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Certainly the most common type of tissue injury to the body involves the 
almost daily insults induced nonspecifically by mechanical means. Tissue in- 
jury, whether it be in the form of an abrasion, a laceration, or a large area of 
severely damaged tissue, almost invariably is associated with the onset of the 
acute inflammatory response, which not only provides a protective shield 
against infection but also marks the first in a series of events leading to the 
intricate process of healing. The reason for the development of the acute in- 
flammatory response under such conditions is completely obscure. 

Hurley in 1964 presented evidence that when various tissues of the rat were 
minced and individually incubated with rat serum, a factor chemotactic for 
neutrophilic granulocytes appeared (1). He postulated that the interaction of a 
substance in tissue with a factor in serum resulted in the generation of a chemo- 
tactic product, the nature of which was not defined. The following studies 
indicate that many tissues of the rat contain a protease, trypsin-like in nature, 
which can cleave the third component of complement (C'3) into chemotac- 
tically active fragments. Not only does this provide a possible explanation for 
the pathogenesis of the acute inflammatory response to injured tissue, but it 
emphasizes once again a role for the complement system in the generation by 
nonimmunological means of phlogistic factors capable of triggering the acute 
inflammatory response. 

Materials and Methods 
Chemotaxis.--The micropore filter method was used, with chambers that have been de- 

scribed previously (2). Rabbit neutrophils from a glycogen-induced peritoneal exudate were 
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employed. The "Principles of Laboratory Animal Care" as promulgated by the National 
Society for Medical Research were observed during this study. 

Tissue Minces.--150 g adult male Wistar rats were anesthetized with ether and exsan- 
guinated from the inferior vena cava. Wet fragments of various organs or tissues were rinsed 
in saline, weighed, and diced with a razor blade on a glass plate. Unless otherwise indicated, 
tissue minces were incubated in saline, fresh rat serum, or preparations of purified human 
complement components for the appropriate interval of time at 37°C. The tissue was then 
removed by centrifugation, and the supernatant was tested for chemotactic activity. 

Complement PreparoZions.--Preparations of highly purified human complement consisting 
of the third (file-globulin or C3) and fifth (/51F-globulin or C5) components were obtained 
according to the methods of Nllsson and Miiller-Eberhard (3). Antibody to rat C3 (anti-C3 
or anti-file) was obtained by appropriate immunization of rabbits (4). Rat  serum was treated 
with KSCN according to the method of Dalmasso and Mifller-Eberhard (5) in order to deplete 
C3 and C5 activity. When ethylenediaminetetmacetate (EDTA) (Aldrich Chemical Co., St. 
Louis, Me.) was employed, appropriate dilutions were made from a 0.02 ~t stock solution, pH 
7.3. 

Ultracentrifugal Analysis.--Purified human C3 treated with heart tissue was analyzed by 
ultracentrifugation in a sucrose density gradient. Centrifugation was performed at 55,000 
rpm for 15 hr (4°C) in sucrose (5-350/0) dissolved in phosphate buffer (pH 7.3, ionic strength 
0.05). Details of this procedure are described elsewhere (2, 6). 

Gd Filtration.--The same tissue-treated C3 preparation used for density gradient analysis 
was also eluted from Sephadex G-75 (Pharmacia, Piscataway, N.J.) with phosphate buffer 
(pH 7.3, ionic strength 0.05), and the fractions were scanned for chemotactic activity. Protein 
or peptide markers in the density gradients included bovine serum albumin, cytochrome c 
(both from Mann Research Laboratories, New York, N. Y.), and glucagon (Eli Lilly and Co., 
Indianapolis, Ind.). 

Enzyme Stndies.--CrystaiYlzed trypsin and chromatographically purified soybean trypsin 
inhibitor were products of Mann Research Laboratories. Each was dissolved in phosphate- 
buffered saline (pH 7.3) immediately" before use. Organophosphonate compounds of the type 
previously used in chemotaxis experiments (7) and employed under a variety of experimental 
conditions in which inhibition of serine esterases is desired (8) were kindly supplied by  Dr. 
Elmer L. Becker (Walter Reed Army Institute of Research). The homologous phosphonate 
series used included the ¢0-chloroalkyl p-nitrophenyl ethyl phosphonates containing alkyl 
chains of 3, 4, 5, or 6 carbon atoms with the chloro group in the terminal carbon atom. I t  is 
well known that these compounds inhibit many types of esterases, including trypsin, chymo- 
trypsin, and choline esterases, each of which has a serine atom at or near the active site of the 
enzyme (8). Heart tissue was pretreated with the appropriate phosphonate dissolved in phos- 
phate-buffered saline (pH 7.3) in a volume of 0.5 ml. After incubation at room temperature for 
20 min, tissues were diluted to 8 ml with buffered saline and washed twice before incubation 
with rat serum. 

Competitive substrate inhibition was studied using heart tissue, which contains a protease 
capable of hydrolyzing rat or human C3. In order to determine whether a defined ester could 
competitively inhibit this reaction, various synthetic amino acid esters were added with the 
substrate (consisting of purified human C3 or C3 in rat serum), mixed with heart tissue, and 
incubated at 37°C for 90 min. To provide adequate controls in this experiment, esters were 
added either at the beginning or at  the end of the incubation period. The tissue was then re- 
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moved by centrlfugation, and the superuatant was tested for chemotacfic activity. The follow- 
ing synthetic esters, obtained from Mann Research Laboratories, New York, N. Y., were used: 
p-tosyl-L-arginine methyl ester HCI (TAMe), M.A. (Mann assayed); benzoylarginine methyl 
ester hydrochloride (BAMe), M.A.; N-acetyltyrosine ethyl ester, M.A.; glycylglycine ethyl 
ester; and glycine ethyl ester. 

RESULTS 

Ability of Various Tissues to Generate Chemotactic Activity in Serum.--Six 
different tissues from rats were tested for their ability to generate chemotactic 
activity in fresh autologous rat serum. In the experiments to be described, any 
activity found in untreated rat serum or in supernatants of tissue incubated in 

TABLE I 
Ability of Various Rat Tissues to Generate Chemotactic Activity in Rat Serum 

Tissue* 
Chemotactic activity$ 

Exp. A Exp. B 

Heart 300 300 
Lung 120 35 
Kidney 0 180 
Liver 200 0 
Spleen 320 100 
Skeletal muscle 0 

* 10 mg tissue/O.1 ml normal rat serum, 37°C, for 90 min. 
:~ Chemotactic values have been corrected for background activity due to tissue by itself 

and serum by itself. 

saline was subtracted from the values obtained by incubating tissue in serum. 
In general, such control values were less than 20 % of activity found in serum 
incubated with tissue. In two different experiments it became evident that most 
tissues were capable of generating chemotactic activity in rat serum (Table I). 
There was some variability between liver and kidney from one experiment to 
the next, but in several subsequent experiments both tissues generated chemo- 
tactic activity in rat serum, kidney tending to be more active. Heart tissue has 
consistently been the most effective tissue for generation of chemotactic activity 
in serum, whereas skeletal muscle has shown little or no ability. As a general 
rule, it can be stated that most tissues of the rat are able to generate chemotactic 
activity in homologous serum. 

Chemotactic Activity as a Function of Dose of Heart Tissue and Rat Serum.--In 
order to define the features of this chemotactic factor-generating system, the 
amount of serum was varied, maintaining a constant reaction volume of 0.3 ml 
(phosphate-buffered saline used as necessary) with 25 mg heart tissue. Fig. 1 
shows that the amount of chemotactic activity appearing in the supernatant 
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was related to the amount of sermn used. Maximal activity was achieved at 
0.2 ml, with a drop-off in chemotactic activity when 0.3 ml serum was used. 
Fig. 2 indicates that with a constant amount of serum, the chemotactic activity 
appearing was a function of the amount of heart tissue used, 40 rag/0.1 ml 
serum giving maximal activity, whereas the largest dose of heart tissue (50 
rag/0.1 ml serum) resulted in considerably less chemotactic activity. The reason 
for this reduction in activity is not known. 

Chemotactic Activity as a Function of Duration of Incubation.--The amount 
of chemotactic activity generated by the interaction of heart tissue with serum 
was directly related to the duration of incubation of heart tissue with rat serum 
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FIG. 1. Chemotactic activity as a function of the amount of serum (milliliters), using 25 mg 
heart  tissue in a total  volume of 0.3 ml. 

at 37°C (Fig. 3, experiments A and B). Maximal activity appeared in the super- 
natant after an incubation period of 60-90 min. Shorter periods of incubation 
resulted in less activity, and prolongation of the period beyond 90 min did not 
result in additional chemotactic activity. Also shown in this figure is the ability 
of heart tissue to react with human C3 to give chemotactic activity. In this 
case, a fairly abrupt reduction in activity occurred if the period of incubation 
was extended beyond 90 min. The ability of C3 to substitute for serum is 
discussed in following sections. 

Requirements of Serum in Generation of Chemotactic Activity.--In order to find 
out more about the way in which heart tissue interacted with rat serum to 
result in chemotactic activity, several manipulations were performed. The 
controls, consisting of supernatants from heart tissue incubated in saline or 
serum, and serum by itself, as well as heart-serum-EDTA, are listed in Table 
II. Heating of rat serum before or after incubation with heart tissue precluded 
the appearance of, or resulted in the disappearance of, chemotactic activity. 
Compelling evidence that the chemotactic factor was related to C3 was provided 
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by the finding that anti-C3 (~lc-globulin) abolished chemotactic activity re- 
gardless of whether the antibody was added at the beginning or the end of the 
incubation period. However, the fact that EDTA in serum caused a 3-fold 
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FIG. 2. Chemotactic activity as a function of the amount of heart  tissue, with a constant 
amount of rat  serum. 0.I ml serum was tested for chemotactic activity. 
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FIG. 3. Chemotact ic ac t iv i ty  as a funct ion of the dura t ion  of  incubat ion of  10 mg hear t  
tissue in 0.1 m] serum or  O.1 m] (100 #g) human C3 (/~lo-g]obulin). 

enhancement in chemotactic activity indicated that conventional triggering of 
the complement system (requiring the first and the second components of 
complement) was not occurring. The mechanism of enhancement of chemotactic 
activity by EDTA has not been determined. It also became apparent that the 
presence of trypsin inhibitor in the system precluded generation of the chemo- 
tactic factor (Table II), suggesting the role of a proteolytic enzyme. 
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Additional evidence that  C3 was involved in generation of chemotactic 

activity is presented in Table I I I .  Here the enhancing effect of E D T A  in 
development of chemotactic activity is again seen. Rat  serum treated with 

TABLE II 

Conditions for Generation of Chemotactic Activity in Serum 

Preparation* Chemotactic activity 

Heart + saline 
Heart + rat serum 
Rat serum 
Rat serum + EDTA (0.02 M) 
Heart + heated rat serum (56°C, 30 rain) 
Heart + rat serum, then heated 
Heart + rat serum + 50 #1 anti-rat C3 added: 

Before incubation 
After incubation 

Heart + rat serum + EDTA (0.02 M) 
Heart + rat serum + trypsin inhibitor (50 #g) 

3 
125 
35 
16 
35 
45 

20 
35 

350 
40 

* 20 nag heart tissue, 0.1 ml serum, incubation for 90 min at 37°C. 

TABLE III 

Evidence That C3 is Substrate .for Tissue Protease 

Preparation tested Chemotactic activity 

Experiment A 
Heart + saline 0 
Heart + serum 160 
Heart + serum + EDTA (0.02 M) 490 
Serum 0 
Heart + KSCN serum 0 
Heart KSCN serum + 100 #g C3 190 

Experiment B 
Heart + 50 #g C3 270 
50 # g  C3 0 
Heart + 50 #g C3 + trypsin inhibitor (50 #g) 0 
Heart + 50 #g C3 + 0.02 ~ EDTA + trypsin inhibitor: 

At beginning 17 
At end 400 

Heart + 50 #g C5 0 

KSCN in order to inactivate C3 and C5 failed to support generation of activity 
(experiment A). However, the addition of 100 gg human  C3 corrected this 
deficiency. Tha t  C3 alone, but  not  C5, was able to support generation of 
chemotactic activity is shown by experiment B, Table I I I .  The addition of 
t rypsin inhibitor to the tissue-C3 mixture blocked the appearance of chemo- 
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tactic activity, as was the case when serum instead of C3 was used (Table II). 
And, just as EDTA enhanced the amount of chemotactic activity in serum 
produced by heart tissue, it also enhanced the ability of heart tissue to generate 
chemotactic activity in purified C3. Using the heart-C3-EDTA system, trypsin 
inhibitor was effective only if added at the beginning of the incubation period. 
Little effect was found if the inhibitor was added at the end of the incubation 
time (Table III). In line with the effect of anti-C3 on chemotactic activity, the 
specificity for C3 in the reaction became apparent when it was found that 
incubation of human C5 (#~-globulin) with heart tissue was unproductive of 
chemotactic activity (Table III, experiment B). 
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FIG. 4. Dose response of chemotactic activity appearing in heart tissue-human C3 ( ~ c -  
globulin) mixture. 

Dose Response of C3 Incubated with Heart Tissue.--Much in accord with what 
was found with rat serum (Fig. 1), the amount of human C3 (/31e-globulin) 
added to heart tissue determined the amount of chemotactic activity appearing. 
In two different experiments, parallel dose-response curves were obtained (Fig. 
4, experiments A and B). In experiments not reported here, kidney, spleen, 
lung, and liver also had the ability to generate chemotactic activity when 
incubated with human C3, indicating that this is a common feature of the 
tissue studied. We have also had the opportunity to study fresh human tissues 
from the various organs and have found them also to be active in generating 
chemotactic activity either in autologous serum or in purified C3. 

Identification of Chemotactic Factor as a Split Product of C3.--The foregoing 
studies strongly suggested that the chemotactic factor generated by interaction 
of heart tissue with serum was a product of C3, possibly a cleavage product 
produced by the action of a proteolytic enzyme in heart tissue. In order to assess 
this possibility, C3 was incubated with heart tissue (in the same manner de- 
scribed in Fig. 4), and the supernatant was subjected to analysis by gel filtration 
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and ultracentrifugation. Sucrose density gradient analysis of the treated C3 
revealed a heterogeneity of chemotactic factors produced by incubation with 
heart (Fig. 5, middle frame) or heaxt-EDTA (Fig. 5, bottom frame), with 
chemotactic activity appearing in the general position determined by a cyto- 
chrome c marker (Fig. 5, top frame) and a zone of more rapidly sedimenting 

Fro. 5. Sucrose density gradient analysis of human C3 treated with heart tissue, showing 
positions of chemotactic activity (vertical bars), C3, and protein standards. C3 was quanti- 
tated by immunoditfusion in agar gel. 

activity which varied according to the preparation. I t  also became apparent 
that the appearance of chemotactic activity could be related to reduction in the 
velocity of sedimentation of C3. Calculations revealed a drop in the known 
sedimentation rate of 9.5 for C3 to values between 8.5 (bottom frame of Fig. 5) 
and 7.4 (middle frame of Fig. 5). This reduction seems to depend upon par- 
ticular conditions of the experiment and is in line with the concept that the 
chemotactic factor is a fragment split from the native C3 molecule. 

More rigorous study of the C3 cleavage products with chemotactic activity 
was carried out by filtration of the treated C3 in Sephadex G-75 (Fig. 6). 
Heterogeneity of chemotactic activity was confirmed with the finding of zones 
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of chemotactic activitv coinciding with the cytochrome marker as well as 
activity in a position between the bovine serum albumin and cytochrome c 
markers. Using the Andrews ulot to estimate molecular weight (9), the approxi- 
mate weights of these C3 fragments were 30,000 and 14,000. In repeated experi- 
ments of this kind, chemot~tic activity has been found consistently in the 
vicinity of the cytochrome marker, whereas the other zone, representing a less 
retarded factor in gel filtration, has varied between the void volume and the 

Fig. 6. Behavior of chemotactic factors in gel filtration. Human C3 was pretreated with 
rat  heart tissue, then eluted from Sephadex G-75. Two major zones of chemotactic activity 
are present. BSA is bovine serum albumin. 

cytochrome position. Chemotactic activity has thus far not been found in a 
more retarded position (i.e. beyond the cytochrome marker). 

Characterization of a Protease in Heart Tissue.--It appeared likely that a 
trypsin-like enzyme in heart tissue was involved in the generation of chemo- 
tactic factors from C3. In order to determine this possibility, heart tissue was 
pretreated with saline or with trypsin inhibitor or the chloroalkyl phosphonate 
series (inactivators of serine esterases), since both types of compounds would be 
expected to inhibit a trypsin-like enzyme. Mter a 20 min preincubation at room 
temperature, heart tissues were washed twice and then added to rat serum and 
incubated for 90 rain. As is evident in Table IV, pretreatment with trypsin 
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inhibitor completely blocked the ability of heart  tissue to interact with serum 
and generate a chemotactic factor. In  varying degrees, from 55 to 100%, the 
various chloroalkyl phosphonates also inhibited the capacity of heart  tissue to 
generate chemotactic activity in rat serum. 

Abil i ty  of Esters to Interfere with Action of Tissue Protease on C 3 . - - I t  appeared 
possible to obtain information on the nature of the heart  enzyme by the addition 
of amino acid esters tha t  would compete with the C3 substrate. Experiments 
listed in Table V were devised to test this possibility. Both rat serum and 
purified human C3 were used as the source of substrate, and esters were added 

TABLE IV 
Inhibition of a Protease in Heart Tissue by Trypsin Inhibitor and Phosphonate Compounas 

Reduction in chemotactlc 
Pretreatment of heart tissue activity generated in rat serum 

% 

None* 0 

3-Chloroalkyl phosphonate~ 94 
4- " " ~ 100 
5- " " ~/ 55 
6- " " :[ 78 

Trypsin inhibitor (200 #g in 0.4 ml) 100 

* Controls included 25 nag heart tissue incubated in saline for 20 min at room tempera- 
ture, washed twice in saline, then incubated in rat serum for 90 rain at 37°C. Respective 
negative control (tissue alone) and positive control (heart + serum) chemotactic values were 
30 and 180. 

25 mg heart tissue pretreated with 0.4 ml 8 X 10 -4 M phosphonate as above, then washed 
twice and incubated with rat serum. The same protocol was followed with the trypsin in- 
hibitor. 

at  either the start or the end of the period of incubation. Conditions included 
20 mg heart  tissue, 0.1 ml ester solution (0.07 M), and 0.1 ml rat serum or C3 
(100 #g). After incubation, the tissue was removed by centrifugation and the 
supernatant was tested for chemotactic activity. When necessary, the pH of the 
supernatant was adjusted to neutrality before testing for chemotactic activity. 
I t  was found that  esters appropriate to the functional features of an enzyme 
like trypsin (TAMe and BAMe) were effective inhibitors in the generation of 
chemotactic activity, whereas the aromatic amino acid ester N-acetyltyrosine 
ethyl ester and other esters (glycine ethyl ester and glycylglycine ethyl ester) 
had little or no effect. The important  control in this experiment, to rule out  
nonspecific "toxic" effects of esters on cells, was the addition of ester at  the end 
of the period of incubation. With a single exception, only TAMe and BAMe 
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inhibited the generation of chemotactic activity if added at the beginning of the 
period of incubation of tissue with substrate. N-Acetyltyrosine ethyl ester had 
inhibitory effects (36-43 % when serum was used as the substrate) that were 
nonspedfic; that is, the inhibition was unrelated to the period of incubation of 
tissue with substrate. When purified C3 was used as the substrate, the ester was 
ineffective regardless of the time of addition (Table V). These results are 
compatible with the notion that the protease in heart tissue is a trypsin-like 
enzyme. 

TABLE V 

Inhibition by Amino Acid Esters of Chemotactic Factor-Generating Capacity of Heart Tissue 

Ester (0.07 M) 

p-Tosyl-L-arginine methyl ester 
Benzoylarginine methyl ester 
N-Acetyltyrosine ethyl ester 
Glyeine ethyl ester 
Glycylglycine ethyl ester 

Ester added to serum Ester added to C3 

Before* Alter Before* After 
% inhibition % inhibition 

90 0 64 0 
79 0 91 0 
43 36 0 0 

0 7 0 0 
0 0 9 0 

* "Before" and "after" refer to the presence of ester during the 90 min incubation period 
at 37°C. 

DISCUSSION 

These results seem to establish clearly that many tissues cangenerate chemo- 
tactic activity in serum and that, at least in the case of heart tissue, this involves 
an interaction between C3 and a tissue-contained, trypsin-like enzyme. The 
interaction of the protease and C3 results in the production of C3 fragmentation 
products with chemotactic activity. The relatively large amount of tissue (mil- 
ligram quantities) required to cleave C3 probably simply reflects the very 
inefficient contact of enzyme with substrate. In most respects, these findings 
confirm and extend those of Hurley (1), who described an interaction between 
rat tissue and serum that resulted in chemotactic activity in vitro for neutro- 
phils. I t  seems quite possible that these data provide a plausible explanation for 
the development of the acute inflammatory response in mechanically injured 
tissue; namely, through the release of the tissue protease, C3 in the vicinity of 
the injured tissue can serve as a substrate for the production of phlogistic 
(leukotactic) factors. Thus, in the case of burned tissue, mechanically disrupted 
tissue, or infarcted tissue, to name a few examples, the stage would be set for 
the induction of the acute inflammatory response by the generation of C3 
chemotactic factors. This would provide an alternative explanation for the 
classical view that the appearance of neutrophilic leukocytes simply reflects 
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their adherence ("sticking") to altered endothelium and subsequent random 
migration of these cells into extravascular sites. However, in order to test the 
relevance of the hypothesis presented in this paper, it will be necessary to show 
the release of the protease from damaged tissue and the appearance of C3 
fragments with chemotactic activity in the same tissue. Preliminary support- 
ing evidence for this latter point has already been obtained. 

Once again, in considering the acute inflammatory response, we come to the 
complement system as a mediator. I t  has previously been shown that immu- 
nological triggering of the complement system will result in production of 
factors with chemotactic (2, 6, 10) as well as vasoactive properties (11-13). 

TABLE VI 
Chematactic Factors Generated from the Complement System 

Factor Requirements References 

C,56"'7 C1-C7 2, 6 
C3a Plasmin 15 

Trypsin,* cobra venom factor 17, 14 
Tissue protease This paper 

C5a C1-C5 10, 16, 17 
Trypsin 17 

* Very limited activity under conditions described in reference. 

Increasingly apparent is the fact that the complement system contains a series 
of substrates from which several phlogistic mediators can be generated in such a 
manner that only one complement component is needed, the rest of the eight 
components being bypassed. This is true for the production of C3 or C5 ana- 
phylatoxin by trypsin (11-13) or cobra venom factor (14), as well as for the 
generation of chemotactic factors from C3 (15) or C5 (16, 17). 

Table VI indicates the multiplicity of chemotactic factors capable of being 
generated from the complement system. These factors can be produc__ed either 
by sequential interaction of the complement system, resulting in C567 or a C5 
fragmentation product, or by direct interaction of a single complement compo- 
nent with an enzyme not intrinsic to the complement system, such as plasmin 
or trypsin. Quite apparent in Table VI is the multiplicity of agents capable of 
directly interacting with C3 or C5 to give a chemotactic product. As more data 
of this type accumulate, one begins to wonder if the complement system is more 
important as a mediator for nonimmunologically triggered events leading to 
production of phlogistic factors, rather than in its historical (immunological) 
role. If experimental evidence can be obtained to suggest a relation between C3 
products and the inflammatory response to "nonspecific" tissue injury, this 
would have therapeutic implications. In cases of inflammation in or around vital 
areas, such as the central nervous system, the facial, or respiratory areas, where 
the inflammatory response poses a threat to vital organ function, it would be 



JEFFREY H. HILL AND PETER A. WARD 517 

very desirable to know more about the mechanism of inflammation. The data 
presented in this report suggest one approach to the question. 

The precise identification of the trypsin-like enzyme in heart tissue awaits 
further work. I t  seemed possible that activated plasminogen might be the 
critical enzyme. However, two observations militate against this possibility. 
Kwaan and Astrup failed to find plasmin activity in rat heart tissue (18). 
Furthermore, the split product of C3, at least as far as human plasmin is con- 
cerned, is of a lower molecular weight, around 6000 (15). However, neither 
observation rigorously precludes the possible role of plasmin. That thrombin 
might be involved in the reaction is under consideration, but no evidence so far 
completely substantiates or denies this possibility. Certainly the trypsin-like 
enzyme has properties different from the trypsin (beef) product used in prior 
experiments (17), in which this enzyme generated little chemotactic activity 
from C3. But that the protease closely resembles trypsin from a functional point 
of view is unquestioned. Whether or not the protease active on C3 is identical 
with any more well-defined proteases in tissue is not known at this time. 

SUMMARY 

When various rat tissues are incubated in homologous serum, a factor 
chemotactic in vitro for neutrophils is generated. The amount of chcmotactic 
activity is a function of duration of incubation and the quantity of heart tissue 
or serum employed. Addition of trypsin inhibitor or antibody to the third 
component of complement (C3) precludes generation of chemotactic activity. 
In addition, antibody to C3 ablates chemotactic activity even after its forma- 
tion. 

Purified human C3 (/3zc-globulin) effectively substitutes for serum in the 
generation of chemotactic activity by heart tissue. The active product, as deter- 
mined by gel filtration or by ultracentrifugal analysis in a sucrose density gradi- 
ent, appears to be a cleavage product of C3 with a molecular weight of approxi- 
mately 14,000. In addition, a larger C3 fragmentation product varying in 
molecular weight, depending upon experimental conditions, is also found. 

The protease in rat heart tissue capable of cleaving C3 into chcmotactic 
fragments is a serine esterase with trypsin-like properties and can bc inhibited 
by organophophorous compounds or trypsin inhibitors. The use of amino acid 
esters in the manner of competitive substrate inhibition confirms the trypsin- 
like nature of the protease. 

The presence of a proteasc in heart, and presumably in other normal tissues, 
capable of fragmenting C3 into factors with chemotactic activities may explain 
the development of the acute inflammatory response when tissues are non- 
specifically injured. If true, this would reinforce the role of the complement 
system in the mediation of nonimmunologically induced inflammation. 
Note added in proof: The recent publication of V. A. Bokisch, H. J. Miiller-Eberhard, 
and C. G. Cochrane 1969, J. Exp. ]fled. 129:1109, emphasizes the bioacfive frag- 
ments originating from C3 and extends the data presented in Table VI. 
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