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According to Brown and Cai, Thyroid hormones (THs) have been considered “the first
developmental morphogen ever discovered” [1]. This assumption arises from the very first
observation of their capability to trigger amphibian metamorphosis at the beginning of
the 20th Century [2]. From that point, a long journey started and investigations pointed
out the pleiotropic role played by THs in regulating developmental as well as homeostatic
processes in several vertebrates’ organs. The classical model of amphibian metamorphosis
remains a fundamental example of THs multivarious role as morphogen, since the increase
in circulating THs can induce at the same time in different organs apoptosis together with
growth and neo-morphogenesis [3]. The mechanisms by which THs can control these very
diverse developmental programs depending on the cell type and tissue is still puzzling and
still actively investigated. Indeed, to better understand this diversity we need to take into
account different elements involved in this signaling pathway, some of them conserved
also in invertebrate taxa. There are three key components that have also been identified
in a few non vertebrate taxa. In vertebrates the thyroid peroxidase (TPO) synthesizes the
pro-hormone L-thyroxine using iodine and tyrosine as precursors. Thyroid gland releases
THs, namely L-thyroxine (T4) and triiodothyronine (T3), which act at a cellular level. The
selenoprotein iodothyronine deiodinases (DIO) are also important actors of intracellular
activity for THs, since they locally convert T4 into T3 or rT3 (reverse triiodothyronine)
or T3 in T2, thus regulating T3 availability [4]. Finally, genomic and non-genomic TH
actions depend upon thyroid hormone nuclear receptors (TRs), which are T3-modulated
transcription factors, able to bind DNA regions named Thyroid hormone Responsive
Elements (TREs) in order to regulate the transcription of target genes [5].

This article collection highlights the role of THs in different tissues, taking into account
data from classical and novel models. The work of Esposito et al., gave an insight on the
evolution of THs signalling comparing the homologies of the available sequences of TPO,
DIOs, and THRs. Thus, their study supports the hypothesis of the evolutionary adaptation
of a functional thyroid hormone signaling in non-vertebrate chordates [6]. Nittoli et al. eval-
uate the TH disrupting activity of pesticides, in the context of testicular toxicity comparing
mouse and zebrafish. In particular, the authors proposed the possibility to use zebrafish
as a suitable model to go in depth and dissect such responses [7]. The review from Zekri
et al., provides an interesting summary of THs role in controlling adaptive thermogenesis
(i.e., high energy expenditure and low body mass index) pointing out the debate of local
versus central control of THs activity [8]. Finally, the classical model of amphibian meta-
morphosis is still shown to be a fundamental model to apply to new techniques, as well as
new biological questions. Indeed, looking at Xenopus tropicalis metamorphosis, both the
cross-talk of THs and glucocorticoids and the intestinal morphogenesis are explored using
state-of-the-art functional genomic and developmental biology approaches by Buisine [9]
and Shibata [10], respectively.
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Throughout these articles the roles and mechanisms of action of THs are covered
in different fields of interest including non-mammalian models. Taken together, these
contributions should be of wide interest for both scientists of fundamental fields and
physicians for translational approaches.
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