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Abstract: Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths
among women and is associated with age and age-related diseases. With increasing evidence of risks
associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus
(T2DM), it is important to understand the complex pathophysiological mechanisms underlying
cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic
immune function alterations, such as induction of senescence, which can contribute to disease
progression. Immune senescence is a common phenomenon in the ageing population, which is now
known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with
the highest rates in the 75–79 age group in women, have been shown to be influenced by immune
cells within the “milky spots” or immune clusters of the omentum. As T2DM has been reported
to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor
prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the
omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic
approaches, and future directions.
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1. Introduction

Epithelial ovarian cancer (EOC) is the eighth most common cause of cancer-related
deaths among women globally, with a survival rate of less than 50% and an average
age at diagnosis of 63 years [1,2]. The poor prognosis of ovarian cancers, which lack
symptoms at an early stage, means that 80% of all cases are diagnosed at a later, more
advanced stage [1,3]. With age and age-related disorders, such as diabetes, acting as
significant risk factors for disease progression in EOC, it raises the question of which
element of the ageing process is leading to such a change in prognosis [2]. With many
of the components of the omentum changing with age, including a loss of the basement
membrane, which aids tumour invasion, and distinct changes to mesothelial cells, the
peritoneal extracellular matrix, immune cells, and adipocytes [2], a concept that seems to
be key to increased inflammation associated with ageing is termed cellular senescence.
Accumulation of senescent cells in age-related disease, such as diabetes, is known to
create a proinflammatory environment for disease progression [2,4]. Nevertheless, the
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recent discovery of increased numbers of senescent T cells in type 2 diabetic patients may
indicate a role of senescent immune cells as potential contributors to the progression and
advancements in EOC metastasis [5].

A number of risk factors and disorders, such as ageing, smoking, late pregnancy,
diabetes, and obesity, have been reported to be associated with poor survival of ovarian
cancer patients. For instance, in recent years, type 2 diabetes mellitus (T2DM) has been
identified as an independent risk factor for mortality in patients with EOC. Bakhru et al.
(2011), in their observational study of 642 patients, revealed a decrease in overall survival
(OS) from 6 years for nondiabetic patients to 4 years for diabetic patients with EOC [6].
A retrospective cohort study (n = 367) confirmed these findings, with diabetic patients
exhibiting both poorer progression-free survival (PFS) (10.3 vs. 16.3 months) and OS (26.1
vs. 42.2 months) [7]. The association between T2DM and EOC is complex as there are
multifactorial aspects, but also the molecular basis of this remains unclear. Due to these
pathophysiological features, diabetes is associated with a chronic, low-grade systemic
inflammation, which is believed to be linked with cellular senescence, particularly in the
lymphocytes and macrophages [8–10]. According to early studies, this persistent low-grade
inflammation in T2DM was believed to be caused by macrophages, which led many groups
to concentrate on the role of innate immunity in disease development. However, now it has
been discovered that the number of senescent T cells (both CD4+ and CD8+) increases in
patients with T2DM and is believed to be a contributory factor to disease progression [11].

Another condition that contributes to EOC progression is obesity. One of the biggest
studies, “The Million Women Study” based in the United Kingdom, followed 1.2 million
women for an average of 5.4 years for cancer incidence and 7.0 years for cancer mor-
tality. This study found that women with a BMI ≥ 25 have a higher incidence of EOC
compared with their normal weight counterparts/women with a BMI of 18.5–24.9 [12].
Nagle et al. (2015) studied the associations between histopathological types of EOC and
disease outcomes in patients with obesity, showing increased mortality in cases of high-
and low-grade serous and endometrioid cancers [13]. In ovarian cancer patients, obesity
induces chronic inflammation that can modify the tumour microenvironment and induce T
cell senescence [14–16], which could potentially contribute to EOC progression. Chronic
inflammation has been shown to involve a chemokine network that influences the migra-
tion and invasion of cancer cells, which support the tumour microenvironment for cancer
progression by increasing the inflammatory burden [17,18]. This chronic inflammation
has been strongly associated with inducing senescence, particularly immune senescence
in age-related metabolic disorders, such as T2DM, and in ovarian cancer [11,19]. Given
that chronic-inflammation-induced senescence is a detrimental factor associated with poor
prognosis in T2DM and obesity comorbidities, there is a possibility that these immune
cells in the ageing peritoneum of T2DM patients contribute to creating a more proinflam-
matory, tumour-friendly premetastatic niche for migrating EOC cells to form secondary
foci. Subsequently, this cascade could lead to metastasis. In this review, we will explore
this hypothesis in the light of immune senescence in “milky spots” and secondary ovarian
tumour growth and metastasis in the omentum.

2. Omental Milky Spots as the Preferential Site for Colonisation by Epithelial
Cancer Cells

The omentum is the preferred site for peritoneal cancer cells to colonise and prolif-
erate [3] and is the most common site of EOC metastasis [1] (Figure 1). The omentum is
highly vascularised and formed as the parietal peritoneum folds, lying between the parietal
peritoneum and the anterior surface of the abdominal organs. Structurally, the omentum
has a matrix that is rich in collagen with a mesothelial cell layer and a thin basement
membrane [2]. It shows two contrasting structural regions—one with a collagenous mem-
branelike organisation and the other rich in adipose tissue—accommodating blood vessels,
lymph nodes, and clusters of immune cells [20]. The healthy omentum plays a key role in
repairing injury, fighting infections, and releasing factors to aid local homeostasis [3]. It is
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also known to have a significant impact on peritoneal immunity due to the high number of
lymphoid clusters or “milky spots” present [2].
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Figure 1. Immune-related cellular structure of the omentum. The omentum predominantly consists of adipocytes within a
mesh of extracellular matrix proteins, such as collagen. Immune cells such as macrophages, T cells, B cells, and neutrophils
are found in clusters and dispersed within the omentum. The adipocytes are lined with mesothelial cells, which are
the first point of contact for migrating cancer cells. The omentum is highly vascularised, which significantly aids in
cancer progression.

EOC cells disseminate from the ovary into the peritoneal fluid. With physiological
movement, the tumour cells primarily attach to the omentum via alpha and beta integrin
interaction with the omental surface mesothelial cells [3]. This initial interaction allows
for the entry into the underlying matrix via the proteolytic degradation of extracellular
matrix (ECM) proteins by cancer-cell-secreted matrix metalloproteinases (MMPs) [21,22].
For instance, MMP2 lyses collagen IV of the omentum, causing a loss of the basement
membrane, which increases with age [2]. Through a cycle of tumour cell proliferation,
migration, and invasion, metastatic lesions are formed within the omentum. An angiogenic
switch takes place in response to growth factors secreted by a tumour and other local cells,
which initiates metastasis. Subsequently, the tumour begins the formation of new vessels
in order to increase blood supply [23–28]. Prior to these new vessels forming, the tumour
is dependent on the existing blood supply within the omental microenvironment.

Despite being predominantly composed of adipose tissue, the omentum is an active
immune organ with clusters of immune cells found across the tissue [29]. These milky
spots, or fat-associated lymphoid clusters (FALCs), play an important role in inducing
an immune response to tissue insult, such as injury or infection. These were first seen
as dense corpuscles in the omentum by Recklinghausen in 1863 [30] and, in 1993, were
reported to be the most prominent site of malignant cell implantation in the peritoneal
dissemination of mice [31,32]. Forming during 20–35 weeks of gestation, they consist
principally of B (B1 and B2) and T lymphocytes with macrophages, plasma cells, lymphatic
vessels, and a blood supply also present [3,20]. The milky spots have compositions that can
be split into structural, migratory, and functional elements, where the former is composed
of fibroblasts, adipocytes, mesothelia, and endothelia with lymphocytes, granulocytes,
and monocytes making up the migratory region. Macrophages, stromal cells, and the
endothelium of the veins form the functional element [33]. Due to their lack of any form of
capsule, the contents of the milky spot are in direct contact with the surrounding adipose
tissue, allowing them to utilise the abundance of blood vessels and collect antigens or
pathogens from the peritoneal fluid directly [34]. This supports their function in the healthy
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omentum as they are able to recognise antigens and pathogens from the peritoneal cavity
and aid in processing them through inflammatory regulation [4].

Clark et al. (2013) provided compelling evidence that EOC cells preferentially colonise
the milky spots in the omental tissue compared with other peritoneal tissues [35]. In their
experiment, both C57BL/6 and nude mice were injected (intraperitoneally) with EOC cell
lines, such as ID8, SKOV3, CaOV3, and HeyA8 cells. Interestingly, their histological analysis
revealed 48 foci of cancer cells within the omentum and only 5 foci in the splenoportal
fat [35]. There were no ovarian cancer cells detected in the uterine or gonadal fat, indicating
a milky-spot-specific directed migration of EOC cells within the peritoneum. For example,
cancer cell migration increased by 95-fold in the presence of omentum-tissue-conditioned
media. More specifically, the presence of adipose tissue containing no milky spots revealed
a 75% reduction in cancer cell migration, suggesting a key role of immune cells within the
milky spots inducing a directed migration of these cells [35]. However, other cells, such as
mesothelial cells and cancer-associated adipocytes, may also play a role [36].

In the early stage of tumour growth within the premalignant omentum, immune cells
in the milky spots secrete protumourigenic factors, establishing a further crosstalk between
tumour cells and local cancer-associated cells. This is further aided by hypoxia, resulting
in the cancer cell migration, proliferation, and formation of secondary foci [35]. These
micrometastatic proliferative tumour cells then aggregate and disrupt the structure of the
milky spots, leaving immune cells dispersed within the tumour mass, suggesting that these
resident immune cells in the milky spots aid tumour invasion and metastasis [37]. A study
by Etzerodt et al. (2020) involving CD163− and Tim4− expressing macrophages showed
the promotion of malignant ovarian cancer progression in the omentum via macrophage
and tumour cell association [1]. For instance, the depletion of CD163+Tim4+ macrophages
prevented metastatic disease development and reduced ascite formation [1]. The secretion
of CCL6 and CCL23 by omental macrophages significantly increased the migration and
colonisation of EOC cells via binding to CCR1 receptors on cancer cells and inducing the
activation of the ERK1/2 and AKT pathways, where ERK activation is pivotal in cancer cell
survival through the upregulation of antiapoptotic proteins and the inhibition of caspase
activity [38,39]. For instance, a reduction in omental macrophages caused a diminished
level of EOC cell colonisation in the omentum, as did the inhibition of CCL6, highlighting
that these macrophages possess a key role in tumour progression [39].

It has been found that the number of milky spots in the omentum increases in the
presence of inflammatory cues/stimuli. For example, intraperitoneal injection of lipid A,
a component of bacterial polysaccharide, increased the number of macrophages in the
omentum [40]. Additionally, the number and size of milky spots increased in response
to intraperitoneal injection of polydextran particles or polyacrylamide beads [41,42]. In-
terestingly, the omentum produced a CXCL13-mediated response, which is produced by
CD4 T cells, and supported T cell-dependent B cell responses, including isotype switch-
ing, somatic hypermutation, and limited affinity maturation [43,44]. Tumour-associated
macrophages have also been suggested to influence T cells by altering their cytotoxic
function and recruitment in a cancer microenvironment in aged mice (reviewed in [45]).
Moreover, the omentum also recruited effector T cells and produced CD4+ and CD8+ T
cell responses to peritoneal antigens, suggesting that the adaptive immune system is a key
component in inflammatory conditions, such as a growing tumour [44].

3. Diabetes Mellitus-Associated T Cell Senescence

The induction of T cell senescence was reported several years ago, although its disease-
associated roles are now becoming more evident. T cell senescence is characterised by a
reduction in the total naïve T cell pool, being replaced with differentiated T cells, such
as effector memory (EM) T cells and terminally differentiated effector memory (EMRA)
T cells [5,46]. The age and status of T cells are tracked by their cell-surface markers, as
they do not express the costimulatory molecules CD27 and CD28, but do express CD57
and KLRG1, both of which function to reduce the proliferative capacity [46]. Senescent
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CD8+ T cells have recently been shown to increase in abundance in older donors with a
twofold increase compared with younger donors in their early 20s, suggesting their major
contribution to a reduced immune function and enhanced susceptibility to disease [47].

Metabolic disorders, such as obesity and T2DM, have also been shown to induce
cellular senescence through an accumulation of these cells in organs as well as in the
circulation [48]. For instance, Lau et al. reported an increase in EM and EMRA CD45RA
re-expressing T cells in T2DM patients [11]. Overall, the authors showed that T2DM acted
as a driving factor in the premature ageing of both CD4+ and CD8+ cells, increasing T cell
differentiation and senescence, which contributed to systemic inflammation, as detected by
raised levels of neutrophils [11]. Moreover, these senescent T cells expressed significantly
higher numbers of the CX3CR1 chemokine receptor, indicating a promigratory phenotype
that is seen during the early stages of tumour progression [11,49,50].

4. Age-Related Immunosenescence and Cancer

The presence or absence of T cells infiltrating (TIL) the tumour in EOC patients
has a significant impact on survival. These cells inhibit cancer cell growth by secreting
antiangiogenic cytokines, which have been shown to be increased in ovarian tumours with
TILs present [51,52]. However, with ageing, CD4+ cells secrete less IL-2 in comparison with
their younger counterparts [53], and their memory capabilities are also decreased [54]. A
reduction in CD8+ antitumour capabilities is also seen, promoting tumour growth and
development [55]. Therefore, all these factors lead to the aged TIL subset being inactive
when compared with its younger counterpart and having a reduced antitumourigenic effect.
Moreover, senescent cells accumulate and can also be found within persistent and chronic
infections, where the immune system is repeatedly trying to control the infection [46].
This age-related change in immune physiology in T2DM patients who are diagnosed
with EOC can potentially contribute to cancer progression. This change is more likely to
take place among T cells due to their high proliferative status, which are thus inclined to
become senescent. However, T cells can remain viable with subsets that are resistant to
programmed cell death [56].

In humans, the T lymphocyte progeny expresses the cell marker CD28, but in the
ageing population, there is an increase in circulating CD8+ CD28null T cells [56]. CD8+

T cells are relatively more susceptible to senescence as these cells have a single β-bound
protein, the CD28 promoter complex [56]. Loss of CD27 is another marker of immunose-
nescence, indicating the intolerance to proliferate in some subsets of senescent T cells [56].
Additionally, the expressions of CD45RA and CD57 (rather than the loss of CD28) are
markers of senescent T cells [57,58]. Although there are no morphological changes in
the subsets of senescent T cells, CD8+CD28−CD57+ T cells display a higher expression
of proinflammatory cytokines than other subsets under resting conditions [59]. Another
distinguishable feature is the inherent mitochondrial metabolic capacity that governs the
stability of CD4+ and CD8+ T cell senescence [60]. Nevertheless, senescent immune cells
have been linked to an arsenal of physiological and pathological manifestations, includ-
ing pulmonary diseases, autoimmune diseases, allogeneic transplantation, and various
cancers [57,61–65].

Many studies have shown that T cells that have developed a senescent phenotype
are considered to have reached a critical phase known as clonal exhaustion, defined by
proliferative incompetence. However, further research has shown that this is not true for
all senescent T cells [57]. Senescent cells in general express permanent cell cycle arrest, and
it is widely accepted that repeated antigenic activation drives senescence in T cells [57].
Nonetheless, recent findings have shown that senescent T cells can evade cell cycle arrest
by upregulating telomerase activity, allowing these CD8+ CD28null cells to proliferate
under optimum conditions [57]. The senescent T cells expressing CD8+CD28− (CD27+) are
not completely senescent due to their ability to activate telomerase gene expression and
permit cellular proliferation. This illustrates that the presence of CD27 is an indication for
T cells, which are not completely senescent but are close to terminal differentiation [57].
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Experimental evidence shows that CD8+ CD28− cells expressing CD27− have shorter
telomeres with reduced proliferative capacity, as the costimulation can no longer induce
cellular proliferation [66].

Not only do CD8+ CD28− T cells have an enhanced ability to proliferate despite
the expression of CD28− that signifies senescence, but also a population of senescent
T cells (CD27−) exhibits apoptotic resistance, promoting their differentiation to become
late-differentiated CD8+ CD28− T cells [57]. However, not all senescent T cells express this
apoptotic resistance potential, whereby CD8+ CD28− CD57+ T cells are cleared following
antigen stimulation [57]. Chronic inflammation results in the replacement of these cells by
newly formed CD8+ CD28− (CD57+) cells. Increased circulating senescent immune cells,
particularly CD8+CD57+ (or CD8+CD28null) T cells, have been linked to critical roles in
other diseases, including hypertension and chronic kidney disease, as well as T2DM [67,68].
The increase in circulating senescent immune cells is a phenotype solely observed in hu-
mans and primates, as in aged mice, this is not detected, and the reasons for this remain
unknown [56]. Moreover, a cohort study suggested that there is a case of premature senes-
cence in children with chronic kidney disease as the T cell senescence markers CD28null

and CD57+ were significantly increased relative to controls [69]. Whether these senescent T
cells have increased cytokine secretion was not investigated [69]. Nevertheless, apoptotic
resistance governs the differentiation and proliferation of intermediate senescent T cells to
generate T cells that are at a stage of complete cellular senescence [57]. This phenotype is
pathological in that it allows the accumulation of senescent T cells over a long period of
time [57], which may be implicated in T2DM-associated chronic inflammation.

Although they lose their proliferative capacity, senescent T cells remain metaboli-
cally active, releasing a pool of both pro- and anti-inflammatory cytokines, known as
the senescence-associated secretory phenotype (SASP) [5]. CD8+ T cells that have un-
dergone SASP have a critical change in function, with reduced cytotoxic capacity and
downregulation of its effector molecules, perforin and granzyme B. Instead, the cells have
a very strong inflammatory profile, recruiting other immune cells to the site for clearance
through immune surveillance [70,71]. The SASP profile of T cells and their reduced cy-
totoxic abilities can contribute to the establishment, growth, and maintenance of cancer,
and increased levels of CD8+ senescent T cells can be found in certain cancer types [70].
Regulatory T cells (Tregs) and tumour Tregs can themselves induce senescence in effector
and naïve T cells as they compete for resources, causing immunosuppression within the
tumour microenvironment and a reduced immune response [70]. SASP components, such
as growth-regulated oncogene-α, have been shown to cause epithelial cell proliferation in
various types of cancer, including breast and prostate [72].

The most common form of ovarian cancer arises from epithelial cells [73]. Therefore,
after the invasion of the ovarian cancer to within the milky spots, it is possible that the
senescent T cells contribute to the proliferation and growth of the EOC cells rather than
the removal by immune surveillance. Other factors secreted by senescent cells promote
angiogenesis, such as vascular endothelial growth factor (VEGF) and angiogenin [72].
Therefore, the already highly vascularised environment and the SASP of senescent T cells
possibly work in synergy to allow tumour colonisation and growth to ensue, as the blood
supply, and thus the nutrient supply, within the milky spot is increased by both of these
factors (Figure 2). IL-1, another SASP component, not only is instrumental to angiogenesis
but also causes increased vascular permeability, and hence can contribute to the metastasis
of the cancer from the primary site [72,74]. Within the milky spots, this could then account
for the rapid metastasis into other sites in the body and surrounding tissue. Other secreted
SASP factors, such as colony-stimulating factor (CSF) and VEGF, recruit further immune
cells into the tissue, including monocytes that undergo differentiation into tumour-derived
macrophages. These macrophages then promote and reinforce the inflammatory response
and increase angiogenesis [3,73]. Table 1 summarises the functions of selected SASPs in
tumour progression, angiogenesis, and immunosuppression.
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Figure 2. Immune cells within the milky spots could aid in tumour progression and metastasis. In the hypoxic tumour
microenvironment, immune cells secrete inflammatory cytokines, chemokines, and growth factors, which enhance tumour
proliferation and migration, leading to omental invasion. In type 2 diabetes mellitus (T2DM), a low-grade chronic
inflammation results in T cell senescence, which contributes to tumour progression by inducing a senescence-associated
secretory phenotype (SASP) that consists of protumourigenic factors. These factors, along with tumour cell secretion, result
in a complex crosstalk between local microvasculature and growing cancer cells, leading to angiogenesis and, consequently,
metastasis.

Table 1. Genes identified from the T cell SASP [5] and their role in tumourigenesis.

T Cell SASP Cell
Proliferation

Cell
Migration

Tumour
Invasion Angiogenesis Immune

Suppression Ref.

CCL5 ↑ ↑ ↑ ↑ ↑ [75–90]
CCL16 n.d. ↑ n.d. ↑ n.d. [91,92]
CCL23 n.d. ↑ n.d. ↑ ↑ [93–95]
IL-18 ↓ n.d. n.d. ↓ n.d. [96,97]

PDGF-D ↑ n.d. ↑ ↑ n.d. [98–101]
TNF-α ↑ n.d. ↑ ↑ n.d. [78,79,81]

CCL5, 16, 23: C-C motif chemokine ligand 5, 16, 23; IL-18: interleukin-18; PDGF-D: platelet-derived growth factor-D; TNF-α: tumour
necrosis factor-alpha; ↑: increase; ↓: decrease; n.d.: not determined.

5. Could Premature Immunosenescence Contribute to EOC Progression in DM?

It was recently reported that T cell senescence appears in prediabetics, with in-
creased expression of proinflammatory cytokines (TNF-α and IL-6) and cytotoxic enzymes
(granzyme B) in CD28−CD57+CD8+ T cells [59]. Additionally, the levels of TNF-α and
perforin were significantly increased in prediabetic patients, despite no increases in the
CD4+ T cell number being observed in prediabetics compared with control subjects [59].
This indicates that the accumulation of senescent T cells can occur earlier in life, result-
ing in a more chronic proinflammatory environment. Moreover, premature ageing of
T cells has been reported in T2DM and prediabetic patients [11,59]. This may indicate
that in EOC patients, where age and T2DM are detrimental factors, early appearance and
accumulation of immune senescence may contribute to a low-grade chronic inflamma-
tion in the peritoneum [102], specifically within and surrounding the milky spots. This
could influence the formation of a premetastatic niche and lead to a poor prognosis of
the disease. Therefore, further investigation is required to identify novel biomarkers for
stratifying early-stage ovarian cancer patients suffering from T2DM [103] and to strategise
and manage preventative measures, as early diagnosis in EOC patients is rare.
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Nevertheless, research needs to be conducted to fully establish the link between
senescent T cells in age, age-related diseases, chronic infections, and their role within the
growth and metastasis of EOCs. Since early diagnosis of EOC is rare with a high incidence
rate, and its risk is associated with senescence-inducing metabolic disorders, such as T2DM,
efforts should be in place to detect immunosenescence earlier in life. Early diagnosis
could lead to preventative therapeutic interventions. Currently, senolytic medications
are known to selectively clear senescent cells and have been shown to both increase life
span and alleviate age-related cardiovascular disease in mice [104,105]. Senolytics have
also been demonstrated to decrease the population of senescent cells in human trials,
while decreasing the numbers of SASP factors found within the blood [105,106]. Moreover,
chimeric antigen receptor (CAR) T cells have been developed as a senolytic agent, which
could identify markers and selectively target and destroy senescent cells [107]. This could
be developed further to target to kill senescent T cells or to reverse exhaustion to switch
CD8+ T cells to an antitumourigenic state [108]. Moreover, metformin, an antidiabetic drug,
has shown some promises in alleviating cellular senescence and demonstrated preclinical
anticancer, antiangiogenic effects in ovarian cancer; however, it lacks clinical evidence as
an anticancer agent in ovarian cancer patients [109,110]. Thus, there is a possibility to clear
senescent immune cells through an individual or a combination of treatment strategies
within the milky spots and the omentum in disease states, such as T2DM and chronic
infection. Further research is required to overcome barriers posed by solid tumours and
their responses to immune surveillance and treatments, including immunotherapies [111].

6. Conclusions

Type 2 diabetes mellitus (T2DM), a risk factor for epithelial ovarian cancer (EOC), is
a chronic metabolic and inflammatory disorder that results in immune senescence. Al-
though immune cells, such as T lymphocytes, remain the body’s main cancer surveillance
system, induction of senescence in these cells can reverse the antitumourigenic immunity
contributing to the systemic low-grade inflammation found in T2DM. Evidence shows
that senescence of T cells occurs in prediabetic patients, which could accumulate within
the omentum in a detrimental capacity, with the omentum already favouring a metastatic
niche for EOC. Their secretion of a senescence-associated secretory phenotype (SASP) and
crosstalk with omental cells could potentially result in a low-grade chronic inflammatory
environment, aiding in creating a premetastatic niche, therefore encouraging the metastasis
in EOC. Thus, detecting immune senescence and preventing its damaging effect on the
omentum, within both the aging population and age-related diseases, could potentially
reduce the risk of ovarian cancer progression and improve prognosis. Advances in senolyt-
ics and immunotherapies could give rise to the possibility of EOC cancer prevention if
proinflammatory diseases or high levels of immune senescence in the aging population
are identified at an earlier stage, reducing disease burden. Therefore, it is of importance to
determine the true role of immune senescence in patients with EOC and T2DM, allowing
improved health, diagnosis, and earlier intervention. Understanding the roles senescence
plays in age-related diseases and EOC will allow for further developments in diagnosis
and treatment.
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