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Few studies have examined the association between smoking status (includ-

ing former smokers) at diagnosis and overall survival among cancer

patients. We aimed to assess the benefits of quitting smoking on cancer

prognosis in cohorts of cancer patient smokers obtained from the Cancer

Genome Atlas (TCGA) database. Hazard ratios (HR) were calculated to

evaluate smoking behavior at cancer diagnosis (reformed smokers vs. cur-

rent smokers) in association with overall survival using multivariate-ad-

justed Cox regressions analysis. According to our analyses, quitting

smoking was the independent protective factor for overall survival in lung

squamous cell carcinoma (LUSC) (HR = 0.67, 95% CI = 0.48–0.94). Com-

prehensive analysis of multicomponent data across reformed and current

smokers identified a total of 85 differential expressed genes (DEGs)

affected by different modes of genetic and epigenetic regulation, potentially

representing cancer drivers in smokers. Moreover, we provided a smoking-

associated gene expression signature, which could evaluate the true effect

on prognosis with high power (HR = 1.70, 95% CI = 1.19–2.43,
AUC = 0.65, 0.67, and 0.70 for 2-, 3-, and 5-year survival, respectively).

This signature was also applicable in other smoking-related cancers, includ-

ing bladder urothelial carcinoma (HR = 1.70, 95% CI = 1.01–2.88), cervi-
cal carcinoma (HR = 5.69, 95% CI = 1.37–23.69), head and neck

squamous cell carcinoma (HR = 1.97, 95% CI = 1.41–2.76), lung adeno-

carcinoma (HR = 1.73, 95% CI = 1.16–2.57), and pancreatic adenocarci-

noma (HR = 4.28, 95% CI = 1.47–12.47). In conclusion, this study

demonstrates that quitting smoking at diagnosis decreases risk of death in

cancer patients. We also provide a smoking-associated gene expression sig-

nature to evaluate the effect of smoking on survival. Lastly, we suggest

that smoking cessation could comprise a part of cancer treatment to

improve survival rates of cancer patients.
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1. Introduction

Tobacco smoking is a risk factor for the occurrence

and increases the incidence of various cancers, includ-

ing bladder [1], head and neck [2], lung [3], and pan-

creatic cancer [4]. Tobacco smoking contains many

carcinogenic chemicals that can create a specific muta-

tional signature and increase the somatic mutational

burden associated with unrepaired DNA damage [5].

In addition to causing frequent gene mutations,

tobacco smoking also appears to break the immune

homeostasis, which may contribute to tumorigenesis

[6]. These effects of smoking on the immune system

and genetic materials can be considered as the true

effect of smoking. It is recognized that continuous

smoking not only has unhealthy impacts on the gen-

eral population, but also is the negative prognostic fac-

tor for cancer patients by comparing smokers with

never smokers in most studies [7,8]. However, few

studies have researched the association between smok-

ing status changes (especially quitting smoking) and

mortality among cancer patients compared with the

general population. A study found that current smok-

ing increased overall mortality risk compared with for-

mer smokers using multivariate Cox regression

analysis [9]. Another study based on the Shanghai

Cohort Study also found that a statistically significant

increased mortality risk was associated with smoking

relative to nonsmoking after cancer diagnosis [10]. A

cohort in Japan also found that quitters had consis-

tently higher survival rates than current smokers dur-

ing a 10-year calendar period after diagnosis among

cancer patients and suggested that smoking cessation

should be a part of cancer care [11]. These studies

were based on a large population and adjusted for

age, gender, stage, and other basic characters. How-

ever, some important prognostic factors were not con-

sidered, including human papillomavirus (HPV) status

associated with the prognosis of head and neck cancer

and cervical cancer [12], and tumor status after surgery

associated with the prognosis in many cancers [13,14].

It is another limit that the underlying mechanism of

smoking cessation to improve survival time has not

been further studied. Therefore, to understand the ben-

efits of quitting smoking on prognosis among cancer

patients, we first evaluated smoking status at cancer

diagnosis (reformed smokers vs. current smokers) in

association with overall survival and then comprehen-

sively analyzed the transcriptome data, mutational

profile, and immune microenvironment of smoking-re-

lated cancers from the Cancer Genome Atlas (TCGA)

database.

2. Materials and methods

2.1. Data source

This study used public data from the TCGA database.

The information of smoking status, survival time, and

the clinical characteristics was downloaded for bladder

urothelial carcinoma (BLCA), cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC),

esophageal carcinoma (ESCA), head and neck squa-

mous cell carcinoma (HNSC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and

pancreatic adenocarcinoma (PAAD) from TCGA data

portal (https://portal.gdc.cancer.gov/). Detailed patient

characteristics of each cancer are given in Table S1.

Besides, the gene expression RNAseq (HTSeq-FPKM),

miRNA expression RNAseq (Illumina HiSeq), somatic

mutation data (SNV, VarScan2 Variant Aggregation,

and Masking), copy number variation data (CNV,

Masked Copy Number Segment hg38), and DNA

methylation data (Illumina Human Methylation 450)

of above cancers were also obtained from the TCGA

database. Because the data were extracted from the

TCGA database, following the publication guidelines

strictly approved by TCGA, there was no requirement

for ethics committee approval.

2.2. The association between smoking cessation

and overall survival

The smoking status was included current smokers (in-

cluded daily smokers and nondaily smokers or occa-

sional smokers) and current reformed smokers (people

who were not smoking at the time of the interview but

have smoked at least 100 cigarettes in their life). To

understand the association between smoking cessation

and patients’ overall survival, age and multivariate-ad-

justed Cox regressions were performed to calculate the

hazard ratio (HR) with 95% confidence intervals

(CIs). In the multivariate model, we adjusted for age,

gender, tumor stage, tumor status, and HPV status.

2.3. Differentially expressed gene analysis

Differentially expressed mRNAs (DEGs), lncRNAs,

and miRNAs were identified between current smokers

and reformed smokers (P-value < 0.05) by ‘limma’

package with R [15]. Function analysis including Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway was performed by ‘clus-

terProfiler’ package in R [16].
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2.4. Somatic mutation analysis

The somatic mutation frequency ≥ 19 was considered

to compare their relative distribution between current

smokers and reformed smokers. Waterfall map for

somatic mutation patterns was performed by the R

package ‘GenVisR’ [17]. Then, the association between

gene expression and somatic mutation was determined

by the Mann–Whitney U-test. The total mutation

loads of current smokers and reformed smokers were

compared using the Mann–Whitney U-test.

2.5. Copy number variation analysis

Values of segment mean bigger than 0.2 were defined

as gain and < �0.2 as loss [18]. Chi-square test was

used to compare CNV between current smokers and

reformed smokers. Circos plots were performed by the

R package ‘Rciorcos’ [19]. Then, the association

between gene expression and CNV was determined by

the Kruskal–Wallis test.

2.6. DNA methylation analysis

The gene methylation matrix was normalized by

‘limma’ package with R. The gene with different DNA

methylation level between current smokers and

reformed smokers was also used by ‘limma’ package.

Then, the association between gene expression and

DNA methylation level was determined by the Pearson

correlation coefficient. Above differentially expressed

genes (DEGs) related to SNV, CNV, or DNA methy-

lation were considered as the key DEGs.

2.7. Construction of competing endogenous

RNA network

The differentially expressed lncRNAs, miRNAs, and

key DEGs were used to construct the competing

endogenous RNA (ceRNA) network. LncRNA-miR

links were predicted by miRcode database. The targets

of miRNAs were predicted by miRDB 6.0, mirTarBase

7.0, and TargetScan 7.2. The ceRNA network was

visualized by Cytoscape 3.6 [20].

2.8. Immune cell scores

The abundance of immune cells was measured using

three different algorithms, including the Tumor

IMmune Estimation Resource (TIMER, six immune

cell types) [21], Cell-type Identification by Estimating

Relative Subsets of RNA Transcripts (CIBERSORT,

22 immune cell types) [22], and xCell (64 immune and

stromal cell types) [22]. The comparison of immune cell

distribution between current smokers and reformed

smokers was made using the Mann–Whitney U-test.

2.9. Construction and validation of a smoking

signature

To evaluate the true degree of smoking and predict

the overall survival of smokers, we provided a quanti-

tative smoking signature using key DEGs and immune

cells. According to the somatic mutation, genes were

valued as 0 (wild) and 1 (mutation). According to the

CNV, genes were valued as �1(loss), 0 (normal), and

1 (gain). The immune cell fraction level was valued as

0 or 1. When the score of a type of cell exceeds the

corresponding cut-off value, it is assigned as 1; other-

wise, it is assigned as 0. Smoking status was also

important and included in the smoking signature (cur-

rent smoking = 1; stopping smoking = 0). First, prog-

nostic factors were identified by performing univariate

Cox regression analysis. LASSO-COX analysis was

then employed to obtain the most useful predictive

features. The smoking signature was built based on

the corresponding coefficients.

The Kaplan–Meier (K-M) survival curves and time-

dependent receiver operating characteristic [survival

receiver operating characteristic curves (ROC)] curves

were applied to evaluate the predicting ability of

smoking signature using the ‘survivalROC’ package in

R. We built a prognostic nomogram on the basis of

the smoking signature and clinical information in

smokers with LUSC using the ‘rms’ package in R.

Calibration curves for 2, 3, and 5 years were also plot-

ted to compare the predicted and actual probabilities.

We calculated the smoking signature in different can-

cers in the TCGA database using the same formula. To

confirm the applicability and reliability of the smoking

signature, age and multivariate-adjusted Cox regressions

were performed to calculate the HR with 95% CIs. In

the multivariate model, we adjusted for age, gender,

tumor stage, tumor status, and HPV status.

2.10. Statistics

All data were expressed as mean � SD. LASSO-COX

analysis was performed using the ‘glmnet’ package.

The optimal cut-off of each immune cell type was

assessed based on survival information and cell frac-

tion using the ‘survminer’ package. Survival analysis

used Cox proportional hazards model and K-M

curves. The above analysis was conducted using R soft-

ware 3.5 (R Project for Statistical Computing, Vienna,

Austria) and SPSS software 23.0 (IBM Corporation,
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Armonk, NY), and all statistical tests were bilateral,

P < 0.05 was statistically significant.

3. Results

3.1. Quitting smoking can significantly improve

the prognosis of cancer patients

The age and multivariable-adjusted HRs for the asso-

ciation between smoking cessation and patients’ over-

all survival are presented in Table 1. In age-adjusted

models, quitting smoking was significantly associated

with longer survival time in CESC, HNSC, LUSC,

and PAAD. In the multivariable-adjusted model,

though there was no significance in the majority of

cancers, reformed smokers had a better prognosis than

current smokes. Only in LUSC, the multivariable-ad-

justed HR (95% CI) was 0.67 (0.48–0.94) among

reformed smokers relative to current smokers, indicat-

ing that quitting smoking was the independent protec-

tive factor for prognosis. Therefore, we further

explored the potential mechanism by which quitting

smoking can improve the prognosis in LUSC.

3.2. Differentially expressed gene analysis

Differentially expressed mRNA, lncRNA, and miRNA

between reformed smokers and current smokers were

analyzed. In total, 2899 DEGs (P < 0.05) were identi-

fied, including 2102 genes with significantly lower

expression and 797 genes with higher expression in

reformed smokers than current smokers (Fig. 1A,

Table S2). GO and KEGG analysis showed that

DEGs mainly enriched in the DNA and RNA-related

pathways and GO terms, including DNA replication,

RNA splicing, and others (Fig. S1, Tables S3 and S4).

Similarly, a total of 48 differentially expressed miR-

NAs (20 down-regulated and 28 up-regulated miR-

NAs, Fig. 1B) and 1326 differentially expressed

lncRNAs (1207 down-regulated and 119 up-regulated

miRNAs, Fig. 1C) were analyzed.

3.3. Differences in somatic mutations related to

smoking status

To reveal the relevant genetic alterations, we analyzed

the somatic mutations between current smokers and

reformed smokers. While no significant difference was

found for total mutation load (Fig. S2A), relative

mutations frequency of 71 genes was significantly dif-

ferent (Fig. 2A, Table S5) between reformed smokers

and current smokers. Among them, there were 10

DEGs (Fig. S2B). We assessed whether these DEG

transcriptions were affected by somatic mutations and

found that the expression of GPATCH8 (P = 0.037)

and ZFC3H1 (P = 0.034) was significantly associated

with their somatic mutations (Figs 2B and S2C).

3.4. Differences in copy number variations

related to smoking status

We found 781 genes with different CNV and their

copy number gains or loss mainly on chromosomes 19,

1, and 17 (Fig. 2C, Table S6). Among them, we

assessed whether CNVs affected transcription of 94

DEGs (Fig. S3A) and found that 73 DEGs expression

was closely related to their CNVs (Table S7).

3.5. Differences in DNA methylation related to

smoking status

To explore the impact of smoking on DNA methyla-

tion, we analyzed the gene methylation levels. We found

Table 1. The association between smoking status and patients’ overall survival.

Cancer type Current smoker Reformed smoker Age-adjusted HR (95% CI) P-value MV-adjusted HR (95% CI) a P-value

BLCA 91 198 0.79 (0.54–1.16) 0.230 0.72 (0.42–1.22) 0.219

CESC b 64 53 0.34 (0.16–0.71) 0.004 0.63 (0.26–1.53) 0.309

ESCA 37 73 0.89 (0.46–1.72) 0.723 0.89 (0.39–2.02) 0.780

HNSC b 178 215 0.65 (0.47–0.89) 0.007 0.67 (0.44–1.02) 0.059

LUAD 122 311 1.12 (0.77–1.63) 0.561 1.34 (0.85–2.10) 0.207

LUSC 134 340 0.62 (0.46–0.83) 0.001 0.67 (0.48–0.94) 0.020

PAAD 20 60 0.45 (0.23–0.89) 0.021 0.54 (0.24–1.20) 0.132

Significant associations are shown in bold.
a

MV-adjusted for age (continuous), gender (female, male), tumor stage (stage Ⅰ, stage Ⅱ, stage Ⅲ, and stage Ⅳ), and tumor status (with

tumor and tumor-free).
b

MV-adjusted for age (continuous), gender (female, male), tumor stage (stage Ⅰ, stage Ⅱ, stage Ⅲ, and stage Ⅳ), tumor status (with tumor

and tumor-free), and HPV status (positive and negative).
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964 genes in reformed smokers with different DNA

methylation compared to current smokers (Fig. 2D,

Table S8). Among 77 DEGs (Fig. S3B), we were inter-

ested in 10 DEGs whose expression was significantly

associated with methylation level (Cor < �0.30,

P < 0.05), including HOXB2 (Cor = �0.728, P < 0.001)

and PTHLH (Cor = �0.565, P < 0.001; Figs 2E and

S3C).

In summary, the above analysis indicated that 85

key DEGs affected by different modes of genetic and

epigenetic regulation might represent key drivers in

smokers.

Fig. 1. DEGs (n = 2899), miRNAs (n = 48), and lncRNAs (n = 1326) between reformed smokers and current smokers using the ‘limma’

package with R. (A) The DEGs. The Y-axis is -log10 P-value, and the X-axis is log2Fold-change. (B) DEGs miRNAs. (C) Differentially expressed

lncRNAs. (D) The network summarizes complex connections between differentially expressed lncRNAs (red), lncRNAs targeted miRNAs

(green), and DEGs (yellow).
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3.6. Construction of ceRNA network

Next, we constructed the ceRNA network using differ-

entially expressed lncRNAs, miRNAs, and key DEGs.

Target miRNA prediction revealed 139 lncRNA-

miRNA links, including 76 lncRNAs and eight miR-

NAs according to the miRcode database (Table S9).

Target gene prediction for above eight miRNAs

revealed 3667 miRNA-mRNA links (prediction in at

least two out of three databases) (Table S10).

Based on lncRNA-miRNA and miRNA-mRNA

links, a lncRNA-miRNA-DEGs complex network (69

lncRNAs, 5 miRNAs, and 13 DEGs) was built to

summarize underlying molecular traits of smokers

(Fig. 1D).

3.7. Estimation of immune cell-type fractions in

LUSC

We estimated the abundance of immune cells using three

different algorithms. The distribution of several immune

cell fractions in reformed smoker was different from

that in current smokers, including CD8+ T cell

(TIMER), follicular helper T cell (CIBERSORT),

gamma delta T cell (CIBERSORT), M0 macrophage

(CIBERSORT), central memory CD4+ T cell (XCELL),

and central memory CD8+ T cell (XCELL) (Fig. S4).

Fig. 2. Differences in the mutational landscape and DNA methylation between reformed smokers and current smokers. (A) Top 20

differentially mutated genes between reformed smokers and current smokers. (B) The expression of GPATCH8 and ZFC3H1 was

significantly associated with their somatic mutations using the Mann–Whitney U-test. The error bar was SD. (C) Genes with different CNV

and their copy number gains or loss mainly on chromosomes 19, 1, and 17. (D) Genes in reformed smoker with different DNA methylation

compared to current smokers. (E) Expression of HOXB2 and PTHLH was significantly associated with methylation level by the Pearson

correlation coefficient.

2074 Molecular Oncology 14 (2020) 2069–2080 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Smoking cessation can improve cancer survival S. Yang et al.



3.8. Construction and validation of smoking

signature

Univariate Cox regression analysis and LASSO-COX

analysis were performed to identify key prognostic mark-

ers, and smoking signature was built (Fig. S5, Table S11).

The formula for the smoking signature was based on the

corresponding coefficients (Table S12): smoking signa-

ture = 0.5410 9 (smoking status) + 0.3278 9 ZFC3H1|
snv + 0.2153 9 GPATCH8|snv + 0.3625 9 NOL8|cnv +
�0.5947 9 RPL10A|cnv + �0.3870 9 follicular helper T

cell (CIBERSORT) + 0.5414 9 M0 macrophage

(CIBERSORT) + �0.1420 9 central memory CD8+ T

cell (XCELL).

Fig. 3. The smoking signature of evaluating the true effect of smoking on overall survival. (A) The distribution of smoking signature between

reformed smokers and current smokers using Student’s t-test. The error bar was SD. (B) KM curves for patients with high-smoking

signature and low-smoking signature. (C) Survival ROC curves for 2-, 3-, and 5-year prediction. (D, E) The association between smoking

signature and death risk using univariate (D) and multivariate (E) Cox regression analysis. (F) Nomogram with smoking signature for

predicting 2-, 3-, and 5-year death risk. (G) Calibration curves of nomograms in terms of the agreement between predicted and actual 2-, 3-,

and 5-year outcomes. The error bar was SD.
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Distributions of the smoking signature in smokers

were showed that reformed smokers had lower

smoking signature than current smokers (P < 0.001,

Fig. 3A). The K-M curves were plotted to confirm

that the patients with high-smoking signature had

poorer prognosis (P < 0.001, Fig. 3B). The smoking

signature also exhibited better-predicted power of 2-

, 3-, and 5-year survival (AUC = 0.65, 0.67, and

0.70, Fig. 3C) than smoking status (AUC = 0.55,

0.55, and 0.58, Fig. S6). Moreover, univariate and

multivariate Cox regression analysis showed that

smoking signature could become potential indepen-

dent prognostic indicators (P < 0.001) (Fig. 3D,E).

To provide a quantitative tool to predict patients’

survival, we constructed the prognostic nomogram

integrating smoking signature and clinical informa-

tion in smokers with LUSC (Fig. 3F). Moreover,

the calibration curve of the nomogram demon-

strated good agreement between prediction and

observation (Fig. 3G).

To confirm the applicability and reliability of the

smoking signature, we verified it in various cancers.

The smoking signature of each type of cancer is pro-

vided in Table S13. In age-adjusted models, the smok-

ing signature was significantly associated with overall

survival in BLCA, CESC, HNSC, LUAD, LUSC, and

PAAD. In multivariable-adjusted model, patients with

higher smoking signature had higher hazard rates than

patients with lower smoking signature in BLCA

(HR = 1.70, 95% CI = 1.01–2.88), CESC (HR = 5.69,

95% CI = 1.37–23.69), HNSC (HR = 1.97, 95%

CI = 1.41–2.76), LUAD (HR = 1.73, 95% CI = 1.16–
2.57), LUSC (HR = 1.70, 95% CI = 1.19–2.43), and

PAAD (HR = 4.28, 95% CI = 1.47–12.47) (Table 2).

We also constructed the prognostic nomogram with

the smoking signature in BLCA, CESC, ESCA,

HNSC, LUAD, LUSC, and PAAD as quantitative

tools (Fig. S7).

4. Discussion

Tobacco smoking is an established risk factor for

many cancers’ development. It is known that smoking

cessation reduces mortality and increases the life span.

However, a causal relationship between smoking cessa-

tion and prognosis in cancer patients who are current

smokers at the time of a cancer diagnosis is still

unclear [23], and the lack of a special tobacco smoking

assessment signature potentially underestimates the

true impact of smoking on overall survival. In the pre-

sent study, we used the TCGA cohort to estimate the

association between smoking cessation and overall sur-

vival, understand the genetic and immune microenvi-

ronment of smoking patients, and provide an effective

smoking signature for evaluating the smoking level to

predict prognosis.

By performing age-adjusted Cox regressions, we

found that smoking at diagnosis increased mortality

risk as compared with reformed smokers in CESC,

HNSC, LUSC, and PAAD. Importantly, quitting

smoking was the independent prognostic factor of

LUSC. Several studies have evaluated the effect of

smoking on LUSC. Molinier et al. [24] estimated 5-

year survival in non-small-cell lung cancer patients and

found that smoking level at diagnosis was an indepen-

dent negative prognostic factor in LUSC patients.

Nakamura et al. [25] performed the multivariate analy-

sis to find that smoking in LUSC was associated with

recurrence-free survival. Although without distinguish-

ing histological type, a cohort claimed that recent quit-

ting could decrease the risk of death among patients

with lung cancer (HR, 0.90; 95% CI 0.81–0.99) [11].

Table 2. The association between the smoking signature and patients’ overall survivala.

Cancer type Age-adjusted HR (95% CI) P-value MV-adjusted HR (95% CI)b P-value

BLCA 1.03 (1.01–1.05) 0.001 1.70 (1.01–2.88) 0.048

CESCc 4.69 (1.80–12.23) 0.002 5.69 (1.37–23.69) 0.017

ESCA 1.22 (0.50–3.01) 0.663 1.30 (0.50–3.41) 0.596

HNSCc 2.14 (1.55–2.96) < 0.001 1.97 (1.41–2.76) < 0.001

LUAD 1.52 (1.07–2.17) 0.020 1.73 (1.16–2.57) 0.007

LUSC 1.85 (1.29–2.64) 0.001 1.70 (1.19–2.43) 0.003

PAAD 5.90 (2.60–13.41) < 0.001 4.28 (1.47–12.47) 0.008

Significant associations are shown in bold.
a

The smoking signature is the continuous variable.
b

MV-adjusted for age (continuous), gender (female, male), tumor stage (stage Ⅰ, stage Ⅱ, stage Ⅲ, and stage Ⅳ), and tumor status (with

tumor and tumor-free).
c

MV-adjusted for age (continuous), gender (female, male), tumor stage (stage Ⅰ, stage Ⅱ, stage Ⅲ, and stage Ⅳ), tumor status (with tumor

and tumor-free), and HPV status (positive and negative).
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Synthesizing above all outcomes, it is demonstrated

reducing smoking could decrease the deterioration risk

as compared with current smoking, suggesting a rever-

sible effect of smoking in LUSC.

Then, we analyzed the somatic mutation, CNV, and

DNA methylation between reformed smokers and cur-

rent smokers. A total of 85 key DEGs were identified,

whose expression was regulated by gene mutation or

methylation. Among them, several key genes have

been confirmed to be associated with LUSC. CBLC

can be recruited into the epidermal growth factor

receptor (EGFR) to increase EGFR ubiquitination,

and thereby downregulate EGFR signaling in lung

cancer patients [26]. Zhan et al. [27] suggested that

RPS11 was considered as the suitable reference gene

for qRT-PCR-based studies of squamous cell lung car-

cinoma because of its high and stable expression. Sie-

nel et al. [28] found that CEACAM1 has implicated in

the development and progression of LUSC and an

independent prognosticator for survival. Besides, these

key genes also played important roles in smoking-re-

lated cancers, including lung cancer. Shui et al. [29]

found the DNA methylation of LGALS3 was associ-

ated with smoking status in prostate cancer and

strongly correlated with its expression. DNA ligase I

(LIG1) is a DNA repair gene involved in both the

nucleotide excision repair and the base excision repair

pathways [30]. Many studies confirmed that variants in

LIG1 may predispose to smoking-related lung cancer

[31,32]. By comparing the gene expression profiles in

lung cancer between nonsmokers and smokers,

Woenckhaus et al. [33] found PTHLH, being involved

in matrix degradation, was differentially expressed,

which could reflect early cigarette smoke-induced and

cancer-relevant molecular lesions. Chronic obstructive

pulmonary disease (COPD) is another threat of smok-

ing-induced lung injury, which can be the driving fac-

tor for lung cancer [34]. ATG7, an autophagic gene, is

increasingly activated in the early stages of lung injury

induced by cigarette smoke [35,36]. AXL is a receptor

tyrosine kinase related to cancer and immune function,

which mediates signal transduction related to prolifera-

tion and inflammation [37]. During secondhand

smoke, the interaction between AXL and receptors for

advanced glycation end products can cause COPD.

Exposure to cigarette smoke, LGALS3 can increase

CXCL8 secretion to induce inflammation [38] in

COPD. Nowadays, the importance of smoking cessa-

tion in the management of COPD has been well-estab-

lished [39]. Similarly, cancer patients should quit

smoking as soon as possible, which is helpful for can-

cer treatment by regulating key genes [40]. In addition,

we constructed the ceRNA network to summarize the

underlying molecular traits of smokers, indicating that

smoking could affect DEGs by different modes of

genetic and epigenetic regulation.

Therefore, we provided a comprehensive smoking

signature including immune microenvironment and

epigenetic regulation to evaluate the true impact of

smoking because of the complexity in cancer smokers.

By understanding the immune microenvironment, we

found that the fractions of follicular helper T cell, M0

macrophage, and central memory CD8+ T cell were

different between reformed smokers and current smok-

ers, suggesting that smoking status could change

immune microenvironment to affect prognosis. It is

reported that immune homeostasis in tumor microen-

vironment appears to be less compromised in non-

smokers than in ever-smokers. In addition, the

composition of leukocyte subtypes is closely correlated

not only with smoking history, but also with patients’

outcome [41]. Different subsets of T cells are playing

different roles in immune response [42]. Follicular

helper T cells play crucial roles in the development of

humoral immunity [43]. Yang et al. [13] estimated the

immune cell-type fractions in digestive system cancer

and found that follicular helper T cells were the pro-

tective factors of patients’ overall survival. Many stud-

ies also have shown that CD8+ T cells usually mean a

better prognosis among cancer patients [44,45]. M0

macrophages were reported to be inversely associated

with patients’ outcomes in various, such as adrenal

cortical carcinoma and lung cancer [46,47]. Nowadays,

majority studies evaluated the degree of smoking based

on the frequency of tobacco use to define heavy smok-

ers and light smokers without uniform quantifying

standards [48–50]. Moreover, these cut-offs cannot

accurately identify the true degree of smoking because

they do not comprehensively consider the DNA dam-

age and microenvironment alteration. Rosenthal et al.

[51] developed deconstructSigs to identify mutational

smoking signature in LUSC, LUAD, and HNSC. Des-

richard et al. confirmed that patients with high muta-

tional smoking signature had poorer overall survival in

HNSC (HR = 1.50, 95% CI = 1.23–1.81, P < 0.01),

but the mutational smoking signature was not prog-

nostic in LUSC (HR = 1.02, 95% CI = 0.71–1.46,
P = 0.92) [52] and LUAD (HR = 1.18, 95%

CI = 0.46–3.04, P = 0.74). Importantly, the smoking

signature we constructed not only can predict the over-

all survival in LUSC, but also can serve as prognostic

indicators in BLCA, CESC, HNSC, LUAD, and

PAAD.

Nevertheless, the present study is not without limita-

tions. First, information on the timing of smoking ces-

sation is lacking, which cannot tell whether quitting
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earlier is better for overall survival. Second, smoking

status after diagnosis is unknown—it is possible that

some patients relapsed to smoking after diagnosis,

which could have biased the results. In the future, we

need large cohorts with complete smoking information

for further study.

5. Conclusion

The present study demonstrated that quitting smoking

at diagnosis decreased the risk of death in cancer

patients, suggesting a reversible effect of smoking on

prognosis. We further provided the smoking signature

by understanding the underlying molecular traits to

evaluate the true effect of smoking, which could

improve the prognostic prediction. At the same time,

we suggested that smoking cessation could be a part

of cancer treatment to improve the survival rate of

cancer patients.
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