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Review Article

Evaluation of bone morphogenic proteins in periodontal 
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INTRODUCTION

Untreated periodontal disease leads to tooth loss 
through the destruction of the attachment apparatus 
and tooth‑supporting structures. The ultimate goal 
of periodontal therapy is the regeneration of the 
tissues destroyed as a result of periodontal disease. 
Conventional surgical approaches have long been the 
gold standard for repair and reconstruction of periodontal 
regeneration. However, harvesting of the grafts is 
associated with donor site morbidity, particularly 
chronic pain. The bone morphogenetic proteins (BMPs) 
have provided the possibility of replacing the need 
for autograft with a tissue‑engineering product. In 
addition, the ability to control the quality, activity, 
and dose of an osteoinductive agent provide greater 
assurance of periodontal regeneration and repair. 
Several different BMPs are being evaluated currently in 
animal and clinical studies for their use in periodontal 

regeneration. This article reviews the clinical 
applications of the BMPs, in periodontal regeneration 
and osteointegration.

FORMS AND CLASSIFICATION OF BONE 
MORPHOGENETIC PROTEIN

The human genome encodes 20 BMPs. Of the 9 BMPs 
thus far reported, 8 of which, 2–9 are related to one 
another due to their amino acid sequences, and are 
classified as belonging to the transforming growth 
factor beta (TGF‑β) superfamily.

Forty years ago Marshal R. Urist discovered a substance in bone matrix that had inductive properties for the development 
of bone and cartilage, until date, at least 20 bone morphogenetic proteins (BMPs) have been identified, some of which 
have been shown in vitro to stimulate the process of stem cell differentiation into osteoblasts in human and animal 
models. The purpose of this paper is to give a brief overview of BMPs and to review critically the clinical data currently 
available on the use of BMPs in various periodontal applications. The literature on BMPs was reviewed. A comprehensive 
search was designed. The articles were independently screened for eligibility. Articles with authentic controls and proper 
randomization and pertaining specifically to their role in periodontal applications were included. The available literature 
was analyzed and compiled. The analysis indicates BMPs to be a promising, as well as an effective novel approach to 
reconstruct and engineer the periodontal apparatus. Here, we represent several articles, as well as recent texts that 
make up a special and an in‑depth review on the subject. On the basis of the data provided in the studies that were 
reviewed BMPs provide revolutionary therapies in periodontal practice.
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Comparisons among the derived amino acid sequences 
of the BMPs found in osteoinductive extracts of 
bone indicate that they fall into three subclasses. 
BMP‑2 and BMP‑4 form one group having 80% 
amino acid identity. BMP‑5–BMP‑8 form a second 
group, having 92% similarity BMP‑3 forms a group by 
itself (Wozney, 1995). BMP‑1 because of its amino 
acid sequences cannot be classified as belonging to 
the TGF‑β super family.

STRUCTURE OF BONE MORPHOGENETIC 
PROTEIN

BMPs are members of TGF‑β super family, a large family 
of growth factors.[1] BMPs are synthesized inside the 
cell in a precursor form with a hydrophobic secretory 
leader, and pro‑peptide sequences joined to the mature 
region [Figure 1]. After demineralization, these proteins 
are cleaved proteolytically at a consensus Arg‑X‑X‑Arg 
site to generate mature dimers. It has been shown 
that the N‑terminal region controls the stability of the 
processed mature protein and that the downstream 
sequence adjacent to the cleavage site determines the 
efficiency of cleavage.[2] BMPs are distinguished from 
other members of the family by having, in general, 
seven, rather than nine, conserved cysteines in the 
mature region.[3,4] BMPs consist of dimers whose 
chains are connected by disulfide bonds, and this 
dimerization is a prerequisite for bone induction. BMPs 
are active both as homodimer (two identical chains) 
and heterodimer (two different chains) molecules. The 
monomer presents three disulfide bonds, the cysteine 
knot (McDonald and Hendrickson 1993) constituting 
the monomer core, and four strands of antiparallel 
ß‑sheet, which emanate from the knot forming two 
finger‑like projections[4] [Figure 2].

BONE MORPHOGENETIC PROTEIN LOCALIZATION

Some of the members of BMP family have also been 
mapped to different chromosomes loci’s: BMP 2 
(chromosome 20), BMP 3 (chromosome 4), BMP 4 
(chromosome 14), BMP 6 (chromosome 6), BMP 7 
(chromosome 20), BMP 8 (chromosome 1), and BMP 
15 (chromosome X).

MECHANISM OF ACTION

Type II BMP receptors are constitutively active kinases 
that transphosphorylate Type  I receptors on ligand 
binding.[5] Although both Type I and Type II receptors 
can bind BMP ligand, their affinity for BMP is relatively 
low unless both receptors are present. Optimal binding 
of BMP occurs in the presence of both Type I and II 
BMP receptors. Once both Type I and II BMP receptors 
have bound BMP, Type II receptors transphosphorylate 
Type  I. The phosphorylated Type  I receptor in turn 
phosphorylates several intracellular messengers: 
Smads 1, 5, and 8. The pattern of Smad activation 
depends on which Type I BMP receptor is activated. 
The intracellular Smads 1 and 5 are activated by 
BMP‑Ia and BMP‑Ib receptors, whereas Smads 1, 5, 
and 8 are activated by activing receptor‑like kinase‑2 
receptors.[6] After phosphylation, the receptor Smads 
form heteromeric complexes with Smad‑4, a co‑Smad, 
prior to translocation into the cell nucleus.[5,7] Once 
within the nucleus, transcription is activated; the 
pattern of transcription depends on the cell line and 
the ligand used. In mesenchymal bone marrow stem 
cells, increased gene expression of Type I collagen, 
osteopontin, and osteocalcin results from exposure to 
BMP‑2.[8,9] Through receptor stimulation and selective 
gene expression, rhBMP‑2 induces osteoinduction 
by first recruiting mesenchymal stem cells and then 
inducing the proliferation and differentiation of these 
cells into an osteoprogenitor lineage.[10] After incubation 
with rhBMP‑2, mesenchymal bone marrow cells have 
increased alkaline phosphatase activity and are able to 
undergo matrix mineralization in vitro,[11‑16] [Figure 3].

Biological actions and effects of BMP are summarized in 
Table 1
Effects of BMP on various soft tissue, mesenchymal 
and periodontal cells is summarized in Figure 4.[17‑19]

Three factors required for periodontal regeneration
The periodontal regeneration combines three key 
elements to enhance regeneration.

Figure 1: Precursor form of bone morphogenetic proteins Figure 2: Mature form of bone morphogenetic proteins
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•	 Progenitor cells
•	 Scaffold
•	 Signaling molecules [Figure 5].

Carrier technology
Although BMP can induce bone formation when 
added as a solution, and not bound to a carrier,[19,20] 
the dose needed to induce endochondral bone 
formation can be greatly reduced when BMP 
is combined with an appropriate carrier.[21] The 
delivery system for BMP’s plays important role 
in regenerative response. BMP‑2 is retained in a 
hydrogel carrier for more than 30  days whereas 
direct injection results in its complete elimination 
within 3 days. These include particulate and putty 
formulations of inorganic biomaterials from natural 
or synthetic sources based on hydroxyapatite,[22‑24] 

(Beta-tricalcium phosphate),[25]  calcium sulfates/
plaster of Paris,[26] calcium phosphates,[27‑29] calcium 
carbonates, bioglass technologies,[30] and organic 
polymers including allogeneic/xenogeneic collagen 
preparations,[24,30‑34] hyaluronan,[35,36] poly‑a‑hydroxy 
acids,[24,29,36-38] (phydroxyapatite) such as (poly)L‑lactic 
acid, (poly)glycolic acid (PGA) and their copolymers, 
(poly)D, L‑lactic acid‑co‑glycolic acid  (PLGA)[39] and 
methylmethacrylate.[23] These technologies have been 
used alone or in combinations also including autogenous 
bone and fibrin.[24] Moreover, BMP preparations have 
been used in conjunction with occlusive or porous, 
resorbable or nonresorbable, space‑providing devices 
for guided bone regeneration.[40-45]

Properties of the best carrier may vary depending on the 
specific implantation site and the intended therapeutic 
outcome. Considerations include biocompatibility, 
osteoconductivity, bioactivity, biodegradation, 
kinetics of release, and geometry of carrier.

Biocompatibility of carriers
Titers of antibodies against allogenic or xenogenic 
implants of collagen have been reported occasionally 
but did not show interference with bone formation at 
the grafted site.[46,47] However, collagen of allogenic or 
xenogenic origin causes a potential risk of pathogen 
transmission.[48,49]

Osteoconductivity of the carriers
Most synthetic materials containing hydroxyapatite 
show good osteoconductive properties. Bioactive 
glasses and synthetic ceramics support the 
bonding of bone tissue. The bioactive glasses 
form a tight bond with tissue through the 
hydroxycarbonate apatite layer that is, formed on 
the glass surface after implantation.[50,51] Polymers 
are not osteoconductive,[52,53] but a combination of 
hydroxyapatite with polymers into a composite was 
found to improve the graft‑to‑bone binding.[53]

Figure 4: Effects of bone morphogenetic proteins

Figure 3: Mechanism of action of bone morphogenetic proteins

Table 1: Biological actions and effects of BMP
Chemotaxis Mesenchymal stem cells and other bone 

forming cells migrate to the site of implantation
Proliferation Mesenchymal and other bone forming cells 

divide and increase in number
Morphogenesis Cells begin to take on the form and structure 

of bone
Neo‑ 
angiogenesis

New blood vessels are formed in the immature 
callus

Calcification Osteoblasts produce new mineralized tissue 
under biologic influences like mechanical 
loading and growth factors

Maturation Some osteoblasts transform into the osteocytes, 
the body continues to remodel under local 
environmental and mechanical forces, leading 
to formation of a normal trabecular bone pattern
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Bioactivity of carriers
Several carriers for BMPs have shown distinct 
osteogenic properties by themselves, which may 
be supportive for BMP‑dependent osteoinduction. 
Collagen Type  I has been shown to stimulate 
osteoblastic differentiation of cells in culture.[54] 
In vivo, the addition of collagen Type I was shown to 
aid bone formation in grafts containing osteogenin.[55]

Kinetics of release of bone morphogenetic protein 
from carriers
BMPs in solution are quickly cleared from the system, 
which may explain why very high doses of BMP 
are needed for bone induction when they are used 
without a carrier. An appropriate carrier retains BMP 
at the grafted site for a period sufficient to induce 
bone. Release studies show that collagen carriers 
release a bulk of BMP initially, followed by a more 
gradual release thereafter.[56] The combination of BMPs 
with nonresorbable ceramics did not result in bone 
induction.[57,58] Indeed, when BMPs were combined 
with resorbable ceramics, the bone was induced.[21,59] 
The degradation kinetics of bioabsorbable carriers 
seems to influence the type of new tissue formation. 
A  fast degradation and fast release of BMP‑2 
induced bone formation to a greater extent, whereas 
cementum formation was significantly greater with 
the slow degrading and slow releasing BMP gelatin 
carrier.[60,61]

Biodegradation of carriers
Carrier degradation after implantation is preferable, 
to aid the release of BMP and to obtain complete 
replacement of the graft by bone. Bioactive glasses 
and polylactic acid PLA/PGA polymers degrade after 
contacting  (body) fluids,[39] whereas degradation of 
collagen and resorbable ceramics does not depend 
on cellular activity. When the degradation is too 
slow, bone formation can be inhibited;[62,63] when the 

degradation is too fast, BMPs are released too rapidly 
and the risk of fibrous ingrowth, and thus failure of 
bone healing, is increased.

Geometry of the carriers
The geometrical properties of a carrier may greatly 
influence the performance of the BMP graft. It is 
believed that BMPs do not bind to the carrier, but 
rather become physically entrapped in its structure 
which makes certain designs more favorable for 
bone induction over some others. Geometrical 
parameters such as size and shape can influence the 
degradation rate of the carrier, the rate of release 
of BMP, and the bonding of bone to the implant. 
Some geometrical configurations, for example solid 
hydroxyapatite particles and solid polymer discs, have 
been found to be unfavorable for bone induction;[64,65] 
conversely, porous discs or blocks of hydroxyapatite 
were favorable for bone induction, and granules of 
hydroxyapatite with identical pore dimensions did not 
elicit bone formation.[66,67]

Bone morphogenetic protein concentration and bone induction
In vitro studies have shown that femtomolar 
concentrations of BMP initiate chemotaxis of several 
cell types. Chemotaxis of monocytes occurs by such 
concentrations of BMPs‑3 and  ‑4 and osteogenic 
protein‑1  (OP‑1).[68,69] BMP‑2 was also found to be 
chemotactic for mature osteoblasts.[70] BMP doses 
in the nanogram range have shown mitogenic and 
osteogenic effects in cell culture experiments.[71,72] 
However, macroscopic quantities of bone in vivo are 
induced only by milligram quantities of purified BMP,[73] 
or doses of rhBMP in the microgram range.[74] These 
data indicate that the threshold dose of BMP for in vivo 
bone induction is several orders of magnitude greater 
than that for cell responses in vitro. Numerous studies 
have shown that, within one species, the amount 
of bone formation is dependent on the BMP dose 
used.[75‑78] A plateau in bone volume is reached with 
a range of effective doses, but the larger doses of 
BMP seem to reach this plateau more rapidly. Zegzula 
et al.[76] used different doses of BMP‑2 on a PLA carrier 
and found a concentration‑dependent difference in 
radio‑opacity only in the first 2 weeks. After 4 weeks, all 
concentrations used showed similar radio‑opacities.[79] 
Ripamonti et al.[79] implanted different doses of OP‑1, 
on a bovine collagen carrier, in large calvarial defects 
in baboons. Concentration‑dependent differences in 
bone volume were observed up to 3 months after 
implantation. Analysis of the implants after 1  year 
no longer showed a dosage dependency. When the 
induction process is accelerated with larger doses 
of BMP, cartilage, and bone formation seems to 
occur simultaneously.[80] Excessive bone formation, 
spreading outside the original contour, has been 

Figure 5: Factors required for periodontal regeneration
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reported after use of very high doses of BMP. The 
optimal BMP concentration seems also to be dependent 
on the implant location. Intramuscular implantation of 
BMP resulted in enhanced bone formation compared 
with that induced by subcutaneous implants.[81] This 
difference may be caused by a difference in blood 
supply,[81] or muscle cells might be more responsive to 
BMP. Geesink et al.[46] implanted recombinant human 
OP‑1 (rhOP‑1) in critical‑sized defects in the proximal 
human fibula at a dose of 2.5 mg/1 g collagen carrier. 
They observed excessive bone formation outside the 
original fibular bone contour, suggesting that the 
dose of rhOP‑1 could be reduced. However, when 
the same dose of rhOP‑1 on the same carrier was 
implanted in the human maxillary sinus, excessive 
bone formation was not observed.[82] These data 
suggest that the presence of muscle tissue provides 
favorable conditions for bone induction and that the 
concentration of BMP can be reduced in such an 
environment.[83]

HORMONES AND GROWTH FACTORS AFFECTING 
BONE MORPHOGENETIC PROTEIN ACTIVITY

Local factors that have been shown to act synergistically 
with BMP are basic fibroblast growth factor (bFGF), 
prostaglandins and TGF‑β. bFGF has shown synergistic 
effects with BMP‑2 in rat marrow cell cultures,[84,85] 
but high doses of bFGF caused a profound inhibitory 
effect in vivo.[85]

Systemic factors like glucocorticoids increase 
osteoinductivity of BMPs‑2,  ‑4 and  ‑6[86‑88] Vitamin 
D acted synergistically with BMP‑3 in human 
bone marrow cultures,[89-91] and also enhanced 
the osteoinductive actions of BMP‑2 implanted in 
intramuscular sites.[87] Betaestradiol enhanced the 
BMP‑2‑induced increase in alkaline phosphatase 
activity in MC3T3 cells.[87]

Clinical applications
•	 Alveolar ridge augmentation
•	 Sinus floor augmentation
•	 Implant fixation
•	 Maxillofacial reconstruction.

Alveolar ridge augmentation
Several animal studies have been done results of 
which demonstrate that BMPs can lead to new bone 
and cementum formation better than controls. New 
bone formation was achieved when rhBMP‑2 was 
applied to the defect site with a collagen membrane 
or a collagen gel. When the slower dissolving collagen 
membrane was used, better results were obtained 
because it allowed delivery of the growth factor for 

a prolonged period.[60] Several qualities of the carrier 
system, including its space‑maintaining capacity, 
also affect the ability of rhBMP‑2 to regenerate 
both alveolar bone and periodontal attachment.[24] 
Application of recombinant human BMP‑2 along with 
carrier system resulted in substantial regeneration 
of bone and periodontal regeneration, provided that 
adequate space is maintained.[24] The addition of 
rhBMP‑2 resulted in an almost two‑fold increase in 
alveolar ridge width, including a greater percentage of 
trabecular bone and a higher bone density compared 
to controls  (P  ≤  0.05).[29] The data from another 
study show bone formation by BMPs follows the 
outline of a space or matrix.[92] In study on humans, 
an rhBMP‑2 dose ranging from 1.77 to 3.4 mg/patient 
generated an average of 8.51 mm of vertical bone 
height in 4 months providing a promising alternative 
to traditional grafting procedures.[93] Similar results 
were also achieved in sub‑antral augmentation of 
nonhuman primates with 6  mm of vertical bone 
gain and increased density that allowed placement 
of titanium implants.[94] Thus, surgical implantation 
of rhBMP‑2 appears to have clinical utility and may 
provide a realistic alternative to autogenous bone 
grafts for sub‑antral augmentation procedures. 
Surgical implantation of rhBMP‑2/absorbable collagen 
sponge (ACS) resulted in the accelerated enhanced 
bone formation in the 3‑wall intrabony periodontal 
defects.[95] BMP‑2/ACS may also be used to augment 
alveolar bone when used as an onlay and as an inlay. 
Supra‑alveolar defects (onlay indications) may need 
to be combined with suitable space‑providing devices 
for optimal bone formation whereas in intrabony 
defects  (inlay indications) the addition of guided 
bone regeneration devices does not any provides 
additional value.[27] Recombinant human BMP‑2 in a 
demineralized freeze‑dried bone allograft/fibrin carrier 
might have substantial clinical benefits in augmenting 
demanding alveolar ridge defects. However, the use of 
cadaver‑sourced biomaterials, such as demineralized 
freeze‑dried bone allograft, may have difficulty 
receiving public acceptance.[40] The completely 
synthetic technology of recombinant human BMP‑2 
in a calcium phosphate cement matrix (a‑BSM) shows 
considerable promise for a number of indications 
because it can be easily shaped to any desirable 
contour and sets to provide space for recombinant 
human BMP‑2‑induced bone formation.[27] In tooth 
extraction pockets, where the graft is surrounded 
by bone, all grafts were replaced with newly formed 
bone tissue.[96]

Implant fixation
BMP’s also show much promise in promoting dental 
implant wound healing. A pilot study in nonhuman 
primates tested the single application of BMP‑7 (OP‑1) 
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around immediate extraction socket implants 
and found increased bone growth as measured 
histologically at 3 weeks.[82]

rhOP‑1 accelerates the healing of fresh dental 
extraction defects and encourages osseointegration of 
dental implants with good initial implant fit. Application 
of rhOP 1 produces the better amount, density, and 
degree of remodeling of bone as compared to untreated 
defect sites.[90] Under the selected experimental 
conditions, the use of rhBMP‑7 led to superior 
outcomes with regard to the osseointegration of dental 
implants and the height of new bone as compared 
with the use of platelet‑rich plasma (PRP). The mean 
bone–implant contact using rhBMP‑7 was 45. and 
5.7% under PRP (P = 0.002). The mean height of 
newly mineralized bone in the augmented area using 
rhBMP‑7 amounted to 8.3 mm as opposed to 3.6 mm 
under PRP (P = 0.013).[97] Hanisch et al.[98] reported 
re‑osseointegeration of endoosseous implants exposed 
to peri‑implantitis Jovanovic et al.[99] established normal 
physiologic bone formation, osseointegration, and 
long‑term functional loading of implants.

Maxillary sinus augmentation
The sinus mucosa holds mesenchymal progenitor cells 
and cells committed to the osteogenic lineage that 
can respond to BMP‑6 and BMP‑7 by an increase of 
their osteogenic differentiation.[100] In goat maxillary 
sinus floor elevations, implantation of rhBMP‑2 on 
a collagen carrier showed increased radio‑opacity, 
histological examination revealed the presence of 
dense trabeculae and bone marrow, but no cortical 
bone.[101] The results demonstrated the rhBMP‑2 may 
represent an acceptable alternative to traditional bone 
grafts and bone substitutes for maxillary sinus floor 
augmentation procedures in humans. The maxillary 
sinus is an area surrounded by atrophic maxillary 
bone and buccal mucosa, but muscle tissue is absent, 
and the conditions in this anatomical environment are 
possibly more critical for bone induction. rhBMP‑  2 
delivered with an ACS has been used for the 
augmentation of the maxillary sinus floor in humans.[102] 
Studies[93,96,102-108] in humans on application of bone 
morphogenic proteins in sinus augmentation indicate 
that rhOP‑1/demineralized bone matrix has the potential 
to induce bone formation following sinus augmentation. 
Collectively, these reports suggest that recombinant 
human BMP‑2/ACS appears to be a safe and effective 
alternative to bone grafts in patients requiring maxillary 
sinus floor augmentation procedures. Boyne et al.[102] 
implanted collagen sheets soaked in rhBMP‑2 solution 
in the maxillary sinuses of 12 edentulous or partially 
edentulous patients with severe atrophy of the maxilla. 
The subsequent increase in height of the treated maxilla 
varied between 2.3 and 15.7 mm.[109]

Maxillofacial reconstruction
BMPs have been used in craniofacial reconstruction 
including chronic and acute posttraumatic discontinuity 
defects, congenital malformations (Apert and Crouzon 
syndromes), and large (tumor) resection defects[105,107] 
[Figure 6]. Clinical studies optimizing dose, delivery 
technologies, and conditions for stimulation of bone 
growth will bring about a new era in craniofacial 
reconstruction.

Figure 6: Three-dimensional CT scan of size defect (a) and CAD plan 
of ideal mandibular transplant (b). Titanium cage filled with bone mineral 
block infiltrated with recombinant human BMP7 and bone-marrow mixture 
(c). Dorsal view of mandibular replacement 3 weeks after implantation 
(d). Skeletal scintigraphy of implant (e). Three-dimensional CT scan after 
transplantation of the bone replacement with enhancement of soft tissue 
(f) and repeat skeletal (g) scintigraphy with tracer enhancement showing 
continued bone remodelling and mineralisation (arrows)

d
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CONCLUSION

After decades of intense research BMPs have been 
shown in preclinical and clinical studies to enhance 
periodontal regeneration. BMPs have demonstrated 
beyond doubt their role as a superior alternative of 
autogenous bone graft. However, much of the data 
in BMP research has been derived from animal studies 
which are important as far as providing base line data 
for further clinical studies is concerned, but it would 
be prudent not to extrapolate data as it is to humans. 
The available data on use of rhBMP‑2 and 7 in humans 
are promising in showing an osteoinductive potential 
in periodontal regeneration, but not conclusive in the 
predictability and consistency results to allow clinical 
use at this stage, other than in well‑designed clinical 
trials. A host of other factors including smoking, age, 
steroid use, malnutrition, disease severity plays a role in 
determining the physiology of periodontal regeneration 
in humans. Thus, the true efficacy and safety of these 
agents for different scenarios must be established in 
carefully designed prospective randomized clinical trials 
before they are approved for use.

On the sunny side, the impact of the discovery and 
progress in this field can be gauged by the fact that 
its use as bone graft substitute alone has potential 
to replace the autogenous bone graft in millions of 
procedures that are performed worldwide every year. 
A disconcerting issue however, is the cost of BMP 
which limits their clinical use, however, it’s hoped 
that the cost drops and BMP eventually become 
as affordable as other recombinant products like 
recombinant insulin or recombinant vaccine, enabling 
its use in majority of indicated patient population.

In a nutshell, it is time for periodontists to look beyond 
just the conventional treatment options for periodontal 
regeneration and embrace newer technologies that 
involve manipulation of cellular environment to achieve 
the desired regeneration and osteointegration and BMP 
may just be the road ahead. However, while research 
should continue to focus on improving the use of 
BMPs in the current clinical applications, the ability to 
engineer bone and restore injured or diseased tissues 
represents a unique opportunity for BMPs in the 
future. Current active areas of research are centered 
on tissue engineering and gene therapy strategies that 
may result in more predictable regenerative outcomes 
in the future.
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