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ABSTRACT

Tumor glycolysis is a major promoter of carcinogenesis and cancer progression. Given its complex
mechanisms and interactions, comprehensive analysis is needed to reveal its clinical significance
and molecular features. On the basis of a well-established glycolysis gene expression signature,
we quantified 8633 patients with different cancer types from the Cancer Genome Atlas (TCGA)
and evaluated their prognostic associations. High tumor glycolytic activity correlated with inferior
overall survival in the pan-cancer patients (hazard ratio: 1.70, 95% confidence interval: 1.20-2.40,
P = 0.003). The prognostic value of glycolysis correlated with the molecular subtypes and was
stable regardless of clinical parameters. The prognostic significance of glycolysis was validated
using three independent datasets. In addition, genome, transcriptome, and proteome profiles
were utilized to characterize the distinctive molecular features associated with glycolysis.
Mechanistically, glycolysis fulfilled the fundamental needs of tumor proliferation in multiple
ways. Exploration of the relationships between glycolysis and tumor-infiltrating immune cells
showed that glycolysis enabled the immune evasion of tumor cells. Mammalian target of rapa-
mycin (mTOR) inhibitors and dopamine receptor antagonists can effectively reverse the glycolytic
status of cancers. Overall, our study provides an in-depth molecular understanding of tumor
glycolysis and may have practical implications for clinical cancer therapy.
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Introduction
a biological phenotype of most tumors and has

Carcinogenesis and tumor cell development are
dependent on metabolic reprogramming to meet
their energy and macronutrient requirements
[1,2]. In alterations of metabolic reprogramming,
the Warburg effect refers to the tendency of cancer
cells to utilize glucose via glycolysis irrespective of
oxygen availability [3,4]. Tumor glycolysis is

served as a basis for cancer detection with positron
emission tomography. Glycolysis is associated with
advanced tumor progression, treatment resistance,
and poor clinical outcomes [5,6]. It is also signifi-
cantly linked to many cancer molecular character-
istics, including proliferation, angiogenesis, and
immune evasion [7,8]. Hence, targeting tumor
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glycolysis is important for cancer therapy [9].
However, a systematic characterization of the clin-
ical and molecular characteristics of glycolysis is
still needed.

In recent years, the multi-omics data from the
Cancer Genome Atlas (TCGA) have driven the
understanding of the molecular landscape of pri-
mary tumor beyond individual molecular plat-
forms by integrating genomic, transcriptomic,
and proteomic characteristics and clinicopatho-
logical parameters [10]. The tumor glycolysis
status is also related to multiple layers of mole-
cular alterations [11-14]. Many studies on the
mechanisms of glycolysis have presented a clear
picture of tumor characteristics. For example,
upregulated tumor glycolysis was found to mod-
ulate T cell-mediated antitumor activity, thereby
inhibiting melanoma patients’ response to adop-
tive T cell therapy [15]. Glycolysis can also
enable the maintenance of strong tumorigenic
activity on transcription factors, such as YAP/
TAZ [16]. Furthermore, glycolytic metabolism
modulates the translation of hypoxia-inducible
factor 1-alpha (HIF1A) to control T cell
responses to hypoxia [17]. Together, these stu-
dies establish that glycolysis can lead to multiple
layers of molecular changes and thus plays
a pivotal role in cancer development. However,
the mechanistic details underlying the cancer
glycolysis phenotype remain unclear.

Using multi-omics data, we quantify glycolysis
and reveal its prognostic value from pan-cancer
perspectives. By integrating multi-omics data
with genome, transcriptome, and proteome data,
we specify molecular characteristics related to gly-
colysis. Finally, we identify specific molecular
compounds that may eventually result in novel
therapy strategies that can reverse the glycolytic
status of cancers. These approaches provide an
unprecedented opportunity to explore the biologi-
cal characteristics of tumors in great depth.

Our study aims to prove that glycolysis affects
cancer progression by regulating the cell cycle,
energy material synthesis, and cell proliferation
in cancer, thereby providing an in-depth molecu-
lar understanding of tumor glycolysis and provid-
ing theoretical and technical support for clinical
cancer treatment.

Materials and methods

Classification of tumor glycolysis scores across
various cancer types

Molecular profiles, including oncogenic signaling
pathways, messenger RNA (mRNA) expression,
and protein expression profiles, were acquired
from the TCGA pan-cancer project (https://gdc.
cancer.gov/about-data/publications/pancanatlas).
Genome-wide RNA sequencing (RNAseq) data
profiles were obtained from the TCGA dataset
using an Illumina HiSeq 2000 RNAseq system.
Cancer-relevant proteins and phosphoproteins
were detected by reverse-phase protein arrays.
The gene signature for glycolysis
(REACTOME_GLYCOLYSIS) was defined on the
basis of 72 genes involved in glycolysis from the
Molecular Signatures Database (MSigDB, http://
software.broadinstitute.org/gsea/msigdb). ~ Only
primary tumor samples with an overall survival
(OS) of no less than 30 days were used to obtain
reliable results for survival analysis. Finally, we
analyzed 23 TCGA nonhematologic cancer types
with a sample size > 100. The glycolysis score for
each tumor sample across the cancer types was
calculated wusing gene set variation analysis
(GSVA) [18].

Estimation of prognostic value of pan-cancer
glycolysis

Univariate Cox analysis was performed to explore
the relationship between the glycolysis scores and
tumor patients” OS. Then, meta-analysis was con-
ducted using Stata 14.0 (Stata Corporation, College
Station, TX, USA) to integrate the univariate Cox
survival analysis results into each type of cancer.
The heterogeneity between individual studies was
evaluated by the Q test: I* > 50% and/or P < 0.05
indicated significant heterogeneity. The use of
a random-effects or fixed-effects model was deter-
mined on the basis of the heterogeneity analysis
results. Subgroup analyses stratified by age, gen-
der, and tumor stage were performed to further
explore variations in the effect of glycolysis on OS.

We performed consensus cluster analysis to
identify a global pattern of glycolysis across the 23
types of cancers using the ConsensusClusterPlus
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package in the software R [19]. The patients were
grouped into two clusters according to glycolysis-
related genes using two-class K-means clustering
with the Euclidean distance. Principal component
analysis (PCA) was used to observe the patients in
the two clusters. The OS difference between the
clusters was calculated by the Kaplan-Meier
(K-M) method and the log-rank test.

Clinical and molecular characterizations
related to glycolysis

We evaluated the glycolysis status for ten canoni-
cal signaling pathways with frequent genetic
alterations: (1) cell cycle, (2) Hippo, (3) Myc, (4)
Notch, (5) oxidative stress response/nuclear factor
erythroid 2-related factor 2 (Nrf2), (6) phosphoi-
nositide 3-kinase (PI3K), (7) receptor tyrosine
kinase  (RTK)/RAS/mitogen-activated  protein
(MAP) kinase, (8) transforming growth factor
beta (TGF-B), (9) p53, and (10) P-catenin/Wnt
signaling [20]. A tumor sample was found to
have changed on the basis of genes involved in
pathways that had recurrently altered and mutated
positions, known functional gene fusions/rearran-
gements, and epigenetic silencing calls. Then, the
Mann-Whitney U test was performed to estimate
the difference in the glycolysis scores of the path-
ways with and without alterations.

We also computed the correlation between the
glycolysis scores, mRNA, and protein expression
profiles. Spearman’s rank correlation was used to
assess the correlation between the glycolysis scores
and molecular factors. The glycolysis-associated
genes and proteins in each cancer type were deter-
mined as follows: Spearman’s correlation |coeffi-
cient| > 0.3 and P < 0.05. We found that the
glycolysis-associated genes were significantly posi-
tively correlated with the glycolysis scores in at
least 15 cancer types. These genes were further
subjected to gene ontology (GO) classification
analysis using the R package clusterProfiler [21].
To ascertain the functional interactions between
these glycolysis-related genes and the identified
hub genes, protein-protein interaction (PPI) net-
works were constructed using the Search Tool for
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the Retrieval of Interacting Genes/Proteins
(STRING) database version 11.0 (required interac-
tion score: > 0.9) [22].

Exploration of relation between increased
glycolysis and immune evasion

Growing evidence suggests that increased glycoly-
sis actively interferes with immune cell functions.
Thus, we examined the association between glyco-
lysis and immune status. The tumor immune
microenvironment is an executor of immunother-
apy. Using the tool CIBERSORT, we obtained 22
types of immune cells in six classes from the
TCGA pan-cancer project: (1) lymphocytes
(naive B cells, memory B cells, naive CD4 T cells,
resting memory CD4 T cells, activated memory
CD4 T cells, T follicular helper cells, regulatory
T cells [Tregs], gamma delta T cells, CD8 T cells,
resting NK cells, activated NK cells, plasma cells);
(2) macrophages (monocytes, M0 macrophages,
M1 macrophages, M2 macrophages); (3) dendritic
cells (resting dendritic cells, activated dendritic
cells); (4) mast cells (resting mast cells, activated
mast cells); (5) neutrophils; and (6) eosino-
phils [23].

Antigen-specific T cell receptor and B cell
receptor repertoires are critical for the recognition
of malignant cells and may reflect a robust anti-
tumor response involving a large number of anti-
gen-specific adaptive immune cells.

Compounds targeting cancer glycolysis

To determine which molecules could be effective
in cancer-inhibitory glycolytic activity, we per-
formed connectivity map (Cmap) analysis [24].
Cmap is a public online database similar to the
Gene Set Enrichment Analysis (GSEA) database,
which predicts target drugs on the basis of a query
signature. Gene symbols were mapped to the HG-
U133A probe set GPL96 platform ID. We identi-
fied 500 genes most positively associated and 500
genes most negatively associated with the glycoly-
sis scores to query drugs matching the ‘reference’
signature. Compounds with an enrichment score <
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0 and a P-value < 0.05 were identified as glycolysis
antagonist drugs.

Results

The topic of the study which is the clinical signifi-
cance of the carcinoma in glycolysis and related
molecular characteristics analysis was to verify the
role of glycolysis in cancer (regulating the cell
cycle, energy material synthesis, cell proliferation,
and cancer progression), thereby facilitating an in-
depth molecular understanding of tumor glycoly-
sis and providing theoretical and technical support
for clinical cancer treatment. We quantified and
evaluated prognostic associations in 8633 patients
with different types of cancer in TCGA and vali-
dated the prognostic significance of glycolysis in
three independent datasets.

Increased tumor glycolytic activity as
indicator of inferior survival in various
cancers

A total of 23 types of cancer in 8633 cases were
identified in a survival analysis of glycolysis scores
and OS. A 72-gene expression signature was used
to calculate the glycolysis scores. The univariate
Cox analysis showed that increased tumor glyco-
Iytic activity was significantly associated with
a lower OS in six types of cancers: liver hepatocel-
lular carcinoma (LIHC), lung adenocarcinoma
(LUAD), head and neck squamous cell carcinoma
(HNSC), sarcoma (SARC), brain low-grade glioma
(LGG), and pancreatic adenocarcinoma (PAAD)
(Table 1). A list of TCGA cancer type abbrevia-
tions is available at https://gdc.cancer.gov/
resources-tcga-users/tcga-code-tables/tcga-study-

abbreviations. To evaluate the prognostic value of
glycolysis in the pan-cancer patients, we combined
the hazard ratios (HRs) for the OS. Increased
tumor glycolytic activity correlated with an infer-
ior OS (HR: 1.70, 95% confidence interval: 1.20-
2.40, P = 0.003; Figure 1a). Furthermore, we con-
ducted subgroup analysis to observe the prognos-
tic  value of  glycolysis in  different
clinicopathological parameters. We also analyzed
the effects of glycolysis on OS by subgroups

Table 1. Univariate cox analysis of glycolysis score.

Study N Hazard ratio  95% confidence interval ~ P-value
BLCA 399 1.793 0.954-3.367 0.070
BRCA 1052 1.894 0.974-3.684 0.060
CESC 273 2.591 0.931-7.214 0.068
COAD 426 0.672 0.277-1.631 0.380
ESCA 178 0.985 0.404-2.399 0.973
GBM 146 1.034 0.400-2.676 0.945
HNSC 512 2.819 1.553-5.117 0.001
KIRC 518 0.972 0.460-2.053 0.940
KIRP 278 3.941 0.840-18.483 0.082
LGG 481 3.276 1.161-9.243 0.025
LIHC 343 8.862 3.471-22.628 5.00E-06
LUAD 492 3.460 1.940-6.173 2.60E-05
LUSC 474 0.714 0.401-1.271 0.252
ov 295 0.724 0.316-1.658 0.444
PAAD 172 3.034 1.113-8.271 0.030
PCPG 172 10.703 0.112-1020.485 0.308
PRAD 494 20.645 0.705-604.846 0.079
READ 153 0.243 0.042-1.403 0.114
SARC 255 3.723 1.571-8.825 0.003
STAD 375 0.609 0.341-1.087 0.093
TGCT 130 0.787 0.015-40.206 0.905
THCA 502 4915 0.402-60.072 0.213
THYM 118 0.112 0.008-1.580 0.105
UCEC 513 1.389 0.622-3.100 0.423

defined by age (< 60, > 60 years), gender (female,
male), and pathological stage (early stage,
advanced stage). The subgroup analysis revealed
that glycolysis is widespread and acts as an unfa-
vorable factor for tumor patients’ prognosis
(Table 2).

To identify the clinical parameters associated
with the glycolysis status in cancer, we compared
the glycolysis scores between the different para-
meters. In many types of cancers, the glycolysis
scores displayed a different status for each clinical
feature (Figure 1b). For example, there were sig-
nificant differences between the early and
advanced stages in seven types of cancer. We
further explored the status of glycolysis in different
molecular subtypes of tumors (Figure 1c-F). In the
case of breast cancer, the glycolysis score was the
lowest in the luminal A subtype, which has the
best prognosis.

The prognostic value of glycolysis was the most
significant in LIHC. Hence, three independent
cohorts were wused to validate the results:
GSE14520 (N = 242) [25] and GSE54236
(N = 78) [26], which were acquired from the
Gene Expression Omnibus (GEO) repository, and
the LIRI-JP dataset (N = 229) [27], which was
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Table 2. Subgroup analysis for the prognostic value of glyco-
lysis score.

Types
of No. of
Parameters cancer patients HR (95%Cl) P-value  Model
Age
Age <60 23 4034  1.82 (1.08-3.08) 0.025 Random
effects
Age =60 22 4575  1.50 (1.01-2.22) 0.044 Random
effects
Gender
Female 21 4477 1.62 (1.25-2.11)  <0.001 Fixed
effects
Male 20 4156 1.81 (1.11-2.93) 0.016 Random
effects
Stage
I/ 15 3631 1.82 (1.07-3.08) 0.027 Random
effects
n/v 14 2078  1.56 (1.17-2.10) 0.003 Fixed
effects
downloaded from the International Cancer

Genome Consortium (ICGC) database. The glyco-
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hepatocellular carcinoma patients with an OS of
no less than 30 days. On the basis of the median
value of the glycolysis score, LIHC patients were
divided into high- and low-glycolysis groups. The
patients in the high-glycolysis group exhibited
a lower OS (Figure 2).

Global patterns of glycolysis signatures
across cancer types

According to the tumor expression levels of 72
glycolysis genes, 2047 (6585) patients were
assigned to the group with high (low) expression
of glycolysis-associated genes (Figure 3a). The
PCA plot shows that the two clusters were mark-
edly different (Figure 3b). As seen in the
K-M survival plot, the patients in the high-
glycolysis group had a poorer OS than that of the
patients grouped into the low-glycolysis group

lysis score was calculated using GSVA in  (Figure 3c). The global expression profiles also
B
Type HR (95% Cl) Weight
BLCA
BLCA —— 1.79 (0.95, 3.37) 5.97 BRCA
BRCA —— 1.89 (0.97, 3.68) 5.84 CESC
CESC — 250 (0.93,7.21) 4.52 COAD
COAD —— 0.67 (0.28, 1.63) 5.01
ESCA u 0.99 (0.40, 2.40) 499 ESCA
GBM — 1.03 (0.40, 2.68) 478 GBM
HNSC | — 2.82(1.55,5.12) 6.09 HNSC
KIRC —— 0.97 (0.46, 2.05) 553 KIRC
KIRP ——— 3.94(0.84,1848)  3.01 KIRP
LGG —_— 3.28 (1.16,9.24) 4.47 LGG
LIHC L 8.86(347,2263)  4.82
LUAD ) 3.46 (1.94, 6.17) 6.15 LIHG
Lusc = 0.71(0.40, 1.27) 6.16 LuAD
ov . N 0.72 (0.2, 1.66) 5.22 LUASC
PAAD ——— 3.03(1.11,8.27) 4.59 ov
PCPG : 10.70 (0.1, 1020.49) 0.54 PAAD
PRAD ——%—————  2065(0.70,604.85) 0.93 PCPG
READ —_— 0.24 (0.04, 1.40) 2,57
SARC e 3.72 (157, 8.82) 510 PRAD
STAD ——t ! 0.61(0.34, 1.09) 6.15 READ
TeCT —_— 0.79(0.01,40.21) 070 SARC
THCA —_— 4.91(040,60.07) 153 STAD
UCEC —— 1.39 (0.62, 3.10) 5.32 TGCT
Overall (I-squared = 68.6%, p = 0.000) 0 1.70 (1.20, 2.40) 100.00
NOTE: Weights are from random effects analysis ! THCA
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Figure 1. The prognostic value of glycolysis in pan-cancer patients.

(A) Forest plot of the correlation between glycolysis levels and OS of pan-cancer patients; (B) Heatmap shows P-values (including
age, gender, pathologic stage, and histological grade) with significance (P < 0.05, red); (C-F) Highlight of tumor molecular subtypes

that exhibit strong correlations with glycolysis.
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Figure 2. Validation of the prognostic value of hepatocellular carcinoma (HCC) in three independent cohorts.
(A) GSE14520; (B) GSE54236; (C) LIRI-JP.
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Figure 3. Exploration of metabolism-driven cancer types.

(A) Patients were divided into high- and low- glycolysis groups based on the gene expression of 72 signature genes generated by
K-means clustering; (B) Principal component analysis plot indicates that the two subgroups have distinct glycolysis gene expression
profiles; (C) Kaplan-Meier survival analysis curves for the two patient clusters; (D) Heatmap of the 8633 patients grouped by cluster,
with annotations associated with each cluster; (E) The ratio of patients with high and low glycolysis in different cancer types.



indicated variations between the two groups; var-
ied glycolysis levels significantly correlated with
the different clinical parameters (Figure 3d).
Notably, various types of tumors accounted for
different ratios of the high-glycolysis group to the
low-glycolysis group. This ratio was the highest in
kidney renal clear cell carcinoma (KIRC) patients
and lowest in prostate adenocarcinoma (PRAD)
and thyroid cancer (THCA) patients (Figure 3e).
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Glycolysis effects on multidimensional
molecular factors

Signaling pathways are characterized by frequent
somatic alterations and complex interactions with
each other. Systematic characterization and
exploration of the relationships between oncogenic
signaling pathway alterations and glycolysis are
therefore meaningful. In this study, the glycolysis
scores were significantly different between many
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Figure 4. Associations between glycolysis and 10 oncogenic signaling pathway alterations.

(A) Heatmap of glycolysis scores and pathway alterations; (B) Heatmap showing P-values (Mann-Whitney U test). Red indicates that

the glycolysis score is upregulated, while blue indicates that it is downregulated in the pathway alteration group.
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signaling pathways with and without alterations in
different types of cancers (Figure 4a). Glycolysis
was upregulated in the PI3K signaling pathway
alterations group compared with the no-
alterations group in 12 types of cancer; it was
also upregulated in the cell cycle, tumor protein
53 (TP53), and Hippo signaling pathway altera-
tions group compared with the no-alterations
group in ten types of cancer (Figure 4b).

We also explored the glycolysis-associated
mRNA expression profiles, as mRNA expression
serves as a link between genetic alterations and
protein actions. The genes that positively corre-
lated with glycolysis in more than 15 cancer
types were subjected to functional enrichment
analysis. We found that these genes were mainly
involved in cell proliferation-associated biological
processes and energy-related molecular functions
(Figure 5a). The pathway annotations indicated
that ‘cell cycle’ was the most significant term
related to the glycolysis alterations (Figure 5b).
The PPI network analysis also suggested that
some genes important for the cell cycle, such as

CDK1 and PLK1, were cores in the network
(Figure 5c).

At the protein level, some findings verified the
results based on transcriptomic data and led to
further discoveries (Figure 6a). Cyclin B1 was sig-
nificantly positively associated with the glycolysis
score in 16 types of tumors. FOXO3A PS318S321
and P27 were markedly negatively related to the
glycolysis score in seven types of tumors
(Figure 6b).

We also developed a network to show the rela-
tionships between glycolysis and proteins. On the
basis of Spearman’s correlation analysis, the glyco-
lysis-related proteins in each tumor type were
identified and used to build the correlative net-
work (Figure 6).

Possible positive correlation of glycolytic
activity with immune evasion

Tumor infiltration of lymphocytes is one of the key
mechanisms in cancer progression and therapeutic
response. Spearman’s correlation analysis showed
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associated genes; (C) Protein—protein interaction (PPI) network of glycolysis-associated genes.
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that the glycolysis scores significantly negatively cor-
related with the infiltration of lymphocytes and posi-
tively correlated with the infiltration of macrophages
and neutrophils (Figure 6). Programmed death-
ligand 1 (PD-L1) expression was higher in the
patients with high glycolysis scores than in those
with low scores. Increased glycolysis generally corre-
lated with increased T helper (TH) 2 cell infiltration,

whereas TH1 cell infiltration showed the opposite
correlation in most types of cancers (Figure 7).

Compounds potentially capable of targeting
glycolysis

The online tool Cmap was used to discover the
relationships between the genes, compounds, and

— = > r @ & e Frr = ¥ T | |
— T B ) 7 = e @ ¥ @ - * P
Tecr L % o > S
p— ] « e wrk * P * [ | e
e = * * * *x * *xx * *x * *
— D B x| *x * wx | e e
prAD | [ * * T T PR *x * *
*p<0.05
- " *x * [ . ™ = ik
- [ e e ] o = *p<0.01
% ok * 3 W o -
ov p <0.001
Lusc [ = w2 [ wxk = SR W * www | T
Correlation
Luap | * o o [ s P * W s R e | g e || s |
| K
. * Py P ik
02
. e o e e T * * = o
00
wre (I o e e @ o 7 = *x *
-02
wre S N = o ¥ wwe | R > e . o
i o4
o, * ¥ *x o+ o 3 *x * *x nw |
. * 0 R *
csca (I B *x * * * wxx * * *x
. * * T e * *x *x N P «
cesc [ oy * P - www | ||« *
srca (D e IR W w e e [NERE oo [N e P e
oce war e e e e e - | o
@ @ D> o 3 Nl D> <J 2 3 O 3 & <3 <] 3
Qé@e > «"d & @%‘\@ & o&F & & & 5 & & & A & & eé‘(& Q\z@ <& e@“@ &@ S &
J o ¢ S & : K
» 9 N ® o S S & SN N
& &S & ¥ ¢ @ & ¢ p & ¢ F P F ¢S ¥ &
& @ & < @é‘\ NS 4 < 5 ¥ F ¢ & &S & Gl & &
2 ¢ % N
& R ¢ ¢ & ¢ & & ¢ & &
& D & ~ PO W@
& P 2 < 58
© S & & @
& < S
A &
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biological processes and search for valuable tar-  in not less than ten cancer types. Sirolimus and
geted molecular compounds for glycolysis. We  LY-294,002, as mTOR inhibitors, were found to
identified 75 that were closely related to glycolysis  target glycolysis in all 23 cancer types (Figure 8a).
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(A) Heatmap showing a negative enrichment score of each compound from Cmap for each cancer type; (B) Heatmap showing each
Cmap compound (perturbagen) that shares mechanisms of action (rows) and sorted by descending number of compounds with
shared mechanisms of action.



Cmap mode-of-action (MoA) analysis revealed
that 42 mechanisms of action were shared by 44
of the compounds (Figure 8b). Nine compounds
shared the MoA of dopamine receptor antagonists.

Discussion

In this study, we systematically analyzed the prog-
nostic value and effects of glycolysis on molecular
signatures in 8633 primary human tumors across
23 cancer types. We gained insights into the rela-
tionship between glycolysis and low pan-cancer
tumor OS. Our study provides a comprehensive
view of glycolysis-associated molecular signatures,
including genome, transcriptome, and proteome
data. This work describes the relation between
glycolysis and immune evasion from immune cell
infiltration and immune-related indicators. Our
exploration leads to potentially actionable com-
pounds as candidates for alternative metabolism
therapy for solid tumors. Our integrative analysis
further suggests that glycolysis can impact tumors
in many ways.

Metabolic reprogramming fulfills tumors’
energy/nutrient requirements and is considered
a hallmark of cancer [2]. Previous studies state
that a higher glycolysis level significantly correlates
with a higher risk of adverse events or death in
many types of cancers, including head and neck
(28], lung [29], and esophageal [30]. With
advancements in next-generation technologies
and public cancer databases, it is now possible to
comprehensively analyze the prognostic value of
glycolysis in various cancer types. We found that
increased tumor glycolytic activity is associated
with poor clinical outcomes in the pan-cancer
sample. This finding is consistent with recent
work demonstrating that high glycolytic activity
positively correlates with a higher death risk. The
prognostic significance was stable in patients with
different clinicopathological parameters. These
results indicate fundamental and universal traits
of glycolysis in cancer prognosis.

By integrating multi-omics data, we observed
that oncogenic glycolysis is related to some mole-
cular characteristics. Multi-omics analysis can link
and integrate multilayered information and
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provide more reliable and accurate results than
those of single-platform analysis. The first charac-
teristic is perturbations in oncogenic signaling
pathways. Several important signaling pathways
are frequently genetically altered in cancer [31].
In the present study, patients with PI3K, cell
cycle, and TP53 pathway alterations had higher
glycolysis scores in multiple tumor types. At the
transcriptome level, we identified glycolysis-
associated genes, and gene functional enrichment
analysis indicated essential cell cycle and prolifera-
tion processes. Proteomics analysis revealed that
cell cycle regulatory protein cyclin B1 is an impor-
tant participant in the glycolysis process. Different
multi-omics data suggest that glycolysis is inextric-
ably related to tumor proliferation. The most basic
characteristic of cancer cells is continuous prolif-
eration [2]. Therefore, glycolysis fulfills the most
basic requirements of tumors.

Carcinogenesis and cancer progression modu-
lated by tumor glycolysis are arousing considerable
interest. However, the immune regulatory role of
glycolysis remains unclear. The high concentration
of lactate produced by the glycolytic process in
TME suppresses anticancer immune cells by dis-
turbing  their  intracellular  pH [32,33].
Furthermore, cancer glycolytic activity competes
with immune cells for glucose uptake [34,35],
whereby cancer cells effectively achieve immune
evasion. We found that increased tumor glycolytic
activity is related to poor tumor lymphocyte infil-
tration in most of the studied cancer types.
Previous studies also state that it is inversely asso-
ciated with the tumor infiltration of T cells in
melanoma, non-small-cell lung carcinoma
(NSCLC), and HNSC samples [15,36]. As for the
TH cells in the current work, increased glycolysis
scores strongly correlated with high TH2 and low
TH1 cell infiltration, which is an interesting phe-
nomenon. Preferential accumulation of immuno-
suppressive and TH2 cells, rather than antitumor
THI cells, are vital for tumor immune evasion
[37,38]. Similarly, the relationships between glyco-
lytic activity and the PD-L immune checkpoint
and TCR richness also suggest that increased gly-
colysis promotes tumor proliferation by immune
evasion.
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We queried Cmap using the gene expression
signatures from the glycolysis-associated gene ana-
lysis. Surprisingly, the Cmap analysis, which is
based on a limited number of treated cell lines,
very precisely selected drugs that have been shown
to affect cancer metabolism with specificity.
MTOR inhibitors were significantly enriched in
all cancer types and have been reported to inhibit
glycolysis-related tumorigenicity [39].
Interestingly, mTOR actively participates in T cell
function and activity [40]. Dopamine receptor
antagonists, the most frequent compounds in the
Cmap analysis, also showed a capacity to inhibit
tumor progression [41]. These translational ana-
lyses may provide alternative approaches to meta-
bolic cancer treatment.

Different cancers have similarities in cell cycle,
energy substance synthesis, cell proliferation, and
cancer progression. Pan-cancer research aims to
study these common pathways from the perspec-
tive of molecular microbiology to develop a cancer
treatment method that has the same treatment for
different  diseases. = Altered metabolism is
a hallmark of cancer, and glycolysis is one of the
important factors promoting tumor development.
In the present study, high-glycolysis-score tumors
were associated with worse prognoses across can-
cer types. Tricarboxylic acid (TCA) cycle, DNA
replication, tumor proliferation, and other cancer
hallmarks were more active in glycolysis-high
tumors. Growth signals, oncogene mutation, and
other potential signals could activate glycolysis,
thereby regulating the cell cycle, energy material
synthesis, cell  proliferation, and cancer
progression.

Our study provides a comprehensive view of
glycolysis-associated molecular signatures, includ-
ing genome, transcriptome, and proteome data.
Furthermore, we quantified 8633 patients across
different cancer types from TCGA and evaluated
their prognostic associations. The prognostic sig-
nificance of glycolysis was then validated using
three other independent datasets.

Conclusions

In summary, glycolysis could be a reliable predic-
tor of the clinical outcomes of tumors. This study

also provides a comprehensive catalog of molecu-
lar alterations associated with glycolysis and con-
tributes to our understanding of glycolysis, thereby
potentially leading to effective survival prediction,
treatment decision-making, and target therapy
identification.
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