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ABSTRACT
Tumor glycolysis is a major promoter of carcinogenesis and cancer progression. Given its complex 
mechanisms and interactions, comprehensive analysis is needed to reveal its clinical significance 
and molecular features. On the basis of a well-established glycolysis gene expression signature, 
we quantified 8633 patients with different cancer types from the Cancer Genome Atlas (TCGA) 
and evaluated their prognostic associations. High tumor glycolytic activity correlated with inferior 
overall survival in the pan-cancer patients (hazard ratio: 1.70, 95% confidence interval: 1.20–2.40, 
P = 0.003). The prognostic value of glycolysis correlated with the molecular subtypes and was 
stable regardless of clinical parameters. The prognostic significance of glycolysis was validated 
using three independent datasets. In addition, genome, transcriptome, and proteome profiles 
were utilized to characterize the distinctive molecular features associated with glycolysis. 
Mechanistically, glycolysis fulfilled the fundamental needs of tumor proliferation in multiple 
ways. Exploration of the relationships between glycolysis and tumor-infiltrating immune cells 
showed that glycolysis enabled the immune evasion of tumor cells. Mammalian target of rapa-
mycin (mTOR) inhibitors and dopamine receptor antagonists can effectively reverse the glycolytic 
status of cancers. Overall, our study provides an in-depth molecular understanding of tumor 
glycolysis and may have practical implications for clinical cancer therapy.
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Introduction

Carcinogenesis and tumor cell development are 
dependent on metabolic reprogramming to meet 
their energy and macronutrient requirements 
[1,2]. In alterations of metabolic reprogramming, 
the Warburg effect refers to the tendency of cancer 
cells to utilize glucose via glycolysis irrespective of 
oxygen availability [3,4]. Tumor glycolysis is 

a biological phenotype of most tumors and has 
served as a basis for cancer detection with positron 
emission tomography. Glycolysis is associated with 
advanced tumor progression, treatment resistance, 
and poor clinical outcomes [5,6]. It is also signifi-
cantly linked to many cancer molecular character-
istics, including proliferation, angiogenesis, and 
immune evasion [7,8]. Hence, targeting tumor 
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glycolysis is important for cancer therapy [9]. 
However, a systematic characterization of the clin-
ical and molecular characteristics of glycolysis is 
still needed.

In recent years, the multi-omics data from the 
Cancer Genome Atlas (TCGA) have driven the 
understanding of the molecular landscape of pri-
mary tumor beyond individual molecular plat-
forms by integrating genomic, transcriptomic, 
and proteomic characteristics and clinicopatho-
logical parameters [10]. The tumor glycolysis 
status is also related to multiple layers of mole-
cular alterations [11–14]. Many studies on the 
mechanisms of glycolysis have presented a clear 
picture of tumor characteristics. For example, 
upregulated tumor glycolysis was found to mod-
ulate T cell–mediated antitumor activity, thereby 
inhibiting melanoma patients’ response to adop-
tive T cell therapy [15]. Glycolysis can also 
enable the maintenance of strong tumorigenic 
activity on transcription factors, such as YAP/ 
TAZ [16]. Furthermore, glycolytic metabolism 
modulates the translation of hypoxia-inducible 
factor 1-alpha (HIF1A) to control T cell 
responses to hypoxia [17]. Together, these stu-
dies establish that glycolysis can lead to multiple 
layers of molecular changes and thus plays 
a pivotal role in cancer development. However, 
the mechanistic details underlying the cancer 
glycolysis phenotype remain unclear.

Using multi-omics data, we quantify glycolysis 
and reveal its prognostic value from pan-cancer 
perspectives. By integrating multi-omics data 
with genome, transcriptome, and proteome data, 
we specify molecular characteristics related to gly-
colysis. Finally, we identify specific molecular 
compounds that may eventually result in novel 
therapy strategies that can reverse the glycolytic 
status of cancers. These approaches provide an 
unprecedented opportunity to explore the biologi-
cal characteristics of tumors in great depth.

Our study aims to prove that glycolysis affects 
cancer progression by regulating the cell cycle, 
energy material synthesis, and cell proliferation 
in cancer, thereby providing an in-depth molecu-
lar understanding of tumor glycolysis and provid-
ing theoretical and technical support for clinical 
cancer treatment.

Materials and methods

Classification of tumor glycolysis scores across 
various cancer types

Molecular profiles, including oncogenic signaling 
pathways, messenger RNA (mRNA) expression, 
and protein expression profiles, were acquired 
from the TCGA pan-cancer project (https://gdc. 
cancer.gov/about-data/publications/pancanatlas). 
Genome-wide RNA sequencing (RNAseq) data 
profiles were obtained from the TCGA dataset 
using an Illumina HiSeq 2000 RNAseq system. 
Cancer-relevant proteins and phosphoproteins 
were detected by reverse-phase protein arrays. 
The gene signature for glycolysis 
(REACTOME_GLYCOLYSIS) was defined on the 
basis of 72 genes involved in glycolysis from the 
Molecular Signatures Database (MSigDB, http:// 
software.broadinstitute.org/gsea/msigdb). Only 
primary tumor samples with an overall survival 
(OS) of no less than 30 days were used to obtain 
reliable results for survival analysis. Finally, we 
analyzed 23 TCGA nonhematologic cancer types 
with a sample size ≥ 100. The glycolysis score for 
each tumor sample across the cancer types was 
calculated using gene set variation analysis 
(GSVA) [18].

Estimation of prognostic value of pan-cancer 
glycolysis

Univariate Cox analysis was performed to explore 
the relationship between the glycolysis scores and 
tumor patients’ OS. Then, meta-analysis was con-
ducted using Stata 14.0 (Stata Corporation, College 
Station, TX, USA) to integrate the univariate Cox 
survival analysis results into each type of cancer. 
The heterogeneity between individual studies was 
evaluated by the Q test: I2 > 50% and/or P ≤ 0.05 
indicated significant heterogeneity. The use of 
a random-effects or fixed-effects model was deter-
mined on the basis of the heterogeneity analysis 
results. Subgroup analyses stratified by age, gen-
der, and tumor stage were performed to further 
explore variations in the effect of glycolysis on OS.

We performed consensus cluster analysis to 
identify a global pattern of glycolysis across the 23 
types of cancers using the ConsensusClusterPlus 
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package in the software R [19]. The patients were 
grouped into two clusters according to glycolysis- 
related genes using two-class K-means clustering 
with the Euclidean distance. Principal component 
analysis (PCA) was used to observe the patients in 
the two clusters. The OS difference between the 
clusters was calculated by the Kaplan-Meier 
(K-M) method and the log-rank test.

Clinical and molecular characterizations 
related to glycolysis

We evaluated the glycolysis status for ten canoni-
cal signaling pathways with frequent genetic 
alterations: (1) cell cycle, (2) Hippo, (3) Myc, (4) 
Notch, (5) oxidative stress response/nuclear factor 
erythroid 2–related factor 2 (Nrf2), (6) phosphoi-
nositide 3-kinase (PI3K), (7) receptor tyrosine 
kinase (RTK)/RAS/mitogen-activated protein 
(MAP) kinase, (8) transforming growth factor 
beta (TGF-β), (9) p53, and (10) β-catenin/Wnt 
signaling [20]. A tumor sample was found to 
have changed on the basis of genes involved in 
pathways that had recurrently altered and mutated 
positions, known functional gene fusions/rearran-
gements, and epigenetic silencing calls. Then, the 
Mann-Whitney U test was performed to estimate 
the difference in the glycolysis scores of the path-
ways with and without alterations.

We also computed the correlation between the 
glycolysis scores, mRNA, and protein expression 
profiles. Spearman’s rank correlation was used to 
assess the correlation between the glycolysis scores 
and molecular factors. The glycolysis-associated 
genes and proteins in each cancer type were deter-
mined as follows: Spearman’s correlation |coeffi-
cient| > 0.3 and P < 0.05. We found that the 
glycolysis-associated genes were significantly posi-
tively correlated with the glycolysis scores in at 
least 15 cancer types. These genes were further 
subjected to gene ontology (GO) classification 
analysis using the R package clusterProfiler [21]. 
To ascertain the functional interactions between 
these glycolysis-related genes and the identified 
hub genes, protein-protein interaction (PPI) net-
works were constructed using the Search Tool for 

the Retrieval of Interacting Genes/Proteins 
(STRING) database version 11.0 (required interac-
tion score: > 0.9) [22].

Exploration of relation between increased 
glycolysis and immune evasion

Growing evidence suggests that increased glycoly-
sis actively interferes with immune cell functions. 
Thus, we examined the association between glyco-
lysis and immune status. The tumor immune 
microenvironment is an executor of immunother-
apy. Using the tool CIBERSORT, we obtained 22 
types of immune cells in six classes from the 
TCGA pan-cancer project: (1) lymphocytes 
(naïve B cells, memory B cells, naïve CD4 T cells, 
resting memory CD4 T cells, activated memory 
CD4 T cells, T follicular helper cells, regulatory 
T cells [Tregs], gamma delta T cells, CD8 T cells, 
resting NK cells, activated NK cells, plasma cells); 
(2) macrophages (monocytes, M0 macrophages, 
M1 macrophages, M2 macrophages); (3) dendritic 
cells (resting dendritic cells, activated dendritic 
cells); (4) mast cells (resting mast cells, activated 
mast cells); (5) neutrophils; and (6) eosino-
phils [23].

Antigen-specific T cell receptor and B cell 
receptor repertoires are critical for the recognition 
of malignant cells and may reflect a robust anti-
tumor response involving a large number of anti-
gen-specific adaptive immune cells.

Compounds targeting cancer glycolysis

To determine which molecules could be effective 
in cancer-inhibitory glycolytic activity, we per-
formed connectivity map (Cmap) analysis [24]. 
Cmap is a public online database similar to the 
Gene Set Enrichment Analysis (GSEA) database, 
which predicts target drugs on the basis of a query 
signature. Gene symbols were mapped to the HG- 
U133A probe set GPL96 platform ID. We identi-
fied 500 genes most positively associated and 500 
genes most negatively associated with the glycoly-
sis scores to query drugs matching the ‘reference’ 
signature. Compounds with an enrichment score < 
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0 and a P-value < 0.05 were identified as glycolysis 
antagonist drugs.

Results

The topic of the study which is the clinical signifi-
cance of the carcinoma in glycolysis and related 
molecular characteristics analysis was to verify the 
role of glycolysis in cancer (regulating the cell 
cycle, energy material synthesis, cell proliferation, 
and cancer progression), thereby facilitating an in- 
depth molecular understanding of tumor glycoly-
sis and providing theoretical and technical support 
for clinical cancer treatment. We quantified and 
evaluated prognostic associations in 8633 patients 
with different types of cancer in TCGA and vali-
dated the prognostic significance of glycolysis in 
three independent datasets.

Increased tumor glycolytic activity as 
indicator of inferior survival in various 
cancers

A total of 23 types of cancer in 8633 cases were 
identified in a survival analysis of glycolysis scores 
and OS. A 72-gene expression signature was used 
to calculate the glycolysis scores. The univariate 
Cox analysis showed that increased tumor glyco-
lytic activity was significantly associated with 
a lower OS in six types of cancers: liver hepatocel-
lular carcinoma (LIHC), lung adenocarcinoma 
(LUAD), head and neck squamous cell carcinoma 
(HNSC), sarcoma (SARC), brain low-grade glioma 
(LGG), and pancreatic adenocarcinoma (PAAD) 
(Table 1). A list of TCGA cancer type abbrevia-
tions is available at https://gdc.cancer.gov/ 
resources-tcga-users/tcga-code-tables/tcga-study- 
abbreviations. To evaluate the prognostic value of 
glycolysis in the pan-cancer patients, we combined 
the hazard ratios (HRs) for the OS. Increased 
tumor glycolytic activity correlated with an infer-
ior OS (HR: 1.70, 95% confidence interval: 1.20– 
2.40, P = 0.003; Figure 1a). Furthermore, we con-
ducted subgroup analysis to observe the prognos-
tic value of glycolysis in different 
clinicopathological parameters. We also analyzed 
the effects of glycolysis on OS by subgroups 

defined by age (< 60, ≥ 60 years), gender (female, 
male), and pathological stage (early stage, 
advanced stage). The subgroup analysis revealed 
that glycolysis is widespread and acts as an unfa-
vorable factor for tumor patients’ prognosis 
(Table 2).

To identify the clinical parameters associated 
with the glycolysis status in cancer, we compared 
the glycolysis scores between the different para-
meters. In many types of cancers, the glycolysis 
scores displayed a different status for each clinical 
feature (Figure 1b). For example, there were sig-
nificant differences between the early and 
advanced stages in seven types of cancer. We 
further explored the status of glycolysis in different 
molecular subtypes of tumors (Figure 1c–F). In the 
case of breast cancer, the glycolysis score was the 
lowest in the luminal A subtype, which has the 
best prognosis.

The prognostic value of glycolysis was the most 
significant in LIHC. Hence, three independent 
cohorts were used to validate the results: 
GSE14520 (N = 242) [25] and GSE54236 
(N = 78) [26], which were acquired from the 
Gene Expression Omnibus (GEO) repository, and 
the LIRI-JP dataset (N = 229) [27], which was 

Table 1. Univariate cox analysis of glycolysis score.
Study N Hazard ratio 95% confidence interval P-value

BLCA 399 1.793 0.954–3.367 0.070
BRCA 1052 1.894 0.974–3.684 0.060
CESC 273 2.591 0.931–7.214 0.068
COAD 426 0.672 0.277–1.631 0.380
ESCA 178 0.985 0.404–2.399 0.973
GBM 146 1.034 0.400–2.676 0.945
HNSC 512 2.819 1.553–5.117 0.001
KIRC 518 0.972 0.460–2.053 0.940
KIRP 278 3.941 0.840–18.483 0.082
LGG 481 3.276 1.161–9.243 0.025
LIHC 343 8.862 3.471–22.628 5.00E-06
LUAD 492 3.460 1.940–6.173 2.60E-05
LUSC 474 0.714 0.401–1.271 0.252
OV 295 0.724 0.316–1.658 0.444
PAAD 172 3.034 1.113–8.271 0.030
PCPG 172 10.703 0.112–1020.485 0.308
PRAD 494 20.645 0.705–604.846 0.079
READ 153 0.243 0.042–1.403 0.114
SARC 255 3.723 1.571–8.825 0.003
STAD 375 0.609 0.341–1.087 0.093
TGCT 130 0.787 0.015–40.206 0.905
THCA 502 4.915 0.402–60.072 0.213
THYM 118 0.112 0.008–1.580 0.105
UCEC 513 1.389 0.622–3.100 0.423
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downloaded from the International Cancer 
Genome Consortium (ICGC) database. The glyco-
lysis score was calculated using GSVA in 

hepatocellular carcinoma patients with an OS of 
no less than 30 days. On the basis of the median 
value of the glycolysis score, LIHC patients were 
divided into high- and low-glycolysis groups. The 
patients in the high-glycolysis group exhibited 
a lower OS (Figure 2).

Global patterns of glycolysis signatures 
across cancer types

According to the tumor expression levels of 72 
glycolysis genes, 2047 (6585) patients were 
assigned to the group with high (low) expression 
of glycolysis-associated genes (Figure 3a). The 
PCA plot shows that the two clusters were mark-
edly different (Figure 3b). As seen in the 
K-M survival plot, the patients in the high- 
glycolysis group had a poorer OS than that of the 
patients grouped into the low-glycolysis group 
(Figure 3c). The global expression profiles also 

Figure 1. The prognostic value of glycolysis in pan-cancer patients.
(A) Forest plot of the correlation between glycolysis levels and OS of pan-cancer patients; (B) Heatmap shows P-values (including 
age, gender, pathologic stage, and histological grade) with significance (P < 0.05, red); (C–F) Highlight of tumor molecular subtypes 
that exhibit strong correlations with glycolysis. 

Table 2. Subgroup analysis for the prognostic value of glyco-
lysis score.

Parameters

Types 
of 

cancer
No. of 

patients HR (95%CI) P-value Model

Age
Age <60 23 4034 1.82 (1.08–3.08) 0.025 Random 

effects
Age ≥60 22 4575 1.50 (1.01–2.22) 0.044 Random 

effects
Gender
Female 21 4477 1.62 (1.25–2.11) <0.001 Fixed 

effects
Male 20 4156 1.81 (1.11–2.93) 0.016 Random 

effects
Stage
I/II 15 3631 1.82 (1.07–3.08) 0.027 Random 

effects
III/IV 14 2078 1.56 (1.17–2.10) 0.003 Fixed 

effects
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Figure 2. Validation of the prognostic value of hepatocellular carcinoma (HCC) in three independent cohorts.
(A) GSE14520; (B) GSE54236; (C) LIRI-JP. 

Figure 3. Exploration of metabolism-driven cancer types.
(A) Patients were divided into high- and low- glycolysis groups based on the gene expression of 72 signature genes generated by 
K-means clustering; (B) Principal component analysis plot indicates that the two subgroups have distinct glycolysis gene expression 
profiles; (C) Kaplan–Meier survival analysis curves for the two patient clusters; (D) Heatmap of the 8633 patients grouped by cluster, 
with annotations associated with each cluster; (E) The ratio of patients with high and low glycolysis in different cancer types. 
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indicated variations between the two groups; var-
ied glycolysis levels significantly correlated with 
the different clinical parameters (Figure 3d). 
Notably, various types of tumors accounted for 
different ratios of the high-glycolysis group to the 
low-glycolysis group. This ratio was the highest in 
kidney renal clear cell carcinoma (KIRC) patients 
and lowest in prostate adenocarcinoma (PRAD) 
and thyroid cancer (THCA) patients (Figure 3e).

Glycolysis effects on multidimensional 
molecular factors

Signaling pathways are characterized by frequent 
somatic alterations and complex interactions with 
each other. Systematic characterization and 
exploration of the relationships between oncogenic 
signaling pathway alterations and glycolysis are 
therefore meaningful. In this study, the glycolysis 
scores were significantly different between many 

Figure 4. Associations between glycolysis and 10 oncogenic signaling pathway alterations.
(A) Heatmap of glycolysis scores and pathway alterations; (B) Heatmap showing P-values (Mann–Whitney U test). Red indicates that 
the glycolysis score is upregulated, while blue indicates that it is downregulated in the pathway alteration group. 
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signaling pathways with and without alterations in 
different types of cancers (Figure 4a). Glycolysis 
was upregulated in the PI3K signaling pathway 
alterations group compared with the no- 
alterations group in 12 types of cancer; it was 
also upregulated in the cell cycle, tumor protein 
53 (TP53), and Hippo signaling pathway altera-
tions group compared with the no-alterations 
group in ten types of cancer (Figure 4b).

We also explored the glycolysis-associated 
mRNA expression profiles, as mRNA expression 
serves as a link between genetic alterations and 
protein actions. The genes that positively corre-
lated with glycolysis in more than 15 cancer 
types were subjected to functional enrichment 
analysis. We found that these genes were mainly 
involved in cell proliferation–associated biological 
processes and energy-related molecular functions 
(Figure 5a). The pathway annotations indicated 
that ‘cell cycle’ was the most significant term 
related to the glycolysis alterations (Figure 5b). 
The PPI network analysis also suggested that 
some genes important for the cell cycle, such as 

CDK1 and PLK1, were cores in the network 
(Figure 5c).

At the protein level, some findings verified the 
results based on transcriptomic data and led to 
further discoveries (Figure 6a). Cyclin B1 was sig-
nificantly positively associated with the glycolysis 
score in 16 types of tumors. FOXO3A PS318S321 
and P27 were markedly negatively related to the 
glycolysis score in seven types of tumors 
(Figure 6b).

We also developed a network to show the rela-
tionships between glycolysis and proteins. On the 
basis of Spearman’s correlation analysis, the glyco-
lysis-related proteins in each tumor type were 
identified and used to build the correlative net-
work (Figure 6).

Possible positive correlation of glycolytic 
activity with immune evasion

Tumor infiltration of lymphocytes is one of the key 
mechanisms in cancer progression and therapeutic 
response. Spearman’s correlation analysis showed 

Figure 5. Gene functional enrichment analysis of glycolysis-associated genes.
(A) Gene ontology of glycolysis-associated genes; (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of glycolysis- 
associated genes; (C) Protein–protein interaction (PPI) network of glycolysis-associated genes. 
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that the glycolysis scores significantly negatively cor-
related with the infiltration of lymphocytes and posi-
tively correlated with the infiltration of macrophages 
and neutrophils (Figure 6). Programmed death- 
ligand 1 (PD-L1) expression was higher in the 
patients with high glycolysis scores than in those 
with low scores. Increased glycolysis generally corre-
lated with increased T helper (TH) 2 cell infiltration, 

whereas TH1 cell infiltration showed the opposite 
correlation in most types of cancers (Figure 7).

Compounds potentially capable of targeting 
glycolysis

The online tool Cmap was used to discover the 
relationships between the genes, compounds, and 

Figure 6. Correlation network of glycolysis-related proteins.
(A) Red lines show proteins positively related to glycolysis, while blue lines show proteins negatively related to glycolysis; (B) Bar plot 
indicates that cyclin B1 positively correlates with glycolysis in 16 types of cancer. 

Figure 7. Associations between glycolysis and immune cell infiltrations.
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biological processes and search for valuable tar-
geted molecular compounds for glycolysis. We 
identified 75 that were closely related to glycolysis 

in not less than ten cancer types. Sirolimus and 
LY-294,002, as mTOR inhibitors, were found to 
target glycolysis in all 23 cancer types (Figure 8a). 

Figure 8. Correlation of glycolysis with drug resistance: connectivity map analysis.
(A) Heatmap showing a negative enrichment score of each compound from Cmap for each cancer type; (B) Heatmap showing each 
Cmap compound (perturbagen) that shares mechanisms of action (rows) and sorted by descending number of compounds with 
shared mechanisms of action. 
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Cmap mode-of-action (MoA) analysis revealed 
that 42 mechanisms of action were shared by 44 
of the compounds (Figure 8b). Nine compounds 
shared the MoA of dopamine receptor antagonists.

Discussion

In this study, we systematically analyzed the prog-
nostic value and effects of glycolysis on molecular 
signatures in 8633 primary human tumors across 
23 cancer types. We gained insights into the rela-
tionship between glycolysis and low pan-cancer 
tumor OS. Our study provides a comprehensive 
view of glycolysis-associated molecular signatures, 
including genome, transcriptome, and proteome 
data. This work describes the relation between 
glycolysis and immune evasion from immune cell 
infiltration and immune-related indicators. Our 
exploration leads to potentially actionable com-
pounds as candidates for alternative metabolism 
therapy for solid tumors. Our integrative analysis 
further suggests that glycolysis can impact tumors 
in many ways.

Metabolic reprogramming fulfills tumors’ 
energy/nutrient requirements and is considered 
a hallmark of cancer [2]. Previous studies state 
that a higher glycolysis level significantly correlates 
with a higher risk of adverse events or death in 
many types of cancers, including head and neck 
[28], lung [29], and esophageal [30]. With 
advancements in next-generation technologies 
and public cancer databases, it is now possible to 
comprehensively analyze the prognostic value of 
glycolysis in various cancer types. We found that 
increased tumor glycolytic activity is associated 
with poor clinical outcomes in the pan-cancer 
sample. This finding is consistent with recent 
work demonstrating that high glycolytic activity 
positively correlates with a higher death risk. The 
prognostic significance was stable in patients with 
different clinicopathological parameters. These 
results indicate fundamental and universal traits 
of glycolysis in cancer prognosis.

By integrating multi-omics data, we observed 
that oncogenic glycolysis is related to some mole-
cular characteristics. Multi-omics analysis can link 
and integrate multilayered information and 

provide more reliable and accurate results than 
those of single-platform analysis. The first charac-
teristic is perturbations in oncogenic signaling 
pathways. Several important signaling pathways 
are frequently genetically altered in cancer [31]. 
In the present study, patients with PI3K, cell 
cycle, and TP53 pathway alterations had higher 
glycolysis scores in multiple tumor types. At the 
transcriptome level, we identified glycolysis- 
associated genes, and gene functional enrichment 
analysis indicated essential cell cycle and prolifera-
tion processes. Proteomics analysis revealed that 
cell cycle regulatory protein cyclin B1 is an impor-
tant participant in the glycolysis process. Different 
multi-omics data suggest that glycolysis is inextric-
ably related to tumor proliferation. The most basic 
characteristic of cancer cells is continuous prolif-
eration [2]. Therefore, glycolysis fulfills the most 
basic requirements of tumors.

Carcinogenesis and cancer progression modu-
lated by tumor glycolysis are arousing considerable 
interest. However, the immune regulatory role of 
glycolysis remains unclear. The high concentration 
of lactate produced by the glycolytic process in 
TME suppresses anticancer immune cells by dis-
turbing their intracellular pH [32,33]. 
Furthermore, cancer glycolytic activity competes 
with immune cells for glucose uptake [34,35], 
whereby cancer cells effectively achieve immune 
evasion. We found that increased tumor glycolytic 
activity is related to poor tumor lymphocyte infil-
tration in most of the studied cancer types. 
Previous studies also state that it is inversely asso-
ciated with the tumor infiltration of T cells in 
melanoma, non-small-cell lung carcinoma 
(NSCLC), and HNSC samples [15,36]. As for the 
TH cells in the current work, increased glycolysis 
scores strongly correlated with high TH2 and low 
TH1 cell infiltration, which is an interesting phe-
nomenon. Preferential accumulation of immuno-
suppressive and TH2 cells, rather than antitumor 
TH1 cells, are vital for tumor immune evasion 
[37,38]. Similarly, the relationships between glyco-
lytic activity and the PD-L immune checkpoint 
and TCR richness also suggest that increased gly-
colysis promotes tumor proliferation by immune 
evasion.
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We queried Cmap using the gene expression 
signatures from the glycolysis-associated gene ana-
lysis. Surprisingly, the Cmap analysis, which is 
based on a limited number of treated cell lines, 
very precisely selected drugs that have been shown 
to affect cancer metabolism with specificity. 
MTOR inhibitors were significantly enriched in 
all cancer types and have been reported to inhibit 
glycolysis-related tumorigenicity [39]. 
Interestingly, mTOR actively participates in T cell 
function and activity [40]. Dopamine receptor 
antagonists, the most frequent compounds in the 
Cmap analysis, also showed a capacity to inhibit 
tumor progression [41]. These translational ana-
lyses may provide alternative approaches to meta-
bolic cancer treatment.

Different cancers have similarities in cell cycle, 
energy substance synthesis, cell proliferation, and 
cancer progression. Pan-cancer research aims to 
study these common pathways from the perspec-
tive of molecular microbiology to develop a cancer 
treatment method that has the same treatment for 
different diseases. Altered metabolism is 
a hallmark of cancer, and glycolysis is one of the 
important factors promoting tumor development. 
In the present study, high-glycolysis-score tumors 
were associated with worse prognoses across can-
cer types. Tricarboxylic acid (TCA) cycle, DNA 
replication, tumor proliferation, and other cancer 
hallmarks were more active in glycolysis-high 
tumors. Growth signals, oncogene mutation, and 
other potential signals could activate glycolysis, 
thereby regulating the cell cycle, energy material 
synthesis, cell proliferation, and cancer 
progression.

Our study provides a comprehensive view of 
glycolysis-associated molecular signatures, includ-
ing genome, transcriptome, and proteome data. 
Furthermore, we quantified 8633 patients across 
different cancer types from TCGA and evaluated 
their prognostic associations. The prognostic sig-
nificance of glycolysis was then validated using 
three other independent datasets.

Conclusions

In summary, glycolysis could be a reliable predic-
tor of the clinical outcomes of tumors. This study 

also provides a comprehensive catalog of molecu-
lar alterations associated with glycolysis and con-
tributes to our understanding of glycolysis, thereby 
potentially leading to effective survival prediction, 
treatment decision-making, and target therapy 
identification.
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