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Abstract
Although many neuroimaging studies on adolescent risk taking have focused on brain activation during outcome valuation, less
attention has been paid to the neural correlates of choice valuation. Subjective choice valuation may be particularly influenced by
whether a choice presents risk (known probabilities) or ambiguity (unknown probabilities), which has rarely been studied in
developmental samples. Therefore, we examined the neural tracking of subjective value during choice under risk and ambiguity
in a large sample of adolescents (N = 188, 12–22 years). Specifically, we investigated which brain regions tracked subjective
value coding under risk and ambiguity. A model-based approach to estimate individuals’ risk and ambiguity attitudes showed
prominent variation in individuals’ aversions to risk and ambiguity. Furthermore, participants subjectively experienced the
ambiguous options as being riskier than the risky options. Subjective value tracking under risk was coded by activation in ventral
striatum and superior parietal cortex. Subjective value tracking under ambiguity was coded by dorsolateral prefrontal cortex
(PFC) and superior temporal gyrus activation. Finally, overlapping activation in the dorsomedial PFC was observed for subjec-
tive value under both conditions. Overall, this is the first study to chart brain activation patterns for subjective choice valuation
under risk and ambiguity in an adolescent sample, which shows that the building blocks for risk and ambiguity processing are
already present in early adolescence. Finally, we highlight the potential of combining behavioral modeling with fMRI for
investigating choice valuation in adolescence, which may ultimately aid in understanding who takes risks and why.
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Adolescence encompasses the developmental phase from
childhood to adulthood, and is often described as a period
marked by increases in risk-taking tendencies such as reckless
driving behavior and heightened levels of substance use
(Crone & Dahl, 2012; Somerville, Jones, & Casey, 2010).
To date, most research on adolescent risk taking has focused
on relating reward processes under different conditions of risk,
to task-based or real-life risk-taking behavior, and have ob-
served meaningful relations. For instance, higher levels of
real-life risk-taking have been associated with attenuated

activation in lateral prefrontal regions during reward outcome
processing, following decisions under risk (known probabili-
ties) as well as ambiguity (unknown probabilities;
Blankenste in , Schreuders , Peper, Crone, & van
Duijvenvoorde, 2018). Surprisingly, fewer studies have fo-
cused on choice processes, and the development of choice
valuation that may drive risk-taking behavior. In particular,
classic economic theories posited that expected value—that
is, the product of the magnitude and the probability of the
outcome, determines choice behavior, in which a higher ob-
jective value should be the more attractive choice. However,
individuals’ subjective evaluation of choice options rarely
matches the objective expected value (Kahneman &
Tversky, 1979). Therefore, subjective, rather than objective,
choice valuation may be a more sensitive reflection of indi-
vidual valuation processes (van den Bos, Bruckner, Nassar,
Mata, & Eppinger, 2018). Moreover, subjective valuation of
risk and ambiguity have been suggested to be sensitive to
developmental change (Blankenstein, Crone, van den Bos,
& van Duijvenvoorde, 2016; Tymula et al., 2012; van den
Bos & Hertwig, 2017), but also shows large individual
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variation in adolescence (Blankenstein et al., 2016;
Blankenstein et al., 2018). To date, few studies have explicitly
focused on the behavioral and neural correlates of subjective,
and expected, value tracking in adolescents, nor under condi-
tions of risk and ambiguity. In the present study we therefore
set out to investigate the behavioral and neural correlates of
subjective value tracking under risk and ambiguity in a large
sample of adolescents.

One common decision strategy suggested by influential
behavioral economic theories such as expected utility theory,
further expanded upon by prospect theory, posits that when an
individual is confronted with a decision between two alterna-
tives, they first ascertain the subjective value of each available
choice option, and then select the option with the highest
subjective value (Kahneman&Tversky, 1979). A comprehen-
sive meta-analysis of 206 studies examined the neural basis of
subjective value in adults across a wide range of reward types,
both during choice and predominantly during outcome
(Bartra, McGuire, & Kable, 2013). This meta-analysis identi-
fied the anterior insula, dorsomedial prefrontal cortex
(DMPFC), dorsal striatum, and thalamus as key regions that
have been found to code both positive and negative effects of
subjective value on brain activation. That is, some studies
have found activation increases in these regions with increas-
ing subjective value, whereas others found activation de-
creases in these regions with increasing subjective value, al-
though these decreases are particularly observed in the loss
domain (Bartra et al., 2013). Conversely, the ventral striatum
(VS) and ventromedial prefrontal cortex (VMPFC) have been
found to predominantly reflect positive effects of subjective
value for different reward types (Bartra et al., 2013; Rangel &
Clithero, 2014; Sescousse, Caldú, Segura, & Dreher, 2013).

Few studies have examined the neural signature of choice
valuation in adolescents. Studies that focused on expected
value coding during choice in children, adolescents, and
adul ts (Barkley-Levenson & Galván, 2014; Van
Duijvenvoorde et al., 2015), showed that activation in VS,
DMPFC, dorsolateral prefrontal cortex (DLPFC), and parts
of the parietal cortex were positively related to increases in
expected value. In addition, activation in VS was more pro-
nounced with increasing expected value for adolescents com-
pared with adults, highlighting that adolescents are more sen-
sitive to these increases than adults, evenwhen the adolescents
were compared with adults who displayed similar gambling
behavior (Barkley-Levenson & Galván, 2014). Importantly,
these studies focused only on objective expected value scaling
in adolescents. However, studies integrating the subjective
evaluation of value are currently lacking and may be impor-
tant because the expected value of a choice option may not
exactly match an individual’s subjective value of the choice at
hand (van den Bos et al., 2018).

An important factor that contributes to individuals’
(subjective) choice valuation is whether the choice

alternatives reflect explicit risk or ambiguous risk. That is, in
situations in which the decision outcomes are uncertain, ex-
plicit risk (henceforth referred to as risk) reflects decision en-
vironments in which the probabilities are known, whereas
ambiguous risk (henceforth referred to as ambiguity) reflects
decision environments in which the probabilities are unknown
(Tversky & Kahneman, 1992). Not only are there consider-
able individual differences in the levels of risk and ambiguity
preferences (ranging from aversion to seeking), they may also
vary across development and are differentially related to overt
risk-taking levels (Blankenstein et al., 2016; Tymula et al.,
2012; van den Bos & Hertwig, 2017). That is, behavior under
ambiguity has been associated with real-life risky behavior,
whereas behavior under risk has not, suggesting that ambigu-
ity may be more reflective of real-life risks (Blankenstein
et al., 2016; Tymula et al., 2012; van den Bos & Hertwig,
2017). On the neural level, deciding under conditions of risk
and ambiguity have been found to be coded by different brain
regions, particularly when considering individual differences
in risk-taking levels under risk and ambiguity, in both adults
and adolescents (Blankenstein, Peper, Crone, & van
Duijvenvoorde, 2017; Blankenstein et al., 2018). On the other
hand, a key study comparing neural coding between risk and
ambiguity in adults showed that striatum, MPFC, posterior
cingulate cortex, and amygdala positively scaled with in-
creases in subjective value under both risk and ambiguity
(Levy, Snell, Nelson, Rustichini, & Glimcher, 2010). That
is, in this study none of these brain regions conveyed unique
information about subjective value under either risk or ambi-
guity. This suggests that at least in adults, subjective value
tracking under risk and ambiguity is similarly represented in
the brain, even though behavior under these conditions differs
considerably. However, how subjective value scaling under
conditions of risk and ambiguity is represented in adoles-
cence, has yet to be examined.

In general, this follow-up study to Blankenstein et al.
(2018) investigated subjective value tracking under risk and
ambiguity, by combining an fMRI gambling task with sepa-
rately estimated risk and ambiguity attitudes in a large sample
of adolescents (N = 188, 12–22 years). The goals of this study
were twofold. First, we studied which regions code subjective
value under risk and ambiguity. Second, we explored whether
there were age effects in subjective value coding. We hypoth-
esized that activation in the VS, VMPFC, and parietal cortex
in particular would increase with increasing subjective value
(Barkley-Levenson & Galván, 2014; Van Duijvenvoorde
et al., 2015). Given the mixed findings on DMPFC and insula,
we expected that activation in DMPFC and insula could in-
crease or decrease with increasing subjective value (Barkley-
Levenson&Galván, 2014; Bartra et al., 2013). Specifically, to
assess whether subjective value coding under risk and ambi-
guity relied on similar (Levy et al., 2010) or separate neural
correlates in adolescence, we tested activation patterns for risk
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and for ambiguity as well as for overlap between these condi-
tions. Although not necessarily within an adolescent age
range, prior studies reported age differences in expected value
tracking from adolescence into adulthood (Barkley-Levenson
& Galván, 2014; Van Duijvenvoorde et al., 2015). Therefore,
we explored the linear and quadratic effects of age on the
neural tracking of subjective value.

Method

Participants

A total of 214 individuals (109 females, 105 males) between
12 and 22 years old participated in this study. Participants
were part of a three-wave longitudinal study (Braintime; see,
e.g., Peters & Crone, 2017, and Schreuders et al., 2018). Data
from this sample (collected at the third wave) have previously
been reported in the cross-sectional study by Blankenstein
et al. (2018). In this prior study, 18 participants were excluded
because of psychiatric disorders, excessive head motion in the
MRI scanner (> 3 mm), loss of data, or too few trials in which
the gambling option was chosen in the fMRI task. For the
goals of the present study, we excluded ten additional partic-
ipants because of violations of stochastic dominance in at least
50% of trials of the behavioral task (indicating a limited un-
derstanding of the task) and because of extreme outliers in risk
attitude (i.e., > 3.5 SDs above the mean; in- or exclusion of
these participants did not qualitatively affect our main behav-
ioral or neural findings). The final sample therefore included
188 participants (100 female, 88 male,MAge = 17.18, SDAge =
2.59, range 12.02–22.02 years). An overview of the number
of participants across ages is provided in Fig. 2a in the Results.
IQ was estimated in the first two waves, fell in the normal
range, and did not correlate with age (see also Blankenstein
et al., 2018; Peters & Crone, 2017; Schreuders et al., 2018).

The institutional review board of the University Medical
Center approved this study. Written informed consent was
given by adult participants, and by parents in the case of mi-
nors (minors provided written assent). All anatomical scans
were cleared by a radiologist. Participants were screened for
psychiatric or neurological disorders and MRI contra indica-
tions (none were observed).

Wheel of fortune task

fMRI task Participants played a wheel-of-fortune task in the
MRI scanner (see Fig. 1; Blankenstein et al., 2017;
Blankenstein et al., 2018). Here, participants were asked to
make a series of decisions between a “safe” wheel (presenting
a consistent sure gain of €3) and a gambling wheel (presenting a
chance of winningmoremoney [€31–€34], but also a chance of
winning nothing [€0]). The gambling wheel could either be

risky (probabilities were known: .25, .50, or .75) or ambiguous
(probabilities were hidden). After the decision, participants
were presented with the outcome (gain or no gain).

Ninety-two trials were presented: 46 ambiguous and 46
risky trials. Of the risky trials, 30 trials reflected a gamble with
a 50% probability of winning, eight trials reflected a gamble
with a 75% probability of winning, and eight trials reflected a
gamble with a 25% probability of winning. The experiment
was programmed such that these probabilities matched the
actual probabilities of winning. Furthermore, one of the four
possible amounts (€31, €32, €33, or €34) were randomly
displayed (without replacement), on a trial-by-trial basis.
Thus, although each participant was presented with the same
distribution of probabilities, the amount varied per trial.

The task was presented in the scanner via E-Prime
(Psychology Software Tools). Participants were presented
with the pairs of wheels. Gamble and safe options were ran-
domly displayed on the left or right side of the screen on a
trial-by-trial basis, and the position of the blue and red parts of
the risky wheels (left, right, bottom, and top of the wheel)
were counterbalanced across trials. A gray square prompted
the participants to give a response, which had to be given
within a 3,000-ms interval. A selection frame around the cho-
sen wheel confirmed the response, and remained visible for
the duration of the interval. The decision phase was separated
from the outcome phase by a fixation cross of 2–4 s (jittered,
with increments of 500 ms). Reward outcomes were presented
for 1,250 ms. The intertrial intervals and the optimal trial
sequence were determined with OptSeq (Dale, 1999), with
jittered intervals varying between 0 and 9,350 ms. In addition,
each trial was preceded by a 500-ms fixation cross, which was
not part of the intertrial interval.

Behavioral task Following the scan session, participants played
a behavioral version of the wheel of fortune task (as validated
previously, see Blankenstein et al., 2016; Blankenstein et al.,
2017). This task includes more variation in probabilities (.125,
.25, .375, .50, .625, .75), amounts (€5, €8, €20, €50), and am-
biguity level (0%, 25%, 50%, 75%, 100%), allowing the
model-based estimation of each individual’s risk and ambiguity
attitudes. No decision outcomes were provided in this task to
ensure that the resulting risk and ambiguity attitudes could not
be influenced by differences in the choice environment. The
task included 24 unique risk trials (all probabilities combined
with all amounts), and 16 unique ambiguity trials (all ambiguity
levels combined with all amounts). All trial types were present-
ed twice, resulting in 80 trials used for the model-based estima-
tions of risk and ambiguity attitudes.

Each trial started with a jittered fixation cross (500–1,000
ms, with increments of 100 ms) followed by the wheels. A
gray square in the center of the screen prompted the partici-
pants to respond (reaction time was self-paced), and a selec-
tion frame confirmed the participant’s choice. The wheels

1366 Cogn Affect Behav Neurosci (2019) 19:1364–1378



(gamble, safe) were randomly displayed right and left on the
screen, and the position of the blue and red portions of the
risky wheels, and the position of the ambiguous lids (top or
bottom) were counterbalanced across trials.

Risk and ambiguity attitude estimations

We estimated each participant’s risk and ambiguity attitude
from the behavioral task by modeling the expected utility
(EU) of each choice option, using a power utility functionwith
an additional term that takes into account ambiguity attitude as
used in previous studies (Blankenstein et al., 2016; Gilboa &
Schmeidler, 1989; Levy et al., 2010; Tymula et al., 2012; van
den Bos & Hertwig, 2017):

EU x; p;Að Þ ¼ p−β*
A
2

� �
*xα ð1Þ

where x indicates the amount, p the probability, A the am-
biguity level, α the risk attitude, and β the ambiguity attitude.
A risk attitude of 1 indicates risk neutrality, a risk attitude of <
1 indicates risk aversion, and a risk attitude > 1 indicates risk-
seeking. Relatedly, an ambiguity attitude of 0 indicates ambi-
guity neutrality (meaning the participant is unaffected by the
level of ambiguity), ambiguity attitude > 0 indicates ambigu-
ity aversion (meaning the participants behaves as if the prob-
ability is less than the objective probability (50%), and ambi-
guity attitude < 1 indicates ambiguity seeking (meaning the
participant behaves as if the probability is more than the ob-
jective probability).Formodel fitting, the simplex algorithm of
the general purpose optimization toolbox (optim) in R was
used (R Core Team, 2015). To model trial by trial choices, a
logistic choice rule was used to compute the probability of
choosing to gamble [Pr(ChoseGamble)] as a function of the

difference in expected utility of the gamble (EUGamble) and the
safe option (EUSafe). Furthermore, the decisions of the partic-
ipants were modeled as susceptible to an error term (μ) to
account for potential stochasticity in choice.

Pr ChoseGambleð Þ ¼ 1

1þ exp − EUGamble−EUSafe
� �

=μ
� � ð2Þ

This function was refitted with a grid search procedure to
account for local minima in the estimated parameters. To as-
sess how well these attitudes could be detected with these
behavioral task settings, we simulated choice behavior (gam-
ble or safe choices) for a range of risk and ambiguity attitudes
and ran a parameter recovery analysis. Within the range of
most occurring risk and ambiguity attitudes these show rea-
sonably recoveries, see supplementary materials and Fig. S1.

The estimated risk and ambiguity attitudes from our behav-
ioral task were used for behavioral analyses and to set up the
parametric regressors for the whole-brain fMRI analyses (see
the General Linear Model section below). In the supplemen-
tary materials we also report the results of analyses on the raw
choice behavior in the behavioral task (Fig. S2). In brief, these
results show that participants were sensitive to the task param-
eters (amount, probability, ambiguity level), and thus that par-
ticipants had a basic understanding of the behavioral task.
Furthermore, on average, participants gambled an equal
amount in the risky and ambiguous trials, but responded
slower in the ambiguous than in the risky trials.

Exit questions subjective experience

To examine participants’ subjective experience of the gam-
bling wheels in the behavioral task, we presented participants

Fig. 1 Schematic representation of the fMRI task. a Example of an ambiguous trial in which the outcome after choosing to gamble was a gain. b Risky
and ambiguous stimuli
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with a number of exit questions following the behavioral task.
Specifically, we presented participants with the different risky
(.125, .25, .375, .50, .625, and .75 probabilities) and ambigu-
ous (25%, 50%, 75%, 100%) wheels, without showing the
amounts, and asked participants for each of these wheels
how risky they found this wheel. Participants could indicate
their perceived riskiness on a slider bar (0–100).

Procedure

The procedure was similar to that of Blankenstein et al. (2017;
Blankenstein et al., 2018). Participants were accustomed to
the MRI environment using a mock scanner and received
instructions on the wheel of fortune task in a quiet laboratory
room. We explained participants that the ambiguous wheel
could reflect a gamble of any of the risky probabilities (25%,
50%, 75%). In addition, we explained that the computer
would select the outcomes of three random trials, of which
the average amount was paid out in addition to the standard
payout. Eventually, the computer selectively drew a gain, a no
gain, and a safe gain outcome (or a gain and two no gain
outcomes if the participant never chose the safe option).
This draw amounted to an additional rounded payout of €11
or €12 for each individual. Participants completed ten practice
trials. In the scanner, participants responded to the task with
their right hand using a button box, and headmovements were
restricted with foam padding. The fMRI task was followed by
a high-definition structural scan.

After the MRI session, participants completed the behav-
ioral version of the wheel of fortune task (see also
Blankenstein et al., 2017), in which participants were given
a hypothetical choice task and were instructed to choose
which option they preferred. To explain the different ambigu-
ity levels, we showed the different “lids” that varied in size
and covered different proportions of the wheel, and showed
the wheels that could lie underneath these lids. Participants
practiced three trials beforehand.

Finally, participants completed the exit questions on their
subjective experience of the wheels presented in the behavior-
al task, via Qualtrics (www.qualtrics.com). For other
procedural details of the Braintime study that are not related
to the current research goals, please see Blankenstein et al.
(2018), Schreuders et al. (2018), and Peters and Crone (2017).

MRI data acquisition

We used a 3-T Philips scanner (Philips Achieva TX) with a
standardwhole-head coil. Functional scans were acquired dur-
ing two runs of 246 dynamics each, using T2* echo-planar
imaging (EPI). Volumes covered the entire brain [repetition
time (TR) = 2.2 s; echo time (TE) = 30 ms; sequential acqui-
sition, 38 slices; voxel size 2.75 × 2.75 × 2.75 mm; field of
view (FOV) = 220 × 220 × 114.68 mm]. To allow for

equilibration of T1 saturation effects we discarded the first
two volumes. A high-resolution 3-D T1 scan was obtained
after the fMRI task for anatomical reference (TR = 9.76 ms,
TE = 4.59 ms, 140 slices, voxel size = 0.875 mm, FOV = 224
× 177 × 168 mm).

MRI data analyses

Preprocessing MRI preprocessing steps were identical to
Blankenstein et al. (2018). Data was analyzed using SPM8
(Wellcome Department of Cognitive Neurology, London).
Images were corrected for slice timing acquisition and rigid
body motion. We spatially normalized functional volumes to
T1 templates. Translational movement parameters never
exceeded 3mm (< 1 voxel) in any direction for any participant
or scan. The normalization algorithm used a 12-parameter
affine transform with a nonlinear transformation involving
cosine basis function, and resampled the volumes to 3-mm3

voxels. Templates were based on MNI305 stereotaxic space.
The functional volumes were spatially smoothed using a 6-
mm full width at half maximum (FWHM) isotropic Gaussian
kernel.

General-linear model We used the general linear model
(GLM) in SPM8 to perform statistical analyses on individual
subjects’ data. The fMRI time series were modeled as a series
of two events: the decision phase and the outcome phase,
convolved with a canonical hemodynamic response function
(HRF). The onset of the decision phase was modeled with a
duration of the participant’s response (1,000 ms + response
time; see Fig. 1), and the onset of the outcome phase (gain or
no gain) was modeled with zero duration. Events were
modeled separately for risk and ambiguity. The GLM includ-
ed the direct and parametrically modulated regressors of risk
and ambiguity during the decision phase, and the direct re-
gressors of gains and no gains during the outcome phase. In
the present study, we were interested in the parametric track-
ing of subjective value under risk and ambiguity only, but in
the supplements we show the main effects of choosing under
risk and ambiguity (i.e., not parametrically modulated; Fig.
S3). The results of the main contrasts during the choice and
outcome phase are reported in Blankenstein et al. (2018).

Subjective value under risk and ambiguity were inferred by
entering each individual’s risk and ambiguity attitude, derived
from the behavioral task, in Eq. 1 for the trials in the fMRI
task. That is, for each participant, we determined the subjec-
tive value of the wheel chosen by the participant (gamble or
safe), given the probability (.25, .50, .75, or 1), amount (€3,
€31, €32, €33, or €34), and ambiguity level (0 or 1) of the
selected wheel, and the participant’s risk and ambiguity atti-
tude derived from the behavioral task. For instance, an indi-
vidual who chose the gambling optionwhen presented with an
ambiguous gamble of €33, given an ambiguity attitude of β =
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– .318 and risk attitude of α = .516, would have a subjective
value of this particular trial of 3.99 [i.e., .5 – ((– .318)×(1/2)) ×
(33^.516) = 3.99]. This was done for each trial and for each
individual separately. Parametric values across trials were de-
meaned per participant.

Trials on which participants did not respond were modeled
separately as a regressor of no interest, and six motion param-
eters were included as nuisance regressors. The least-squares
parameter estimates of the height of the best-fitting canonical
HRF for each condition separately were used in pairwise con-
trasts. These pairwise comparisons resulted in individual-
specific contrast images, which we used for the higher-level
group analyses. All higher-level group analyses were conduct-
ed with family-wise error (FWE) cluster correction (p < .05,
using a primary voxel-wise threshold of p < .001, uncorrected;
Blankenstein et al., 2017; Woo, Krishnan, &Wager, 2014). We
used the MarsBaR toolbox (Brett, Anton, Valabregue, &
Poline, 2002; http://marsbar.sourceforge.net) to visualize the
patterns of activation, in clusters identified in the whole-brain
results. Coordinates of local maxima are reported inMNI space.

Results

Behavioral results

Model-based risk and ambiguity attitude First, we formally
investigated the model-based estimations of risk and ambigu-
ity attitude. To ease interpretation for these behavioral analy-
ses, we recoded ambiguity attitude such that higher values
indicate a relatively more seeking attitude. Figure 2b and c
depict box plots of risk and ambiguity attitude, with violin
plots superimposed, which show the full distribution of the
data for the full sample and across three age bins. On average,
participants were generally risk and ambiguity averse (Mrisk =
.60, Mambig = – .25), although there were considerable indi-
vidual differences in these attitudes (SDrisk = 0.26, rangerisk =
0.11–1.52; SDambig = 0.36, rangeambig = – 1.00 to 1.00).
Furthermore, participants did not differ in their degrees of
aversion to risk and ambiguity (p = .62; as indicated by a
paired-samples t test on z-transformed risk and ambiguity at-
titudes). Next, we tested for linear, quadratic, and cubic effects
of age on risk and ambiguity attitudes using regression analy-
ses. For risk attitude, we observed a positive linear effect of
age (R2 = .02), F(1, 186) = 4.29, b = .015, SE = .007 p = .04,
indicating that risk-seekingness increased slightly across ado-
lescence, whereas no effects of age were observed for ambi-
guity attitude (all ps > .1). A partial correlation showed that
risk and ambiguity attitudes, when controlling for age, were
not significantly correlated (partial r = – .083, p = .26).

Risk and ambiguity attitudes and behavior in the MRI task In
the fMRI task, participants gambled a considerable proportion

of times in the risky and ambiguous condition (although there
were pronounced individual differences in gambling behav-
ior), but these did not differ significantly (Mrisk = .74, SErisk =
.015; Mambig = .76, SEambig = .018, p = .13; no effects of age,
linear or quadratic, all ps > .17). Finally, a repeated measures
analysis of variance (ANOVA) with age (linear and quadratic)
as a covariate showed that, similar to the behavioral task,
participants responded significantly slower in the ambiguous
as compared with the risky trials (Mambig = 641.59 ms, SEambig
= 14.26;Mrisk = 597.06 ms, SErisk = 12.89), F(1, 185) = 8.79,
p = .003, ηp

2 = .045 (no effects of age, linear or quadratic, all
ps > .06).

Furthermore, risk and ambiguity attitudes were correlated
with gambling behavior in theMRI scanner (see Fig. 2d). That
is, greater risk-seeking attitudes were positively related to in-
creased levels of gambling under risk in the fMRI task (r =
.581, p < .001; when controlling for age: partial r = .567, p <
.001), as well as gambling under ambiguity (r = .509, p < .001;
when controlling for proportion gambling in 50:50 risk trials:
partial r = .284, p < .001; when controlling for 50:50 risk trials
and age: partial r = .285, p < .001). Furthermore, greater
ambiguity-seeking attitudes were positively correlated with
gambling under ambiguity (r = .197, p = .007; when control-
ling for proportion gambling in 50:50 risk trials: partial r =
.234, p = .001; when controlling for 50:50 risk trials and age:
partial r = .233, p = .001), but was not correlated with gam-
bling under risk (r = – .022, p = .75; when controlling for age:
partial r = – .02, p = .79). These findings indicate that behavior
in the MRI scanner reflected the separately estimated risk and
ambiguity attitudes, even though the fMRI task used only a
selection of risk and ambiguity levels presented in the behav-
ioral task, and included a reward outcome component.

Risk and ambiguity attitudes and subjective experience To
test the robustness of the behavioral estimates of risk and
ambiguity attitudes, we examined participants’ responses on
the exit questions on perceived riskiness for each of the wheels
in the behavioral task. First, a repeated measures ANOVA on
the risky wheels with age linear and quadratic as covariates
indeed showed that participants subjectively experienced the

�Fig. 2 a Participant distribution across ages. b Violin- and box-plots for
risk attitude for all participants and for three age bins. The violin plots
show the full distribution of the data. 0 indicates risk aversion, 1 indicates
risk neutrality, and 2 indicates risk seeking. c Violin- and box-plots for
ambiguity attitude for all participants and for three age bins. – 1 indicates
ambiguity aversion, 0 indicates ambiguity neutrality, and 1 indicates
ambiguity seeking. For both risk and ambiguity attitudes, participants
were generally averse, although there were considerable individual
differences. d Relation between risk attitude and gambling under risk in
the fMRI task (left) and between ambiguity attitude and gambling under
ambiguity in the fMRI task. Greater risk seeking was related to higher
levels of gambling under risk and under ambiguity in the fMRI task.
Greater ambiguity seeking was related to higher levels gambling under
ambiguity in the fMRI task
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risky wheels as less risky with increasing gain probability
[main effect probability: F(5, 920) = 154.99, p < .001, ηp

2 =
.457; no effects of age, all ps > .25]. A similar finding was

observed for the ambiguous wheels, in which participants
subjectively experienced the ambiguous wheels as more risky
with increasing ambiguity level [main effect ambiguity level:
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F(3, 552) = 118.73, p < .001, ηp
2 = .392; no effects of age, all

ps > .14]. On average, participants perceived the ambiguous
wheels as being riskier than the risky wheels (Mambig = 62.75,
SEambig = 1.22, Mrisk = 52.52, SErisk = 0.61), F(1, 184) =
54.50, p < .001, ηp

2 = .244 (no effects of age, all ps > .16).
Figure 3a depicts the perceived riskiness for each of the prob-
ability levels for risk (left) and ambiguity levels for ambiguity
(right), plotted for three age bins (12–15 years, 16–18 years,
and 19–22 years).

Next we tested whether participants’ average subjective
experience was correlated with the behavioral estimations of
risk and ambiguity attitude, while controlling for age. These
partial correlations showed that risk attitude was negatively
correlated with the perceived riskiness of the risky wheels
(partial r = – .21, p = .004), as well as of the ambiguous wheels
(partial r = – .20, p = .007). Thus, a more risk-seeking attitude
was correlated with perceiving these wheels as being less
risky. Finally, ambiguity attitude was correlated with the per-
ceived riskiness of the ambiguous wheels (partial r = – .15, p =

.043), such that a more ambiguity-seeking attitude was corre-
lated with perceiving these wheels as being less risky. This
relation between ambiguity attitude and the perceived riski-
ness of the risky wheels was not observed (partial r = .011, p =
.88). Together, these findings show that the behavioral estima-
tions of risk and ambiguity attitude also reflect participants’
self-reported subjective experience of the gambles in the be-
havioral task.

Taken together, these behavioral analyses show that the
behavioral task to estimate individuals’ risk and ambiguity
attitudes is a valid measure assess subjective valuation in the
gambles presented in the fMRI task, and also relates to partic-
ipants’ self-reported experienced risk in the behavioral task.

fMRI results

Subjective valuations of risk and ambiguity First, we exam-
ined the neural patterns of subjective value coding for risk and
for ambiguity. To this end, we ran t tests of risk and ambiguity
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Fig. 3 a Average perceived riskiness for each of the risky wheels (left)
and ambiguous wheels (right) presented in the behavioral task, plotted for
three age bins. No age effects were observed. 0 indicates not all risky, and
100 indicates very risky. Bars indicate standard errors. b Partial
correlations of risk attitude and the mean perceived riskiness of the

risky wheels (left), and partial correlation of ambiguity attitude and the
mean perceived riskiness of the ambiguous wheels (right), controlled for
age. Risk attitude correlated with the perceived riskiness of both
conditions, whereas ambiguity attitude correlated only with the
perceived riskiness of ambiguity
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(i.e., subjective values per trial for risk and for ambiguity as
parametric regressors, see the General-Linear Model section
above) against zero and inspected the parametric positive and
negative effects. For subjective value under risk, we observed
positive parametric patterns of activation in bilateral VS, bi-
lateral superior parietal cortex (SPL), postcentral gyrus, mid-
cingulate cortex, and supplementary motor area, indicating
that with increasing subjective value, activation in these re-
gions increased. In addition, we observed a negative correla-
tion of activation in DMPFC and right inferior parietal lobe
(IPL), indicating decreasing activation with subjective value
(Fig. 4a, Table 1).

For subjective value under ambiguity, we observed para-
metric subjective value coding also in DMPFC, but in addi-
tion, in bilateral DLPFC, right superior temporal gyrus (STG),
and bilateral IPL (see Fig. 4b, Table 1). In all these regions,
activation was related negatively to subjective value. No pos-
itive activation patterns for ambiguity were observed.

Finally, in the supplements we also show these results for a
model of objective expected value (Fig. S4, Table S1).

Overlap and differences risk and ambiguity To test for overlap
in the patterns of parametric activation during subjective value
under risk and under ambiguity, we ran a conjunction analysis
on the negative t contrasts of risk and ambiguity (no positive
activation patterns were observed for subjective value under
ambiguity; see above). To this end, we used the “Logical
AND” technique, which requires that the contrasts included
in the conjunction be individually significant (Nichols, Brett,
Andersson, Wager, & Poline, 2005). The conjunction showed
significant overlap in the DMPFC for the negative correlations
with subjective value under risk and ambiguity (Fig. 5a,
Table 2), indicating decreasing activation in this region with
subjective value, regardless of condition. Furthermore, con-
trasting subjective value tracking under risk and ambiguity
yielded greater activation in bilateral DLPFC and parietal cor-
tex for subjective value tracking under risk than under ambi-
guity (see Fig. 5b, Table 2). The reversed contrast did not
result in significant findings.

Effects of age Finally, when including age (linear and quadrat-
ic) as a covariate on the t contrasts of subjective and expected
value under both risk and ambiguity, we observed that these
results remained the same, nor did we find any significant
effects of age. This indicates that the parametric tracking of
subjective and expected value under risk and ambiguity was
independent of age in this adolescent sample.

Discussion

Although many neuroimaging studies on adolescent risk-
taking focus on brain activation during outcome valuation,
less attention is paid to the neural correlates of choice valua-
tion, especially with regard to risk (known probabilities) and
ambiguity (unknown probabilities), which differentially im-
pact real-life risky decision making. This study therefore in-
vestigated the neural tracking of subjective value under risk
and ambiguity in adolescence, by combining neural activation
during an fMRI gambling task with separately estimated risk
and ambiguity attitudes. We found activation in bilateral VS
and SPL for subjective value under risk and activation in bi-
lateral DLPFC and right STG for subjective value under am-
biguity, as well as overlapping activation in the DMPFC for
subjective value under both risk and ambiguity. These results
were independent of age, and appeared less pronounced when
examining expected, rather than subjective, value (reported in
the supplementary materials). Finally, behavioral risk and am-
biguity attitudes showed limited developmental, but consider-
able individual indifferences, and echoed participants’ self-
reported perceived riskiness of the risky and ambiguous op-
tions. The following sections discuss these main findings in
further detail.

Fig. 4 Whole-brain parametric results, showing t contrasts. a Subjective
value (SV) under risk: positive (upper panel; y = 14; L; R) and negative
(lower panel; x = – 4; R). b Subjective value under ambiguity: negative (x
= – 4; R; L). The results are family-wise error cluster-corrected (p < .05)
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Neural tracking of subjective value under risk
and ambiguity

On the neural level, we observed that subjective value in-
creases under risk were associated with increased activation

in bilateral VS and SPL. Particularly the VS activation coin-
cides with prior adult research on subjective value coding in
general (Bartra et al., 2013), and has been suggested to predict
risk-seeking choices (Engelmann & Tamir, 2009; Kuhnen &
Knutson, 2005; Tobler, O’Doherty, Dolan, & Schultz, 2007).

Table 1 Whole-brain results for parametric subjective value (SV) under both risk and ambiguity

Anatomical region MNI coordinates

± x y x T k p

SV risk

R middle occipital gyrus, including
bilat. superior parietal lobe

+ 30 – 85 16 8, 36 9,610 < .001

R calcarine gyrus + 15 – 91 4 7, 83

R fusiform gyrus + 30 – 82 – 8 7, 68

L insula lobe + – 33 – 4 16 5, 18 1,028 < .001

L putamen, including R and L caudate nucleus,
L inferior frontal gyrus, L thalamus

+ – 30 – 10 – 2 4, 94

R thalamus + 21 – 28 – 2 5, 05 299 < .001

R putamen, including R insula lobe + 27 – 10 7 4, 92

R middle cingulate cortex, including L
middle cingulate cortex

+ 12 5 43 4, 17 269 < .001

R supplementary motor area + 9 – 1 58 4, 08

L supplementary motor area + – 6 – 1 52 3, 54

L superior medial gyrus – – 6 23 40 6, 86 324 < .001

R middle cingulate cortex – 9 26 34 5, 40

R supplementary motor area, including R anterior
cingulate cortex, R superior frontal gyrus

– 15 20 64 4, 18

SVambiguity

R middle frontal gyrus – 42 26 43 4, 865 346 < .001

R inferior frontal gyrus – 54 26 25 4, 277

R inferior frontal gyrus – 42 32 28 4, 102

L supplementary motor area – – 3 20 46 4, 656 617 < .001

L supplementary motor area, including
R supplementary motor area

– – 3 11 58 4, 484

R anterior cingulate cortex, including L superior
medial gyrus, L and R superior frontal gyrus,
L anterior cingulate cortex

– 12 26 25 4, 388

R inferior parietal lobe – 54 – 37 55 4, 48 394 < .001

R angular gyrus – 36 – 67 43 4, 437

R inferior parietal lobe – 48 – 55 52 4, 12

R middle temporal gyrus – 66 – 31 – 2 4, 247 146 .001

R middle temporal gyrus – 63 – 43 1 3, 808

L inferior frontal gyrus – – 51 14 34 4, 211 220 < .001

L middle frontal gyrus – – 42 20 40 4, 184

L middle frontal gyrus – – 42 14 49 3, 949

R precuneus – 6 – 67 40 3, 959 156 .005

L precuneus, including L cuneus – – 3 – 73 37 3, 844

R cuneus, including L precuneus – 9 – 79 28 3, 2

L inferior parietal lobe – – 48 – 58 43 3, 924 133 .011

L inferior parietal lobe – – 45 – 37 40 3, 637

L inferior parietal lobe, including L angular gyrus – – 48 – 40 52 3, 387

The results were FWE cluster-corrected (p < .05). L = left; R = right. Anatomical labels are based on the Automated Anatomical Labeling (AAL) atlas
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Interestingly, in a previous study we observed that greater
risk-seeking attitudes were associated with greater activation
in neighboring, valuation, regions (medial and lateral
orbitofrontal cortex) during risky gambles (in a separate sam-
ple of young adults [18–30 years] using the same experimen-
tal paradigms; Blankenstein et al., 2017). The present study
extends this earlier work by using a parametric design in
which subjective expected value was calculated on a trial-
by-trial basis, indicating that neural coding of subjective value
under risk is present in a similar set of regions in adolescence.
The activation observed in parietal cortex fits well with prior
adult research on assessing probabilities (Huettel, Song, &
McCarthy, 2005) as well as with risk preference [both func-
tionally (Huettel, Stowe, Gordon, Warner, & Platt, 2006) and
structurally (Gilaie-Dotan et al., 2014)]. Finally, in line with
these findings, the analyses comparing subjective value under
risk with ambiguity showed that PPC coded subjective value
increases more pronounced under risk than under ambiguity.

With respect to ambiguity, we observed that activation in
superior temporal gyrus and bilateral DLPFC coincided nega-
tively with subjective value. In a separate sample of young adults
(18–30 years) we observed that greater ambiguity-seeking atti-
tudes were also associated with heightened superior temporal
gyrus activation in a highly overlapping region (MNI coordi-
nates: 63, – 22, – 5; Blankenstein et al., 2017). Thus, the superior
temporal gyrus may be presented as a candidate region sensitive
to individual differences in ambiguity valuation, although future
studies may further investigate its specific direction of activation.
Second, DLPFC activation has been suggested to foster explora-
tion tendencies, and thus relates to more ambiguity-seeking atti-
tudes (Huettel et al., 2006). Conversely, the DLPFC has also
been associated with heightened cognitive control, and a reduced
appetite for risk taking in tasks in which ambiguity can be re-
duced over time by experience (Fecteau et al., 2007; Knoch et al.,
2006). The observation in the present study of decreased DLPFC
activation with subjective valuation is in line with this latter in-
terpretation (i.e., a reduced appetite for risk-taking). Together, the
STG and DLPFC appear to play a key role in tracking individual
differences in subjective value under ambiguity in adolescents.

A conjunction analysis showed that activation in DMPFC
coded subjective value both under risk and under ambiguity.
The DMPFC (also commonly referred to as dorsal anterior
cingulate cortex) has been implicated in a majority of func-
tions related to motivation and cognitive control, including
more specifically value comparison and calculation (Hare,
Schultz, Camerer, O’Doherty, & Rangel, 2011; Kolling
et al., 2016; Piva et al., 2019) and reflections of the expected
value of control (Shenhav, Cohen, & Botvinick, 2016).
Tentatively, the DMPFC activation observed in the present
study may function as a general signal of subjective value
coding under different types of uncertainty, given that this
region showed overlapping activation for both risk and ambi-
guity. However, whether this region represents a true neural

common currency will need to be established by formal tests
such as cross-condition classification (McNamee, Rangel, &
O’Doherty, 2013; Kahnt, Park, Haynes, & Tobler, 2014).

Furthermore, in this adolescent study DMPFC negatively
coded subjective value in a gain domain, whereas prior literature
with adults has shown that negative coding of subjective value
occurs predominantly in the loss domain (Bartra et al., 2013).
However, the pattern of activation highly overlaps with a recent
study with adults that observed reduced DMPFC activation for
relative subjective value (i.e., the difference in subjective value
between the chosen and unchosen option), using both an
intertemporal choice task and a risky mixed gambles task (Piva
et al., 2019). Speculatively, given the role of the DMPFC in
uncertainty and risk avoidance in adolescents (e.g., Van
Duijvenvoorde et al., 2015; Van Leijenhorst et al., 2010) and
adults (Xue et al., 2008), the negative value signal in the
DMPFC observed in the present study may possibly convey
increased aversion to risk and ambiguity. Nonetheless, future
studies need to replicate this finding, for instance by including
a loss domain, as well as including adult participants.

Some of our findings do not resonate with general prior
work on subjective value in adults, given the absence of pro-
nounced positive subjective value encoding during the choice
phase in regions such as VS and VMPFC (see, e.g., Bartra
et al., 2013), in particular for the ambiguous condition. Our
findings also deviate from more similar prior work on subjec-
tive value coding under risk and ambiguity specifically, as
reported by Levy et al. (2010), who observed that the striatum
and MPFC were activated with increasing subjective value
under risk as well as under ambiguity. Here we outline a num-
ber of reasons for this dissimilarity. First, this may be due to
the separate behavioral task we used to estimate risk and am-
biguity attitudes, however this seems unlikely because risk
and ambiguity attitudes were positively and significantly cor-
related to fMRI choice behavior. Second, this discrepancy
may be due to the fact that we studied a developmental pop-
ulation. However, we did not observe pronounced age effects
in our variables of interest, suggesting the building blocks of
risk and ambiguity processing are already in place at an early
age. It is therefore unlikely that developmental changes un-
derlie the absence of positive subjective value coding for am-
biguity. Third, these discrepancies may be due to differences
in task designs. As compared to Levy et al., the present fMRI
paradigm included a more limited set of probability levels and
amounts, and included an outcome phase. In addition, the
Levy et al. study included more levels of ambiguity, in which
we included one level of complete ambiguity (which was not
included in the Levy et al. study). A final possibility for these
discrepant findings is that participants may have developed
choice heuristics (mental shortcuts) while performing the
fMRI task. That is, individuals often use a simple heuristic
that maximizes the overall probability of winning (Van
Duijvenvoorde et al., 2016; Venkatraman, Payne, & Huettel,
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2014). Tentatively, the use of heuristics and lack of variation
in the fMRI task may explain why positive signals in typical
value regions such as the VS and VMPFC were less pro-
nounced, particularly in the ambiguity condition.
Nonetheless, and bearing these methodological consideration
in mind, given that this the first study to test subjective value
coding under risk and ambiguity in a large adolescent sample
spanning a broad age range, these findings may offer an im-
portant starting point for future (developmental) studies.

Subjective and expected value coding under risk
and ambiguity

In addition to testing subjective value under risk and ambiguity,
we explored whether similar findings were observed in a model
testing for objective expected value coding under risk and am-
biguity (i.e., Probability × Amount, not weighted by individ-
uals’ risk and ambiguity attitude). Overall, we found similar,
but less pronounced, results in this model (reported in the sup-
plements). Specifically, similar to the model with subjective
value, we found heightened activation in bilateral VS and
SPL for increasing expected value under risk, and in DMPFC
and right PPC for decreasing expected value under risk. For
ambiguity, only bilateral DLPFC and right IPL with decreasing
expected value was observed. Furthermore, we did not observe
the overlapping neural coding in DMPFC for decreases in

subjective value under risk and ambiguity in the model of ex-
pected value. On the one hand, these less pronounced findings
may have resulted in less variation in task parameters, and thus
to fewer neural changes that could be detected. On the other
hand, these findings may suggest that making use of subjective,
rather than expected, valuation, is more meaningful when
studying the neural underpinnings of (adolescent) choice valu-
ation (Glimcher & Rustichini, 2004; van den Bos et al., 2018),
and highlights the potential of this particular method.
Nevertheless, formal tests and future studies should replicate
our findings, preferably by using a more elaborate task design.

Effects of age and individual differences in subjective
valuation of risk and ambiguity

To assess individuals’ preference toward risk and ambiguity,
we made use of a behavioral task and a model-based ap-
proach. Concurring with previous findings, we observed that
participants were generally risk- and ambiguity-averse, and
responded slower in ambiguity compared with risk
(Blankenstein et al., 2017). Furthermore, participants subjec-
tively experienced the ambiguous wheels in the task as more
risky, compared with the risky wheels. Moreover, we showed
that behavioral risk aversion was associated with perceiving
the risky and ambiguous wheels in the task as riskier, and
ambiguity aversion with perceiving the ambiguous wheels as

a Conjunction parametric SV Risk and SV ambiguity

b SV risk parametric > SV ambiguity parametric
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Fig. 5 a Results of the parametric conjunction between the negative effects of subjective value (SV) under risk and ambiguity (x = – 4). The plot on the
right is for visualization purposes only. bResults of the parametric SVrisk > SVambiguity (x = – 4, R; L). The results are FWE cluster-corrected (p < .05)
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riskier. This latter finding in particular suggest that these
model-based measures not only reflect behavioral tendencies
under risk and ambiguity, but also reflect the subjective expe-
rience of gambling behavior. In sum, these data suggest mean-
ingful differences between individuals in subjective evalua-
tion of risk under known (risk) and unknown (ambiguity)
contexts. This inter-individual variability set the stage for test-
ing our hypotheses on the neural tracking of subjective valu-
ation under risk and ambiguity.

Behaviorally, we observed that risk-seeking slightly in-
creased across adolescence, whereas no developmental
change was observed for ambiguity attitudes. Previous find-
ings observed heightened ambiguity tolerance in adolescents
compared with adults (Blankenstein et al., 2016; Tymula et al.,
2012) and for adolescents as compared with both children and
adults (although in a loss frame only; van den Bos & Hertwig,
2017). Furthermore, risk attitudes have been found to either
show no developmental trend (Blankenstein et al., 2016),
show a quadratic peak in risk seeking in mid adolescents
(van den Bos & Hertwig, 2017) or heightened risk aversion
in adolescents compared with adults (Tymula et al., 2012).
These previous studies included age ranges well into adult-
hood, or started in early childhood (Tymula et al.: 12–17 years

and 30–50 years; van den Bos & Hertwig: 8–22 years;
Blankenstein et al., 2016: 10–25 years). Together, the present
findings indicate that a developmental window across adoles-
cence and into young adulthood is suitable to test individual
variation, but less meaningful to detect developmental change.
An interesting next step would be to include young children (<
8 years) and older adults (> 25 years), to establish develop-
mental differences in ambiguity and risk attitudes.
Nonetheless, these findings show that risk and ambiguity
aversion are already present in early adolescence.

Similar to the behavioral results, we did not observe any
age effects (linear, nor quadratic) on neural patterns of activa-
tion. Prior studies have observed age differences in the neural
tracking of expected value, specifically in VS (more pro-
nounced in adolescents (13–17 years) compared with adults
(25–30 years); Barkley-Levenson & Galván, 2014), and in
VMPFC and parietal cortex (linear increases from childhood
(8–11 years) to adolescence (16–19 years) to adulthood (25–
34 years; Van Duijvenvoorde et al., 2015). However, in our
previous study including the same participants, few age effects
were observed on risk and ambiguity processing during gam-
bling (Blankenstein et al., 2018). Furthermore, the fact that
minimal age effects were observed behaviorally in the present

Table 2 Results of the parametric conjunction of subjective value (SV) under risk and under ambiguity and of the contrast SV risk > SVambiguity

Anatomical region MNI coordinates

± x y z T k p

Conjunction SV risk and SVambiguity

L supplementary motor area – – 3 20 46 4, 66 168 .004

R anterior cingulate cortex – 9 29 28 3, 86

L anterior cingulate cortex – – 6 32 28 3, 83

SV risk > SV ambiguity

R inferior occipital gyrus + 36 – 91 – 2 5, 63 3,765 < .001

R middle occipital gyrus + 39 – 85 7 5, 32

L calcarine gyrus + – 9 – 67 7 5, 24

R superior parietal lobe + 39 – 46 61 5, 28 899 < .001

R inferior parietal lobe + 42 – 37 52 4, 79

R superior occipital gyrus + 30 – 70 43 4, 75

L anterior cingulate cortex + – 6 2 31 5, 17 101 .035

R middle cingulate cortex + 6 – 1 31 3, 87

R anterior cingulate cortex + 3 8 28 3, 61

R precentral gyrus + 54 5 40 4, 75 235 < .001

R inferior frontal gyrus (pars triangularis) + 54 26 25 4, 46

R inferior frontal gyrus (pars triangularis) + 42 29 10 3, 46

L inferior parietal lobe + – 51 – 34 43 4, 44 186 .002

L postcentral gyrus + – 48 – 37 61 4, 09

L inferior parietal lobe + – 36 – 43 49 3, 61

L precentral gyrus + – 48 2 31 4, 05 223 < .001

L precentral gyrus + – 45 – 1 58 4, 02

The results were FWE cluster-corrected (p < .05). L = left; R = right. Anatomical labels are based on the Automated Anatomical Labeling (AAL) atlas
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study may further explain the absence of age effects on the
neural coding of subjective and expected value. Again,
including young children and older adults may prove
valuable for future studies. Importantly, the present findings
indicate that the building blocks for processing risk and
ambiguity are already present in early adolescence.

Finally, an interesting avenue for future research is to include
loss gambles. The present study shows how adolescents expe-
rienced risk and ambiguity, and their corresponding neural pat-
terns, in a gain domain only. Behaviorally, van den Bos and
Hertwig (2017) observed differential developmental patterns
for risk and ambiguity attitudes under gain and loss contexts,
and differential relations with real-life risk-taking behavior.
Tentatively, these disparate effects for gain and loss under risk
and ambiguity suggest that neural patterns of subjective value
under risk and ambiguity in a loss domain may result in differ-
ent findings as well. For instance, a recent study on gain and
loss magnitude tracking in adolescence (13 to 20 years; Insel &
Somerville, 2018) observed that gain magnitude tracking was
elevated in the striatum during early adolescence, which then
gradually decreased across age. However, lossmagnitude track-
ing in the anterior insula followed a quadratic pattern, with
lowest activation patterns in mid-to-late adolescence.
Although this study focused on objective gain and loss tracking
during outcome, this study stimulates hypotheses on subjective
value tracking during choice in a loss domain, proposing that
the anterior insula is a key region coding losses that may be
least pronounced in mid-adolescence. Given the quadratic peak
in ambiguity seeking in mid-adolescence under loss as ob-
served by van den Bos and Hertwig, an interesting avenue for
future research is to study whether attenuated loss processing in
anterior insula in mid-adolescence relates to heightened ambi-
guity seeking under losses in mid-adolescence, and to what
degree this predicts real-world risk-taking behavior.

Conclusion

In this study, we aimed to extend previous research by explicitly
investigating subjective value tracking under risk (known prob-
abilities) and ambiguity (unknown probabilities) in a large sam-
ple of adolescents. Our findings suggest that the neural coding of
subjective value under risk and ambiguity is reflected in both
different and overlapping patterns of brain activation in adoles-
cents in regions such as the DLPFC and DMPFC. Moreover,
these findings seem to suggest it is valuable to include subjective,
rather than objective, measures of choice valuation in neuroim-
aging studies on adolescent risk taking. Indeed, behavioral esti-
mations of risk and ambiguity preference showed considerable
individual variation, which were reflected in individuals’ self-
reported perceived riskiness of the risky and ambiguous choice
options. Furthermore, the limited age effects observed in the
present study highlight the need for studying a wider age range

to unravel these developmental differences with more certainty,
but also show that the building blocks for subjective value coding
under risk and ambiguity are already present in early adolescence
and remain stable across adolescence. In addition, these findings
illustrate the potential to investigate individual variation in brain
and behavior in adolescence. Together, these findings help to
gain insights into subjective valuation under risk and ambigui-
ty—two decision contexts that differentially impact real-life risk
taking—in adolescents. Finally, this study highlights the potential
of combining model-based behavioral analyses with fMRI. Such
amechanistic understandingmay ultimately aid in understanding
who takes risks and why.
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