., 2003 [93] (R)

Diazenes ERα/β S Breast
cancer/Chemoprevention Ghosh et al., 2003 [94] (L, R)

Chemicals include derivatives of the chemicals listed and those found in green coffee. The categories listed are
shown in Table 1. a Activity: anti-estrogenic (A), biphasic (B), estrogenic (E), not estrogenic (N), or SERM (S). b

Abbreviations for the assays used to detect estrogenic activity are: animal test (A), cell assay (C), ligand-binding assay
(L), protein assay (P), reporter-gene assay (R), transcription assay (T), and yeast two-hybrid assay (Y) (see Table 2).
ER: estrogen receptor; GPER: G protein-coupled estrogen receptor 1; SERM: selective estrogen receptor modulator.

2.1.3. Carbohydrates

Carbohydrates, such as sucrose, reducing sugars (arabinose, fructose, glucose, etc.),
polysaccharides (araban, galactan, glucan, mannan, etc.), pectin (galacturonon), and glycosides
(atractyligenin/atractyloside), are included in green and roasted coffee [11]. None of these, however,
exhibited estrogenic activity, although sugar chains attached by glycosylation play a role in the strength
of estrogenic activity. Glucose-conjugated isoflavones, for example, have weaker biological activity,
including estrogenic activity, than the corresponding aglycone because they are highly polar and
water-soluble, and are therefore hardly absorbed by the intestinal epithelium [95]. It is more difficult
for such glucose-conjugated estrogenic chemicals to enter the cell to interact with nuclear ERs.

2.1.4. Lignin

Lignin was identified as the insoluble residue of fiber in coffee and its amount does not change
by roasting [15]. Lignin is the second most abundant plant polymer after cellulose, with complex
structural characteristics, although it can be simplified into three basic building blocks, coumaryl
alcohol, coniferyl alcohol, and sinapyl alcohol [96]. As these blocks all have a phenolic structure with
potential hydrogen bonding and aromaticity, the ambivalent nature gives lignin potential estrogenic
activity. Its degradation products thus may have estrogenic activity through ER-binding, whereas
lignin was demonstrated to have anti-estrogenic activity through direct binding to estrogens, like
humic acids (see above), by inhibiting the reabsorption of estrogens in the intestine, thereby decreasing
plasma estrogen levels [67]. However, a cell-based estrogen assay revealed that methanol-soluble
lignin, rich in the phenolic hydroxyl group, was not estrogenic [68]. Further studies are needed to
understand the biological effects of lignin.

2.1.5. Nitrogenous Compounds

Coffee contains several nitrogenous compounds, such as alkaloids (caffeine, theobromine,
and theophylline), amino acid, nicotinic acid, nicotinamide, protein, trigonelline, and others
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(choline, serotonin amides, etc.), and some of them exert estrogenic activity (Table 3, Figure 1).
Caffeine is a well-known constituent in coffee and is known for its health benefits due to its
estrogenic effects; neuroprotective effects by estrogenic activity [69] and cancer chemopreventive
effects by anti-estrogenic activity [70], for example. Other nitrogenous compounds, including
their derivatives, such as nicotinic acid (niacin), serotonin amides, theophylline, and trigonelline,
are also estrogenic/anti-estrogenic and may function in cardioprotection, neuroprotection, cancer
chemoprevention, and bone protection [71–74,76,77]. Note that the effects vary depending on differences
in signaling pathways and experimental conditions, and therefore result in estrogenic or anti-estrogenic
effects (see Section 2.2).

Nutrients 2019, 11, x FOR PEER REVIEW 8 of 20 

γ/δ-Tocopherol ER A Cancer/Chemoprevention Bak et al., 2017 [90] (A, P, T) 

γ/δ-Tocotrienol ERβ E Cancer/Chemoprevention Comitato et al., 2009 [91] (L, P, T) 

δ-Tocotrienol ERβ E Parkinson’s disease Nakaso et al., 2016 [92] (A, P) 

Other (volatile components and mixtures of chemicals) 

Coffee extract (ethanol) ER E Endocrine disruption Kitts, 1987 [38] (A, L) 

Coffee extract (80%  

methanol) 

ER E Endocrine disruption Takamura-Enya et al., 2003 [93]  

(R) 

Diazenes ERα/β S Breast cancer/Chemoprevention Ghosh et al., 2003 [94] (L, R) 

Chemicals include derivatives of the chemicals listed and those found in green coffee. The 
categories listed are shown in Table 1. a Activity: anti-estrogenic (A), biphasic (B), estrogenic (E), not 
estrogenic (N), or SERM (S). b Abbreviations for the assays used to detect estrogenic activity are: 
animal test (A), cell assay (C), ligand-binding assay (L), protein assay (P), reporter-gene assay (R), 
transcription assay (T), and yeast two-hybrid assay (Y) (see Table 2). ER: estrogen receptor; GPER: G 
protein-coupled estrogen receptor 1; SERM: selective estrogen receptor modulator. 

 
Figure 1. Cont.



Nutrients 2019, 11, 1401 9 of 20Nutrients 2019, 11, x FOR PEER REVIEW 9 of 20 

 
Figure 1. Structure of estrogenic coffee constituents. 

2.1.3. Carbohydrates 

Carbohydrates, such as sucrose, reducing sugars (arabinose, fructose, glucose, etc.), 
polysaccharides (araban, galactan, glucan, mannan, etc.), pectin (galacturonon), and glycosides 
(atractyligenin/atractyloside), are included in green and roasted coffee [11]. None of these, however, 
exhibited estrogenic activity, although sugar chains attached by glycosylation play a role in the 
strength of estrogenic activity. Glucose-conjugated isoflavones, for example, have weaker biological 
activity, including estrogenic activity, than the corresponding aglycone because they are highly 
polar and water-soluble, and are therefore hardly absorbed by the intestinal epithelium [95]. It is 
more difficult for such glucose-conjugated estrogenic chemicals to enter the cell to interact with 
nuclear ERs. 

2.1.4. Lignin 

Lignin was identified as the insoluble residue of fiber in coffee and its amount does not change 
by roasting [15]. Lignin is the second most abundant plant polymer after cellulose, with complex 
structural characteristics, although it can be simplified into three basic building blocks, coumaryl 

Figure 1. Structure of estrogenic coffee constituents.

2.1.6. Oil

Many oils or lipids, such as diterpene alcohols/esters (cafestol and kahweol), phosphatides,
squalene, sterols (campestanol, campesterol, cholesterol, citrostadienol, cycloeucalenol,
24-methylenelophenol, obtusifoliol, sitosterol, stigmastanol, and stigmasterol), tocopherols,
triglycerides, tryptamine derivatives, and coffee wax (arachidic acid, behenic acid, 5-hydroxytryptamine,
and lignoceric acid), are present in coffee [14]. Terpenes and terpenoids are an important category
of components of coffee oil, and are associated with estrogenic activity (for a comprehensive
review of estrogenic terpenes/terpenoids, see Kiyama, 2017 [97]). Sterols were reported to exhibit
estrogenic/anti-estrogenic activity (Table 3, Figure 1), such asβ-sitosterol [82–84,86] and stigmasterol [88].
Other types of terpenes included in coffee, such as γ/δ-tocopherol and γ/δ-tocotrienol, are also
estrogenic/anti-estrogenic [89–92]. Lecithin is an important component of coffee and may exhibit
numerous biological effects, although, due to its complex chemical composition, it has not been
well-studied. Soy lecithin was found to be estrogenic and leads to the estrogenic activity of chocolate [81].
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2.1.7. Volatile Compounds and Mixtures of Chemicals

Volatile compounds included in coffee are cyclotene, ethylfuraneol. N-furfurylpyrrole,
kahweofuran, isomaltol, maltol, oxazole, pyrazine, thiazole, thiophene, and diazenes (pyrazines,
pyrimidines, and pyridazines) [15]. Due to their simple structures, no estrogenic activity has been
detected, although their structures are known to affect estrogenic activity. The heterocyclic cores
accommodated by diazenes and diazoles alter the geometry, integrity, and sizes of ER ligands, and
ERα/ERβ selectivity [94].

Mixtures of chemicals include the extracts of coffee, which differ in solvents and conditions to
make the extracts. The mixtures of chemicals after extraction of coffee with methanol or ethanol were
reported to be estrogenic [38,93].

2.2. Estrogenic Cell-Signaling Pathways Associated with Coffee

Although the estrogenic cell-signaling pathways reported thus far for coffee constituents are those
initiated by ERs (ERα and ERβ), other types of ERs, such as G-protein-coupled estrogen receptor 1
(GPER), estrogen-related receptors (ERRs), ER-α36, and ER-X, other receptors may regulate estrogen
signals, as was reported for other estrogenic chemicals [35]. Once the receptor is activated by ligands,
the signal is transduced via different signaling pathways in cells. Estrogenic signaling pathways include
angiogenesis, ErbB/HER, MAPK, nuclear receptor and ubiquitin/proteasome signaling pathways, and
the pathways related to apoptosis, including autophagy, cell cycle/DNA damage/cytoskeletal formation,
cellular metabolism, chromatin/epigenesis, development/differentiation, immunology/inflammation
response, neurological diseases, and translational control [98]. Coffee constituents were reported to
activate estrogenic signaling pathways. For example, octyl gallate activated ERα/phosphoinositide
3-kinase (PI3K)/Akt signaling and ADAM10, an amyloid precursor protein processing enzyme, reduced
amyloid-β production in a mouse model [53]. β-Sitosterol activates ERα/PI3K/GSK3β signaling to
increase resistance to oxidative stress, which is beneficial for the treatment of neurodegenerative
diseases, such as Alzheimer’s disease [86]. Chlorogenic acid is likely to induce osteoblast differentiation
through the ERβ/Shp2/PI3K/Akt pathway [39]. Similarly, δ-tocotrienol may exert neuroprotective
effects through the ERβ/PI3K/Akt pathway [92]. The involvement of MAPK pathways was reported
for ferulic acid [64] and vanillic acid [51].

As estrogen signaling can be initiated by the binding of estrogenic chemicals with either ERα or
ERβ, there are cases in which preference or selectivity was observed: 17β-estradiol (E2) and diazene
motifs exhibit preferential binding to ERα [83,94], whereas caffeic acid phenethyl ester, chlorogenic
acid and γ/δ-tocotrienol prefer ERβ (Table 3).

On the other hand, estrogen signaling can be initiated by the binding of chemicals with other
types of ERs: Nicotinic acid with GPER [71], caffeic acid with membrane ERs [62], and vanillic acid
with unspecified non-classical ERs [51]. Furthermore, other receptors have been reported to function
in estrogen signaling by crosstalk, such as the insulin-like growth factor 1 receptor (IGF-1R) with the
caffeic acid phenethyl ester [47] or caffeine [70], human epidermal growth factor receptor 2 (HER2) with
ferulic acid [64], adenosine A2A receptor with caffeine [69], peroxisome proliferator-activated receptor
γ (PPARγ) with γ-tocopherol [89], and the serotonin (5-HT1A) receptors with serotonin [72] (Table 3).
Upon the interaction between 5-HT1A receptors and GPER on the plasma membrane, estrogen can
induce desensitization of 5-HT1A receptors for mood regulation [72].

Inconsistent or contradictory results for the estrogenicity of coffee constituents, such as hippuric
acid, β-sitosterol, and trigonelline (Table 3), were observed among assays conducted by the same
or different research groups [49,75,79,85]. This is attributable to the sensitivity of the assays [83],
masking effects by other co-existing compounds [81], or the differences in doses/concentrations/purity
of the chemicals [43,79,85], cell/tissue types used for the assays [76], or sources of ERs [49,80].
Note that some chemicals demonstrated biphasic effects, such as β-sitosterol, which is estrogenic
at low doses and anti-estrogenic at high doses [82]. Although a standardized assay to evaluate
estrogenicity may be an alternative [83], there may be intrinsic differences among the assays and
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molecules/cells/tissues/individuals used in the assays. Therefore, understanding the differences at the
level of cell signaling pathways in addition to the principles of the assays, as discussed previously [35],
is important.

3. Prospective of Estrogenic Coffee Constituents

3.1. Applications and Physiological Effects of Estrogens in Coffee

Although estrogen acts on the conventional endocrine target organs, such as the female
reproductive tract, mammary glands, ovaries, and neuroendocrine system, estrogen also plays
important roles in tissues, such as the bone, heart, and brain [99]. The physiological effects of
caffeine, such as those on neuroprotection, cardioprotection, and digestive tract health, have been well
documented [100], although attention has also been paid recently to the health benefits by other coffee
constituents, especially those used to prevent diseases, such as neurodegenerative/cardiovascular
diseases, metabolic syndromes, and cancer [17,18,32,101,102]. The physiological effects associated
with estrogenic coffee constituents are closely related to the applications of the constituents and are
discussed here.

3.1.1. Bone Protection

Potential applications for bone protection and the treatment of osteoporosis were reported for
caffeic acid, chlorogenic acid, and vanillic acid based on their estrogenic activity (Table 4, Figure 1). For
example, caffeic acid and chlorogenic acid at high doses improved several symptoms in the skeletal
system of ovariectomized rats, although the direct estrogen contribution was unclear or excluded [40,43].
In contrast, Zhou et al. demonstrated the improvement of estrogen deficiency-induced osteoporosis
upon the administration of chlorogenic acid, as observed by bone mineral density and bone stem
cell/osteoblast differentiation when specific cell-signaling pathways, such as Shp2/PI3K/Akt and cyclin
D1 pathways, were examined [39]. They further speculated that the pathways involve the interaction
of chlorogenic acid with ERβ [39]. Similar estrogenic effects on skeletal cells were observed for vanillic
acid, although direct binding of vanillic acid with ERα or ERβ was not noted [51].

Table 4. Applications and physiological effects of estrogenic coffee constituents.

Bone protection/Osteoporosis (Estrogenic)
Caffeic acid, chlorogenic acid, vanillic acid

Cancer treatment and prevention (Estrogenic/anti-estrogenic)
Caffeic acid phenethyl ester, caffeic acid/ferulic acid derivatives, caffeine, cinnamic acid esters,

diazenes, ferulic acid, β-sitosterol, theophylline, γ/δ-tocopherol, γ-tocopherol (mixture),
γ/δ-tocotrienol, trigonelline
Cardioprotection (Estrogenic)

Nicotinic acid (niacin)
Endocrine disruption/Reproductive dysfunction (Mostly estrogenic)

Coffee extract, hippuric acid, humic acids, lecithin, β-sitosterol
Menopausal syndrome/Endocrine disease (Estrogenic)

Caffeic acid, caffeic acid phenethyl ester, ferulic acid/isoferulic acid, sinapic acid, stigmasterol, theophylline
Neuroprotection (Mostly estrogenic)

Caffeine, gallate (octyl), serotonin, β-sitosterol, δ-tocotrienol

Note that chemicals are listed in a representative category (see Table 3).

3.1.2. Cancer Treatment and Prevention

Potential applications for cancer treatment and prevention were reported for cinnamic acid
derivatives (caffeic acid phenethyl ester, caffeic acid/ferulic acid derivatives, cinnamic acid esters, and
ferulic acid), terpenoids (β-sitosterol, γ/δ-tocopherol, and γ/δ-tocotrienol), and alkaloids (caffeine,
theophylline, and trigonelline) (Table 4, Figure 1).
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Several cinnamic acid derivatives are effective against cancer. For example, caffeic acid phenethyl
ester increased the apoptotic effects of taxanes, i.e., docetaxel and paclitaxel, in prostate cancer cells
by changing the expression of ERα and ERβ and modulating their signaling [47]. Lipophilic amides
and esters of caffeic acid/ferulic acid exhibited cytotoxic effects on breast cancer cells by inducing
apoptosis [63]. Furthermore, a mixture rich in cinnamic acid esters induced apoptosis of breast cancer
MCF-7 cells by acting as an antagonist [44]. Although increasing lipophilicity may be important for
some effects [63], ferulic acid alone can activate ERα signaling pathways and contribute to breast cancer
treatment [64,66]. Note that the activation of ERα signaling by ferulic acid induces HER2 expression
and alters cell metabolism, thereby increasing the sensitivity to anti-cancer agents, such as trastuzumab
(Herceptin).

Terpenoids are an important category of food chemicals and include many estrogenic chemicals [97].
Sterols in plants, or phytosterols, belong to triterpenoids, which comprise six isoprene units, and serve
as precursors of bioactive compounds and contribute to health-promoting effects as vitamins and
anti-oxidants [103]. Although β-sitosterol, the most abundant phytosterol, stimulates tumor growth
in vitro, dietary β-sitosterol reduced E2-stimulated tumor growth in mice, suggesting the consumption
of β-sitosterol is beneficial for women with breast cancer [84]. Among eight different forms of vitamin
E, i.e., four types of tocopherols and four types of tocotrienols, γ/δ-tocopherol and γ/δ-tocotrienol
have been implied in cancer treatment and prevention. A mixture containing γ/δ-tocopherol showed
decreased expression of ERα and suppression of E2-induced tumor growth, suggesting its use in
breast cancer prevention [89,90]. Similar results for tumor cell growth inhibition were obtained for
γ/δ-tocotrienol, where apoptosis was likely induced by γ/δ-tocotrienol through the ERβ signaling
pathway [91].

Alkaloids, such as caffeine, theophylline, and trigonelline, were reported to be potential anti-cancer
agents. Caffeine reduced the expression of ERα and IGF-1R, and inhibited both ERα-positive and
-negative breast cancer cells through crosstalk between the receptors [70]. An 8-alkylthiothiated
theophylline (TPBM) inhibited ERα binding to a consensus estrogen-responsive element (ERE), which
resulted in the inhibition of ERα-mediated transcription and estrogen-dependent growth of tumor
cells [74]. Trigonelline is a metabolic product of niacin and can be widely found in plants, including
coffee. Trigonelline activated ER and stimulated the growth of estrogen-dependent breast cancer cells
in vitro. However, there was no clear estrogenic activity in vivo or trigonelline did not compete against
E2 in vitro, suggesting the activation to be mediated by a separate mechanism involving new signal
mediators [62,77].

3.1.3. Cardioprotection

Nicotinic acid (niacin) is the water-soluble vitamin B3 known for its beneficial effects for
cardioprotection [104]. Niacin binds GPER and activates the GPER-mediated signaling pathways,
including those potentially related to cardioprotection [71].

3.1.4. Neuroprotection

Estrogenic activities of octyl gallate, β-sitosterol, and δ-tocotrienol have been considered to be
useful to treat neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases (Table 4).
For example, octyl gallate, an important moiety for ER-binding in epigallocatechin-3-O-gallate, may
activate amyloid-β processing through activation of ERα/PI3K/Akt signaling, and thereby reduce
the amount of amyloid-β protein in mouse Alzheimer’s disease models [53]. β-Sitosterol prevented
oxidative stress and lipid peroxidation in neuronal cells via ERα/PI3K/GSK3β signaling, suggesting
the chemical is effective against Alzheimer’s disease [86]. In a mouse model of Parkinson’s disease,
δ-tocotrienol was effective against the loss of dopaminergic neurons [92]. Caffeine and serotonin are also
effective against Parkinson’s disease and depressive disorders, respectively, although the mechanisms
may involve crosstalk between ERs and other receptors (dopamine and serotonin receptors) [69,72].
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3.1.5. Treatment of Menopausal Syndromes

Chemicals with estrogenic activity are useful agents to treat menopausal syndromes, such as those
used in estrogen replacement therapy, and some coffee constituents, such as caffeic acid, caffeic acid
phenethyl ester, ferulic acid/isoferulic acid, sinapic acid, stigmasterol, and theophylline, are potential
candidates (Table 4, Figure 1). For example, caffeic acid phenethyl ester exhibited an affinity for
ERβ and increased ERE-dependent transcription, although no estrogenic activity was observed in
cell or uterotrophic assays, suggesting the chemical to be a potential SERM [46]. Among phenolic
acids and phenolic esters found in the plant black cohosh, which has been used for the treatment of
menopausal syndromes, ferulic and isoferulic acids were found to be slightly estrogenic [48]. Due
to strong estrogenic activity without mutagenic activity, stigmasterol was considered to be a good
candidate for estrogen replacement therapy [88]. Although theophylline did not significantly increase
the uterine wet weight in a rat uterotrophic assay, it exhibited estrogen-binding, and increased the
uterine RNA/protein amounts and uterine edema induced by E2 [73]. After menopause, estrogen
deficiency may cause the development of obesity and metabolic disorders. Potential applications for
the treatment of obesity and metabolic disorders caused by estrogen deficiency were reported for
caffeic acid and sinapic acid, although it is unclear whether their estrogenic activity led to the observed
outcomes [42,50].

3.1.6. Endocrine Disruption

Excessive estrogen can potentially cause endocrine disruption, reproductive dysfunction, and
other unfavorable effects. Such effects were reported for coffee extracts, hippuric acid, humic acid,
lecithin, and β-sitosterol (Table 4). For example, coffee extracts have weak estrogenic activity, which
may lead to adverse physiological effects in pregnant women [38,93]. Hippuric acid is a metabolite of
phthalates, which are suspected to be endocrine disruptors, and exhibited weak estrogenic activity,
although its contribution was marginal [49]. Aromatic humic substances are estrogenic and may cause
endocrine disruption [60], whereas humic acids may exert anti-estrogenic effects, partly due to their
direct binding to estrogen [56–58]. Among the constituents in foodstuffs, less characterized lecithin
was found to have strong estrogenic activity, and it may cause toxic effects in adults and infants [81]. To
understand the effects of environmental chemicals, a variety of chemicals were examined for estrogenic
activity by several different assays, and β-sitosterol was found to be estrogenic [83].

3.2. Potentials of Future Applications

Pathway-based assessment of estrogenic activity has been focused on in several fields, such as
environmental, toxicological, and pharmacological, where pathway-based assessment of estrogenic
activity should not be considered as an alternative of outcome-based assessment, such as animal tests,
but as a paradigm shift to a new mechanism-based assessment, providing sufficient predictability and
variability [35]. Variations detected by pathway analysis are not limited to the level of cellular signaling
pathways but include those at the levels of receptors, signal crosstalk, and intercellular networks (see
Section 2.2). Moreover, additional variations may aid in applications as follows.

Variations in the estrogenic effects were found by altering the effects of the receptor functions,
such as SERMs and SERDs, and some coffee constituents were reported to be associated with these
modulators. SERMs are the substances that have differing agonist/antagonist activity among different
tissues (such as between uterus and breast) via the regulation of receptor functions (e.g., coregulators’
selectivity) and/or selection of receptor subtypes (e.g., ERα/ERβ). Therefore, they differentially inhibit
or stimulate estrogen activity in these tissues [105,106]. Several coffee constituents were reported to
act as SERMs, such as caffeic acid phenethyl ester [46,47], cinnamic acid (moiety) [45], and diazenes
(motifs) [94]. SERDs, on the other hand, are a class of substances that inhibit ER functions by binding
to and degrading the ER [107]. Cinnamic acid (moiety) was also reported among SERDs [45,108].
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Each estrogenic coffee constituent may exert additional activities that affect the variability. For
example, coffee constituents act as inhibitors or activators of functions other than estrogen activity;
caffeic acid is a selective inhibitor of 5-lipoxygenase [109], caffeic acid phenethyl ester is an inhibitor
of NF-κB [110], cinnamic acid ester is an inhibitor of 17β-hydroxysteroid dehydrogenase [111], gallic
acid is an activator of Tousled-like kinase 1 [112], γ-tocopherol is an inhibitor of PPAR-γ [113], and an
unidentified chemical in coffee is an opiate receptor antagonist [114]. Some of these constituents can
act on two or more pathways via crosstalk (see Section 2.2).

When benefits are expected, it is important to consider the potential risks. Although the
health-promoting effects and therapeutic potential of coffee constituents have been described,
unfavorable effects have been reported for some constituents. For example, caffeic acid at low
doses and trigonelline exerted unfavorable effects on bone, such as estrogen-dependent decreases in
bone mineralization and mechanical properties of bone [43,76]. Trigonelline, a natural component in
green coffee beans and other unidentified compounds, was found to be mutagenic, especially after
roasting [115]. Due to the estrogenic activity, there was concern as to whether trigonelline can stimulate
the growth of estrogen-dependent cancer in vivo [75].

4. Conclusions

As the consumption of coffee is steadily increasing worldwide, there has been more interest
in its health effects. Epidemiological and clinical studies revealed that moderate levels of coffee
consumption do not result in detrimental outcomes (except some cases, such as pregnant women)
but rather exert beneficial effects toward human health. As the interest in coffee is increasing, more
products originating from coffee enriched with particular constituents have been created, which has
prompted researchers to assess the effects of each constituent. Here, the constituents of coffee were
classified into acids, caramelized products, carbohydrates, lignin, minerals, nitrogenous compounds,
oil (lipids), and others (such as volatile compounds), and the chemicals in each classification were
examined for estrogenic activity. Estrogen is one of the important hormones whose mechanisms of
action have been extensively studied. Furthermore, there are a number of chemicals present in nature or
industrial products/biproducts that mimic estrogen. From a comprehensive literature search, chemicals
groups, such as phenolic acids, humic acids, lignin, alkaloids, terpenoids, and volatile compounds,
have been reported in association with their estrogenic activity in addition to its physiological effects
and/or mechanisms of action, which resulted in either beneficial effects/applications, such as bone
protection, cancer treatment/prevention, cardioprotection, neuroprotection, and the improvement
of menopausal syndromes, or unbeneficial effects, such as endocrine disruption. In addition to the
increasing interest in the beneficial effects of coffee, pathway-based assessment of the effects, including
estrogenic activity, will be more important in the future to more reliably evaluate epidemiological and
clinical data and make beneficial applications.
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