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Many birth defects and genetic diseases are expressed in individuals that do not carry the disease causing alleles. Genetic diseases
observed in offspring can be caused by gene expression in mothers and by interactions between gene expression in mothers and
offspring. It is not clear whether the underlying pattern of gene expression (maternal versus offspring) affects the incidence of
genetic disease. Here we develop a 2-locus population genetic model with epistatic interactions between a maternal gene and
a zygotic gene to address this question. We show that maternal effect genes that affect disease susceptibility in offspring persist
longer and at higher frequencies in a population than offspring genes with the same effects. We find that specific forms of maternal-
zygotic epistasis can maintain disease causing alleles at high frequencies over a range of plausible values. Our findings suggest that
the strength and form of epistasis and the underlying pattern of gene expression may greatly influence the prevalence of human
genetic diseases.

1. Introduction

Why are some human genetic diseases so common? We
expect natural selection to favour the alleles of genes that
confer health and hinder alleles of genes that confer disease.
Yet, there are a glut of genetically based human diseases,
behavioural syndromes, and birth defects that occur at
relatively high frequencies [1]. The classic explanation is
that diseases are maintained in balance between mutation,
which creates the disease, and purifying selection, which
removes it [2]. Though this theory is roughly supported by
diseases with simple genetic inheritance, it is not designed
to apply for diseases with complex patterns of inheritance
[3, 4].

Most diseases follow a complex pattern of inheritance
[4–6]. One form of complex inheritance occurs when the
genetic makeup of mothers influences the disease status of
their offspring. This can either happen through maternal
genetic effects, whereby the genotype of mothers influences
trait expression in offspring, or through maternal-zygotic
epistasis, whereby the phenotype of an offspring is dependent
on the interaction between genes in the maternal genome

and genes in the offspring genome [7, 8]. It can be viewed
as kind of genotype x environment interaction, in which the
maternal genome provides the environment for the offspring
genotype. However, unlike standard discussions of genotype
x environment interaction where the environment is fixed,
the maternal environment is genetic and can evolve. The
most detailed evidence for this type of inheritance comes
from work in plant and animal systems [8–15], but there is
also direct evidence from humans.

We do not know the full extent to which maternal
genetic effects and maternal-zygotic epistasis contribute to
human diseases. Our ability to detect complex inheritance
is hampered by a range of factors, particularly sampling
limitations, population structure, and environmental influ-
ences on disease [16–21]. Our ability to detect maternal
genetic sources of inheritance is further hampered by the
multigenerational complexity of the data sets required to test
for it [8, 22–24]. Despite these limitations, there is emerging
evidence from association studies that maternal genetic
effects and maternal-zygotic epistasis might be common
mechanisms of inheritance of human diseases and birth
defects [16, 25–31].
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The mechanism of inheritance is important to under-
stand because it may affect the prevalence of disease.
For simple genetic diseases, prevalence is determined by
the mutation-selection balance [2]. However, in maternally
expressed diseases half of the alleles are hidden from
selection, as the genotype of fathers has no effect on offspring
phenotype [32–35]. This means that purifying selection
might only be half as effective at removing diseases that
result from maternal gene expression. Thus, given the same
mutation rate, we might expect maternal genetic diseases to
have a substantially higher prevalence than zygotic genetic
diseases (diseases caused by gene expression in offspring).
The relaxed selective constraint on maternal genetic effects
is supported by studies of population variation and diversifi-
cation of maternal effect genes [34–36].

Epistasis might also contribute to the prevalence of
genetic disease. Epistasis is known to confound disease gene
mapping [5, 33, 37] because alleles at one locus can mask
the effects of expression of alleles at another locus [38–
41]. Thus, under specific forms of gene interaction, even
genes that confer death in one genetic background might
be maintained at higher frequencies than we would expect
under traditional, mutation/selection balance, theories of
disease evolution.

Previous theories have described general models of
maternal genetic effects and maternal-zygotic epistasis in
trait expression [7, 8, 34, 36]. However, there are many
unresolved questions about their roles in genetic diseases.
Do maternal genetic effects increase the incidence of genetic
diseases? How do epistatic interactions between maternal
and offspring genomes affect disease susceptibility? And, can
models of the evolution of complex diseases assist us in
identifying the genes which underlie complex diseases?

Here, we address these questions from the perspective of
evolutionary population genetics. We present results from
population genetic simulations of the evolution of genes
affecting viability, whether owing to birth defects or adult
diseases. These results are the first to demonstrate that genes
that reduce fitness are more likely to be maintained in
populations over time and at higher equilibrium frequencies
when they are expressed in mothers than when they are
expressed in offspring. The results also reveal the specific
forms of maternal-fetal epistasis which increase the incidence
of alleles with direct and deleterious effects on fetal survival.
We show that a gene with a deleterious main effect can
become fixed and mean fitness can increase because fixing a
genetic background with a strong positive interaction effect
may add more to mean fitness than the deleterious main
effect removes. We discuss the implications of these findings
for how genetic diseases evolve and for detecting genes
associated with disease.

2. Materials and Methods

2.1. Statistical Definition of Diseases with Simple Genetic
Inheritance. Before we can model the evolution of genetic
diseases, we need to develop an appropriate decomposition
of genetic effects. From the perspective of population

genetics, a diseased individual has a genetic makeup that
encodes lower offspring production (lower fitness) than the
average individual in the population. Simple genetic diseases
can be described by the additive and dominance effects that
their alleles encode. The additive effect of a disease allele is
half the fitness difference between the homozygote classes.
The dominance effect of an allele is the deviation between the
observed fitness of heterozygous individuals and the fitness
midpoint between the homozygous classes. For example, the
following are the genotypic values of a hypothetical gene
“O”, with alleles O and o, which causes lethal birth defects
in all homozygous recessive offspring: OO Fitness = 1, Oo
fitness = 1, oo fitness = 0. The additive and dominance
values for the genotypes in this scenario are as follows:
additive value for o allele = −0.5 so that the fitness of the
oo genotype equals 1 + 2(−0.5); dominance value for the
Oo genotype = +0.5, so that its fitness equals 1 + (+.50) +
1(−0.5). In our simulations, we equate the viability of an
offspring genotype with its genotypic value. The following
are the genotypic values when the hypothetical gene “O”
causes lethal birth defects in 20% of homozygous recessive
offspring: OO Fitness = 1, Oo fitness = 1, and oo fitness =
0.8. The additive and dominance values for this scenario are
as follows: additive value = −0.1; dominance value = +0.1.

2.2. Statistical Definition of Diseases with Gene-Gene Inter-
actions. For simple genetic diseases, we can calculate the
probability that a given genotype will express the disease
from the additive and dominance effects. However, when
there are gene-by-gene interactions then the fitness of a
given genotype is dependent on the sum of the additive and
dominance values plus the effect of the interaction. There are
many different classes of epistasis [8, 38–41]. We chose to
focus on diploid statistical epistasis, rather than other kinds
of gene interactions, because they can be estimated from
genetically based epidemiological data and they describe
the statistical effect of gene interactions on phenotypes in
a similar manner to simple genetic effects [42]. Our goal
is to illuminate the evolutionary process in terms of such
statistically detectable gene effects.

Complex genetic diseases can be described by additive
and dominance effects at one locus, additive and dominance
effects at another locus, and all possible two-way interactions
among genetic effects. In total, the additive and epistatic
effects of a pair of genes (hypothetical genes “A” and “B”)
on phenotypes can be decomposed into eight separate
orthogonal components (see Table 1). For the sake of clarity,
α means additive genetics at the “A” locus, acting on
genotypes AA and aa; DA means dominance at the “A” locus,
acting on the genotype Aa; β means additive genetics at
the “B” locus, acting on genotypes BB and bb; DB means
dominance at the “B” locus, acting on the genotype Bb; IAB

means interaction between additive alleles at “A” and “B”
loci, acting on AABB, aabb, aaBB, and AAbb genotypes; KAaB

means interaction between the Aa genotype with BB and bb
genotypes; KABb means interaction between the Bb genotype
with AA and aa genotypes; JAaBb means interaction between
Aa and Bb genotypes. For example, in Table 1, the fitness of
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Table 1: The genotypic values of two zygotically expressed interacting genes. Each gene has two alleles with genetic effects decomposed
into eight orthogonal components: additive (α and β, dominance (DA and DB), additive by additive (IAB), additive by dominance (KABb),
dominance by additive (KAaB), and dominance by dominance (JAaBb).

Genotypes BB Bb bb

AA 1 + α + β + IAB 1 + α +DB + KABb 1 + α− β − IAB

Aa 1 + β +DA + KAaB 1 +DA +DB + JAaBb 1− β +DA − KAaB

aa 1− α + β − IAB 1− α +DB − KABb 1− α− β + IAB

Table 2: The genotypic fitness values for a pair of maternally and zygotically expressed interacting genes expressed as deviations to be added
to 1. Each gene has two alleles with genetic effects decomposed into eight orthogonal components: zygotic additive (φ) and zygotic dominant
(DO), maternal additive (κ) and maternal dominant (DM), zygotic additive by maternal additive (IOM), zygotic dominant by maternal additive
(KOoM), zygotic additive by maternal dominant (KOMm), and zygotic dominant by maternal dominant (JOoMm).

Offspring Genotypes

Maternal Genotypes OO Oo oo

MM 1 + φ + κ + IOM 1 + κ +DO + KOoM 1− φ + κ− IOM

Mm 1 + φ +DM + KOMm 1 +DO +DM + JOoMm 1− φ +DM − KOMm

mm 1 + φ − κ− IOM 1− κ +DO − KOoM 1− φ − κ + IOM

an individual of genotype AABB is the sum of the additive
effects of the “A” and “B” loci (α and β) and their additive by
additive interaction (IAB).

2.3. Statistical Definition of Diseases with Maternal-Zygotic
Interactions. Traditionally, epistasis has been considered for
gene combinations within the same individual or genome
(g × g epistasis). However, genes expressed in one individual
can also interact with genes expressed in another [8, 32]. The
best described form of such between-genome epistasis (often
described as G× G epistasis; here we use the term maternal-
zygotic epistasis to describe offspring genotype x mother
genotype epistasis) is maternal-zygotic epistasis, which
occurs when trait expression in offspring is determined
by interactions between genes expressed in a mother and
genes expressed in her offspring. Maternal genetic effects and
maternal-zygotic epistasis can be described by maternally
expressed additive and dominance effects at one locus,
additive and dominance effects expressed in offspring, and all
possible two-way interactions among genetic effects. In total,
the additive and epistatic effects of a pair of hypothetical
gene expressed in mothers and offspring (“M” and “O”)
that determine diseases in offspring can be decomposed into
eight separate components (Table 2). For the sake of clarity,
κ means additive genetics at the “M” locus, acting on the
offspring of MM and mm mothers; DM means dominance
at the “M” locus, acting on the offspring of Mm mothers; φ
means additive genetic effect at the “O” locus, acting on the
OO and oo offspring;DO means dominance at the “O” locus,
acting on the Oo offspring. IMO means interaction between
additive effects of the “M” and “O” loci, acting on OO and oo
offspring of MM mothers, and OO and oo offspring of mm
mothers; KMmB means interaction between the OO and oo
offspring of Mm mothers; KMOo means interaction between
the Oo offspring of MM and mm mothers; JMmOo means
interaction between Oo offspring of Mm mothers.

Although they look similar, the fitness calculations
are more complicated in transgenerational genetic models
(Table 2) than physiological epistatic models (Table 1). In
transgenerational genetic models the fitness of an offspring
depends its mother’s genotype in the previous generation.
Thus, two offspring of the same genotype but with different
mothers can have different viabilities. For example, in
Table 2, the fitness of OOMM offspring from OOMM and
OoMM mothers is the sum of the additive effects of the “O”
locus (φ), additive effects of the “M” locus (κ) and their
zygotic additive by maternal additive interaction (IOM). In
contrast, the fitness of OOMM offspring from OOMm and
OoMm mothers is the sum of the additive effects of the “O”
locus (φ), dominance effects of the “M” locus (DM) and the
zygotic additive by maternal dominance interaction (KOMm).
It is this conditioning on maternal genotype that gives
maternal-zygotic gene interaction its unique evolutionary
properties [7, 8].

2.4. The Model. Although the interplay between the maternal
and zygotic genomes probably involves complex interactions
between thousands of genes and gene products, we can begin
to understand the fundamental nature of these interactions
by simulating maternal-zygotic interactions under greatly
simplified conditions. We consider two unlinked loci where
one locus, “M,” with two alleles, M and m, is expressed in
mothers and influences the fitness of offspring. A second
locus, “O,” with two alleles, O and o, is expressed in offspring
and influences the fitness of offspring. In our simulations,
we also assume for simplicity standard population genetic
assumptions, which include that there are diploid males and
females in a population of infinite size that mate randomly
and produce offspring via sexual reproduction. We assumed
that there was no inbreeding depression and that fitnesses
were equivalent for males and females. The model also
assumes that fitness is strictly determined by the expression
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Figure 1: The evolution of genetic diseases in the absence of epistasis. The simulations track the evolution of each allele depending on its
pattern of inheritance: κ, additive effect at a maternal effect locus; DM, dominance effect at a maternal effect locus; φ, additive effect at a
zygotic effect locus; DO, dominance effect at a zygotic effect locus. Purifying selection is assumed to be −0.1 in all cases.

of alleles and by interactions between alleles at the “M” and
“O” loci. The statistical genetic parameterization of epitasis
has additional underlying genetic assumptions [42]. Fitness
is assigned to offspring after they are born, but before they
reproduce.

In every simulation, we set the initial starting frequency
of the m and o alleles at 0.25 at two-locus Hardy-Weinberg
equilibrium. Because the strength and direction of epistatic
effects depends on allele frequency [37, 43] restricting the
analysis to an initial allele frequency to 0.25 for both alleles
limits general inferences from our simulations; however,
previous models have shown that over a large range of
initial allele frequencies (between 0 and 0.5) the evolutionary
dynamics of maternal-zygotic interactions are determined
by the relative strengths of direct selection and epistasis
[43]. Our goal was to uncover some of the dynamics
of how deleterious genes are maintained in populations
under reasonable values of selection and epistasis, not
to characterize all dynamics across all allele frequencies,
selection coefficients and epistatic interactions. We chose our
initial allele frequency because at a frequency of 0.25 it is easy
to visualize both increases and decreases in allele frequency.

We undertook simulations to understand the evolution
of genes and gene combinations which reduce fitness, our
definition of genes that encode birth defects and genetic
diseases. The simulations operate by measuring how the
frequency of each genotype changes over 100 generations
when we assign values of fitness to the sets of the parameters
described in Table 2, which are the genetic effects of and
epistatic interactions between the “M” and “O” genes. For
each generation we also calculated the average fitness of the
population and the linkage disequilibrium between the “M”
and “O” loci. Linkage disequilibrium (LD), also referred to as
gametic phase disequilibrium, is the nonrandom association
of alleles at different loci into gametes [44, 45]. In our
simulations, a positive LD means that there are a greater

proportion of MO and mo gametes in the population than
Mo and mO gametes. Conversely, a negative LD indicates
that there are a greater proportion of Mo and mO gametes
in the population than MO and mo gametes.

We conducted a total of 56 simulations of the evolution
of genetic diseases under simple and complex patterns of
inheritance. The following is a list of the assigned parameters
used in each simulation. Purifying selection: κ = −0.1,
φ = −0.1, DM = −0.1, and DO = −0.1, each in separate
simulations (Figure 1). Maternal additive by zygotic additive
epistasis with and without purifying selection: IMO = −0.4,
0, and 0.4 with φ = 0 and κ = 0; IMO = −0.4, −0.2,
0, 0.2, and 0.4 with φ = −0.1 and κ = 0; IMO = −0.4,
−0.2, 0, 0.2, and 0.4 with φ = 0 and κ = −0.1 (Figure 2).
Maternal dominant by zygotic additive epistasis with and
without purifying selection: KMmO = −0.4, 0, and 0.4 with
φ = 0 and κ = 0; KMmO = −0.4, −0.2, 0, 0.2, and 0.4 with
φ = −0.1 and κ = 0; KMmO = −0.4, −0.2, 0, 0.2, and
0.4 with φ = 0 and κ = −0.1 (Figure 3). Maternal additive
by zygotic dominant epistasis with and without purifying
selection: KMOo = −0.4, 0, and 0.4 with φ = 0 and κ = 0;
KMOo = −0.4, −0.2, 0, 0.2, and 0.4 with φ = −0.1 and κ = 0;
KMOo = −0.4, −0.2, 0, 0.2, and 0.4 with φ = 0 and κ = −0.1
(Figure 4). Maternal dominant by zygotic dominant epistasis
with and without purifying selection: JMmOo = −0.4, 0, and
0.4 with φ = 0 and κ = 0; JMmOo = −0.4,−0.2, 0, 0.2, and 0.4
with φ = −0.1 and κ = 0; JMmOo = −0.4,−0.2, 0, 0.2, and 0.4
with φ = 0 and κ = −0.1 (Figure 5). In each case parameter
values not mentioned were set at zero.

3. Results

3.1. Do Maternal Genetic Effects Increase the Incidence of
Genetic Diseases? We found, as we would expect, that genes
that encode alleles which reduce fitness are selectively dis-
advantageous. We found that additive deleterious alleles are
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Figure 2: The evolution of genetic diseases under IMO, maternal additive by zygotic additive epistasis. (a) Simulations which track the
evolution of maternally expressed alleles and zygotically expressed alleles under different levels of epistasis without direct purifying selection.
(b) Simulations which track the evolution of zygotically expressed alleles under different levels of epistasis with direct purifying selection on
the zygotically expressed allele. (c) Simulations which track the evolution of maternally expressed alleles under different levels of epistasis
with direct purifying selection on the maternally expressed allele.
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Figure 3: The evolution of genetic diseases under KOoM, maternal additive by zygotic dominant epistasis. (a) Simulations which track the
evolution of maternally expressed alleles and zygotically expressed alleles under different levels of epistasis without direct purifying selection.
(b) Simulations which track the evolution of zygotically expressed alleles under different levels of epistasis with direct purifying selection on
the zygotically expressed allele. (c) Simulations which track the evolution of maternally expressed alleles under different levels of epistasis
with direct purifying selection on the maternally expressed allele.
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Figure 4: The evolution of genetic diseases under KOMm, maternal dominant by zygotic additive epistasis. (a) Simulations which track the
evolution of maternally expressed alleles and zygotically expressed alleles under different levels of epistasis without direct purifying selection.
(b) Simulations which track the evolution of zygotically expressed alleles under different levels of epistasis with direct purifying selection on
the zygotically expressed allele. (c) Simulations which track the evolution of maternally expressed alleles under different levels of epistasis
with direct purifying selection on the maternally expressed allele.
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Figure 5: The evolution of genetic diseases under JOoMm, maternal dominant by zygotic dominant epistasis. (a) Simulations which track the
evolution of maternally expressed alleles and zygotically expressed alleles under different levels of epistasis without direct purifying selection.
(b) Simulations which track the evolution of zygotically expressed alleles under different levels of epistasis with direct purifying selection on
the zygotically expressed allele. (c) Simulations which track the evolution of maternally expressed alleles under different levels of epistasis
with direct purifying selection on the maternally expressed allele.
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lost more quickly than alleles with some level of dominance.
Dominance, in effect, hides copies of the deleterious allele
away from some of the action of purifying natural selection
and retards the overall evolutionary process. Complete
dominance hides alleles more effectively than the partial
dominance we illustrate here. By comparing the maternal
and zygotic patterns of gene expression, we found that
maternally expressed alleles are always lost more slowly
than offspring alleles with the same additive and dominance
effects (Figure 1). Maternal gene expression, like dominance,
effectively hides copies of the deleterious alleles in fathers,
where they are not expressed and hence are hidden from
the action of purifying natural selection. Note that average
population fitness smoothly increases in all cases as expected
when deleterious genotypes are removed by selection and
their place is taken by genotypes of higher fitness. There
is no LD because we are examining selection against single
alleles. These results indicate that genetic diseases caused
by gene expression in mothers will have a higher incidence
than diseases exclusively caused by gene expression in
offspring.

We see the same basic findings when purifying selection
acts in conjunction with maternal-zygotic epistasis. Note
that, in all cases, purifying selection acting on maternal effect
genes is slower than it is on similarly acting zygotic effect
genes. This reinforces and extends our general finding for
single genes with only additive and dominance effects to
more complex genetic architectures: maternal effect disease-
causing genes will be more common in populations than
similar zygotically expressed genes.

Because selection on genes with only maternal effects
is weakened, we note that, in some cases, the evolutionary
outcome differs for maternal and zygotic effect genes.
In particular, with additive-by-dominance epistasis, strong
interaction outweighs the additive, deleterious effect and
produces permanent polymorphism of the maternal effect
gene but not for the zygotic effect gene (compare the Left
Panels of Figures 3(b) and 4(b)). This is the most dramatic
case where the evolutionary equilibrium frequency of a
maternal effect gene (pM ∼ 0.36) exceeds that of a zygotic
gene (pO ∼ 0.0) of comparable effect.

3.2. How Do Epistatic Interactions between Maternal and
Offspring Genomes Affect Disease Susceptibility? Our results
show that epistasis between a maternally expressed allele
and a zygotically expressed allele can alter the evolution
of genetic diseases. In the absence of maternal-zygotic
epistasis, purifying selection rapidly removes disease genes
with additive or dominant effects (Figure 1). However, in the
presence of maternal-zygotic epistasis purifying selection can
have a variety of different consequences for the evolution of
disease-encoding alleles. It can hasten the loss of the allele
(Figures 2(a) and 2(b)). It can slow the loss of the allele
(Figures 3(c), 4(b), 4(c), 5(b) and 5(c)). It can increase
the frequency of the allele before eventual loss (Figures
2(b), 2(c), 4(b) and 4(c)); and it can result in permanent
maintenance of disease-causing alleles (Figures 3(b), 3(c),
5(b) and 5(c)).

For additive-by-additive epistasis, the o allele is delete-
rious and, on some genetic backgrounds of the “M” gene,
its deleterious effect on fitness is intensified, while on others
it is diminished. In order to determine the overall effect of
the interaction, the fitness of the o allele has to be averaged
over all genetic backgrounds at the “M” locus. This averaging
produces some counter intuitive results with additive-by-
additive epistasis. For example, when IOM = +0.4 (IOM

in Table 2 and heavy solid line in (Figure 2(a) Left Panel),
the fitness of the MMOO genotype is substantially greater
than 1.0 when produced by MM mothers (Fitness = 1.3
[1 − 0.1 + 0.4]), and close to 1.0 when produced by Mm
mothers (Fitness = 0.9 [1 − 0.1]). Because the fitness of
the MMOO genotype offspring from MM mothers is high,
we might expect selection to favor the spread of M and
O alleles; however, the MM genotypes also have lowered
fitness in the absence of the o allele, so it is not clear, a
priori, how the frequencies of o and m will change each
generation. The simulations indicate that under positive IOM

epistasis both the m and o alleles are quickly removed from
the population because the fitness of mmOO and MMoo
intermediate genotypes is low and because oo genotypes have
a fitness advantage when they are produced by mm mothers.
In fact, the m and o alleles are actually lost more quickly with
positive IOM epistasis than with no epistasis (Figure 2(a) Left
Panel). As the bad gene combinations are selected against,
the mean fitness of the population is increased (Figure 2(a)
Top Middle Panel). During this process, Mo and mO gametes
are more common than random expectation so that LD is
negative (Figure 2(a) Top Right Panel). With fixation of the
O allele, LD returns to zero.

When we change the sign of IOM, MMoo, and mmOO
genotypes have the highest fitness, and the MMOO and
mmoo genotypes have the lowest fitness. Here selection
against the O disease susceptibility allele is weaker than
with no epistasis because the MMoo and mmOO genotypes
have higher fitness which causes the M allele to fix, after
which in the MM genetic background, the o allele is no
longer favored. Note that changes in mean population fitness
under negative IOM do not increase monotonically and that
the rate of change in mean population fitness shifts as
genotypes are sorted by selection (Figure 2(b) Middle Panel).
During this process, OM and om gametes are more common
than random expectation so that LD is positive (Figure 2(b)
Middle Right Panel). However, with fixation of the o allele,
LD returns to zero. These findings show that additive-by-
additive epistasis opposite in sign of an allele’s direct effect
on fitness will mitigate purifying selection. Intuitively, by
synergistically making a bad allele worse, selection will act
to remove the allele more quickly, while in the opposite case,
selection will be reduced.

Negative maternal dominance by zygotic additive epista-
sis appears to increase selection against additive zygotically
expressed disease genes (Figure 4 Left Panels). Without
epistasis, the fitnesses of the “O” locus genotypes, OO, Oo,
and oo are 0.9, 1, and 1.1, respectively; however, with KMmO

equal to −0.4 the fitnesses are 0.5 and 0.9 for OO, 1 for
Oo, and 1.1 and 1.5, for oo, depending on maternal “M”
locus genotype. For the “M” locus, on the most common
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“O” locus genotypic background, oo, the fitnesses are 1.1
when they are derived from MM or mm mothers and 1.5
when they are derived from Mm mothers. This is the fitness
pattern of heterozygote advantage at the “M” locus (i.e.,
marginal overdominance or balancing selection). As a result,
for negative values of KOoM, the zygotic effect disease gene
is rapidly lost and the maternal effect gene with no additive
effect on its own evolves to a frequency of 0.5 (Figure 4(a)
Top Left Panel). Mean population fitness quickly increases
for negative values of epistasis (Figure 4 Middle Panels).
For positive values of KOoM on the most common “O”
locus background there is marginal under-dominance of
the fitnesses of the three “M” locus genotypes, MM, Mm,
and mm, 1.1, 0.7, 1.1, respectively. Though the O disease
causing allele has a substantial fitness advantage in an MM
background, because the M allele is lost over time as a
result of the marginal under-dominance, the O allele is
concurrently lost, though more slowly and with greater levels
of negative LD than without epistasis (Figure 4(c) Bottom
Right Panel).

With the maternal additive by zygotic additive epistasis
equal to −0.4 for mm, the most common “M” locus
background, the fitnesses of the three “O” locus genotypes,
OO, Oo, and oo are 0.90, 1.4, and 1.1, respectively. This is
the fitness pattern of balancing selection at the “O” locus.
As a result, for negative values of KOoM, the frequency of the
deleteriousO allele evolves to a stable intermediate frequency
(Figure 5 Left Panels). Mean population fitness is not as high
as in previous cases, because at the polymorphic equilibrium,
recombination and segregation produce deleterious geno-
types in the population every generation (Figure 5 Middle
Panels). For positive values of KOoM, there is marginal under-
dominance of the fitnesses of the three “O” locus genotypes,
OO, Oo, and oo: 0.90, 0.6, and 1.1, respectively when in
the mm maternal background. As a result, the O allele
is lost more quickly with epistasis than without epistasis.
Overall, only moderate levels of LD are generated by positive
and negative dominance-by-additive epistasis (Figure 5 Left
Panels).

With dominance-by-dominance epistasis and JOoMm

equal to +0.4 (JOoMm in Table 1), again there is marginal
overdominance and heterozygote advantage at the “O” locus
and the population achieves a stable intermediate polymor-
phism. Mean population fitness is lowest at this equilibrium
because recombination and segregation continue to produce
deleterious offspring genotypes. It is also important to note
that negative LD is generated by strong positive dominance-
by-dominance epistasis for nearly 200 generations although
it is absent at equilibrium (Figure 5(b) Right Panel).

When only maternal-zygotic interaction determines dis-
ease risk, the variety of possible evolutionary outcomes is
greater for both genes relative to all cases that we discussed
above. In particular, stable polymorphism is the most com-
mon outcome with any kind of dominance epistasis (Figures
3, 4, and 5 Left Panels). At the polymorphic equilibria, no
detectable LD exists in a population (Figures 3, 4, and 5 Right
Panels). As a result of the polymorphism, equilibrium disease
risk and incidence will be high and, owing to the absence
of LD, nonrandom associations across the population between

maternal and zygotic alleles, that might point us toward a
causal interaction, will be lacking. This might well represent
the current state of genetic risk for maternal-zygotic diseases
in the US population.

3.3. Can Models of the Evolution of Complex Diseases Assist
Us in Identifying the Genes Which Underlie Complex Diseases?
Our simulations provide two important lessons for the
characterization of complex diseases. First, maternal genetic
diseases are difficult to detect using linkage disequilibrium
mapping. Maternal-zygotic epistasis is known to produce
half the levels of LD as traditional epistasis [8]. Our
results indicate that this finding also applies to maternal
genetic disease involved in maternal-zygotic interactions. By
comparing the middle and lower panels of Figures 2, 3, 4,
and 5, it is clear that zygotic genetic diseases generate lower
levels of LD than maternal genetic diseases when they exhibit
maternal-zygotic epistasis. The implication of this finding is
that studies designed to identify maternal-zygotic epistasis
up to a particular effect size will need substantially larger
sample sizes than studies designed to identify epistasis with
effects of the same magnitude.

Second, epistasis generates patterns that, without knowl-
edge of the exact mechanism of inheritance, appear to be
similar to simple genetic effects on disease. Our results
illustrate cases where allele frequencies appear be selected
for or against, or can be maintained by balancing selection.
Without considering the fate and frequency of the interacting
alleles, these patterns could be interpreted as patterns driven
by genes with simple genetic effects. But, in each of these
cases the pattern is influenced by the fate and frequency
of interacting loci (see [33]). This finding indicates that
characterizations of simple genetic diseases might need to
be qualified with the possibility that gene interactions drive
the disease expression. This finding also indicates that larger,
more genetically detailed data sets may provide a deeper
understanding of the evolution of genetic disease.

4. Discussion

All genetic diseases are affected by the same constellation of
evolutionary forces: natural selection, mutation, migration,
and random genetic drift; however, the complexity of the
pattern of gene expression changes the way these forces work
together. The evolutionary equilibrium of simple genetic dis-
eases is thought to be primarily determined by the mutation-
selection balance [2]. However, the results of our simulations
show that the pattern of gene expression (maternal versus
offspring) and the form and level of gene interaction can
greatly affect the incidence of genetic diseases.

Diseases genes persist longer and at higher frequencies
in a population when they are expressed maternally than
when they are expressed zygotically. We have shown that
genes which reduce fitness evolve differently under each of
the four statistical forms of epistasis. We found that genes
with additive main effects on increased risk of disease can be
selected for and even brought to fixation by epistasis between
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maternally and zygotically expressed alleles. This was partic-
ularly true when the form of epistasis involves dominance.
By tracking gene frequency changes in conjunction with
the mean fitness of the population we found that as the
frequencies of particular genotypes change in the population,
the mean population fitness can shift in nonintuitive ways.
We also found that epistasis temporarily generates LD
between maternal- and zygotic-effect genes. Thus, even
with the simplifying assumptions of infinite population
size and random mating, maternal/zygotic epistasis had a
large confounding effect on the detection of single genes
underlying disease etiology.

4.1. Why Maternal Effects Occur. Maternal genetic effects and
maternal-zygotic epistatic interactions on offspring pheno-
types arise because maternal genotype and condition guide
early embryonic development [7, 12, 13, 46, 47]. For exam-
ple, it is now well established that birth weight is determined
by interactions between the maternal uterine genotype and
offspring genotype [8, 10, 11, 26]. Mothers contribute
prenatal nutrients, mRNA, and antibodies to offspring as
well as postnatal effects, most prominently during lactation
[10, 11, 48]. In vertebrate embryos, maternal gene expression
establishes the formation of axes and induces developmental
genes in the embryo [49]. In mammals, zygotic gene
expression becomes the predominant controlling factor in
development between the 2 and 8-cell stage, which is called
the maternal-zygotic transition (MZT) [50–52].

Perhaps the best known maternal-zygotic interaction
in human disease is the Rhesus (Rh) blood factor in
pregnancy [27]. Maternally expressed alleles of the RHD
gene negatively interact with zygotically expressed alleles
of the RHAG gene. If mothers are serologically Rh−, then
exposure to serologically Rh+ molecules in fetal blood can
result in the formation of antibodies against the Rh+ factor,
which can result in rejection of the red blood cells of
the baby and subsequent anemia, brain damage and even
fetal death [27]. Similarly, maternal, zygotic and maternal-
zygotic interaction effects in several genes in the folate-
dependent homocysteine pathway are associated with neural
tube defects [25]. Maternal genetic effects are also thought to
increase the risk of Down’s syndrome [28].

4.2. Maternal Condition and Gene by Environment Interac-
tion. Though we emphasize maternal-zygotic epistasis in
disease etiology, it should be noted that maternal condition
also influences the health of offspring. This type of effect
results from genotype-by-environment interactions. In utero
exposure to smoking [31] and to alcohol [30] are probably
the best knows causes of fetal syndromes, but maternal age
[53, 54] and in utero exposure to disease [55] may have long-
term negative impacts on offspring health [29]. Interactions
between the maternal environment and genotype can also
affect susceptibility to disease and birth defects. For example,
the strength of effect of maternal age on the incidence
of obsessive-compulsive behaviours in offspring appears to
depend on interactions with the dopamine D1 gene [16].

Of course, the natural word is much more complex
than our simulations, although digenic interaction models
should capture much of the phenotypic variation owing to
epistasis. Historically, human populations have been genet-
ically subdivided and stratified—conditions where epistasis
and maternal effect would be more important [7, 21, 33].
In the last few centuries, the development of a global
economy has increased migration and as a consequence has
brought genotypes together that have independently evolved
for thousands of years and created populations that are
unlikely to be at evolutionary genetic equilibrium. Such
admixture of populations also creates LD and segregation
among large blocks of genes. How can we ever hope to
uncover the genetic basis of disease given this historical
complexity?

4.3. Implications for Identifying Disease Genes. As one can
clearly see from our simulations, complex genetic disorders
have a confusing pattern of inheritance and a nonintuitive
evolutionary trajectory. In the last two decades, there has
been increasing interest in uncovering the genetic basis of
complex diseases. Though association and linkage disequi-
librium studies have identified many putative disease genes,
they have often been difficult to confirm in independent
population samples. Some investigators have argued that
this irreproducibility is largely a consequence of weak
statistical power [17, 18, 56]. However, the lack of replication
of the association between genes and traits is also the
signature of epistasis [33]. In some populations the genetic
background will facilitate detection of disease genes, while
in others, the genetic background masks detection [19,
33].

These complexities do not mean that we cannot map
genetic basis of complex genetic disorders. We need to use
and develop methods that identify the contexts that lead to
increased risk of disease. Our simulations also show that
each of the four forms of epistasis affects levels of linkage
disequilibrium and, at equilibrium, LD tends toward zero.
This implies that linkage association mapping of disease
genes may not be that useful when the disease gene involves
epistasis. Single allele-disease associations might occasionally
point us in the right direction, but for most complex diseases
we need approaches that embrace population subdivision
and epistasis. For example, Templeton’s nested cladistic
analysis of phenotypic associations with haplotypes [57]
identifies the specific genetic backgrounds that generate
the strongest signal between alleles and disease (or any
other trait) in nonexperimental populations. For particular
diseases it is now possible to estimate an individual’s risk of
aquiring disease based on a genetic profile which classifies
the individual’s ethnicity [58]. There are also experimental
methods that are specifically designed to detect gene interac-
tions and maternal-zygotic gene interactions [22–24, 35]. By
stratifying the population and searching for genetic sources
of disease in each distinct biologically relevant clade—by
embracing population subdivision and epistasis—we will be
more likely to determine the genetic basis of birth defects and
disease [33].
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