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Abstract

Background: We have developed an open-source ALgorithm for Generating Address

Exposures (ALGAE) that cleans residential address records to construct address histories

and assign spatially-determined exposures to cohort participants. The first application of

this algorithm was to construct prenatal and early life air pollution exposure for individu-

als of the Avon Longitudinal Study of Parents and Children (ALSPAC) in the South West

of England, using previously estimated particulate matter �10 mm (PM10) concentra-

tions.

Methods: ALSPAC recruited 14 541 pregnant women between 1991 and 1992. We

assigned trimester-specific estimated PM10 exposures for 12 752 pregnancies, and first

year of life exposures for 12 525 births, based on maternal residence and residential mo-

bility.

Results: Average PM10 exposure was 32.6 mg/m3 [standard deviation (S.D.) 3.0 mg/m3]

during pregnancy and 31.4 mg/m3 (S.D. 2.6 mg/m3) during the first year of life; 6.7% of

women changed address during pregnancy, and 18.0% moved during first year of life of

their infant. Exposure differences ranged from -5.3 mg/m3 to 12.4 mg/m3 (up to 26% differ-

ence) during pregnancy and -7.22 mg/m3 to 7.64 mg/m3 (up to 27% difference) in the first

year of life, when comparing estimated exposure using the address at birth and that

assessed using the complete cleaned address history. For the majority of individuals ex-

posure changed by <5%, but some relatively large changes were seen both in pregnancy

and in infancy.

Conclusions: ALGAE provides a generic and adaptable, open-source solution to clean

addresses stored in a cohort contact database and assign life stage-specific exposure

estimates with the potential to reduce exposure misclassification.
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Introduction

Longitudinal birth cohort studies provide an important re-

source to study the onset and development of disease asso-

ciated with pre- or postnatal environmental exposures

through childhood into adulthood.1–3 Certain phases of

rapid human development, including pregnancy and the

first year of life, have been studied in relation to exposure

to environmental pollutants and adverse health out-

comes.4–9 The first and last trimesters of pregnancy, for ex-

ample, have been identified as key air pollution exposure

stages associated with preterm birth and smallness for ges-

tational age, respectively.10,11 Most of these studies assign

environmental exposure during pregnancy based on a sin-

gle point in space and time, such as the residential address

of the mother at the time of birth. Residential mobility dur-

ing pregnancy, however, is common, varying between

10% and 30% according to a recent review.12 There is po-

tential for large exposure misclassification from using ad-

dress at birth or having inaccurate or incomplete address

histories, depending on both the characteristics of the

move (for example, from city to rural village or within a

city)13 and the spatial and temporal variability of the pol-

lutant under study.14 Ignoring residential changes during

pregnancy could, therefore, result in under- or overestima-

tion of effect sizes in epidemiological studies using birth

cohorts.

Some countries collect detailed information on residen-

tial mobility as part of national registries. In a study on

maternal exposure to air pollution and birthweight in

Oslo, for example, routinely collected information on

residential address was linked to records from the Medical

Birth Registry of Norway to account for residential mobil-

ity.15 Most countries, however, do not maintain such de-

tailed address records of their residents. Cohort studies do

not routinely collect residential address histories of their

participants either and might need to collect such informa-

tion retrospectively, for example via person- or computer-

assisted phone interviews.13,14,16,17 Such retrospective data

collections are resource intensive and may be prone to re-

call bias.12

An often overlooked alternative is the use of cohort con-

tact databases—administrative systems set up to audit cur-

rent addresses of cohort participants. Administrative

systems have the advantage that address information is

readily available in an electronic format, which allows the

gathering of mobility data for large cohort populations

without the resources needed for individual data collec-

tion. Deriving residential address histories from adminis-

trative systems, however, can be challenging. Contact

databases are typically designed to audit current addresses,

not to track past ones. This means that addresses are usu-

ally updated in the database whenever cohort members no-

tify the cohort study of any address changes. Such data

management systems are set up to create a new record in

the database with a time stamp for the date at which the

address was changed in the database, importantly not the

date the cohort member moved. Instead of updating exist-

ing records, new records are commonly created every time

changes are made to the address database, including the

correction of errors such as spelling mistakes or adding

Key Messages

• Longitudinal birth cohort studies often assign environmental exposure during pregnancy based on residential address

of the mother at the time of birth which, depending on the pollutant under study, might introduce exposure

misclassification.

• We developed an ALgorithm for Generating Address Exposures (ALGAE), a generic, automated process for assigning

life stage-specific environmental exposures to birth cohort participants using the cohort contact database.

• We applied ALGAE to assign previously modelled spatiotemporal high-resolution air pollution exposure to �14 000

pregnant women recruited as part of the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort.

• The successful implementation of ALGAE to ALSPAC demonstrates its potential to reduce exposure misclassification

in birth cohort studies.

• Its generic code base makes ALGAE re-usable for other cohort studies, providing an accessible and low-cost means

to enhance cohort studies with environmental exposure data.

i50 International Journal of Epidemiology, 2020, Vol. 49, Supplement 1



additional information to an address. In order to recon-

struct address histories from contact databases, address

records need to be cleaned in a systematic way such that

cohort members are recorded as resident at only one loca-

tion on any given day.

Here we explore the use of a contact database to recon-

struct residential history for assigning environmental expo-

sures. We developed an ALgorithm for Generating Address

Exposures (ALGAE), a generic, automated process for

assigning life stage-specific environmental exposures to co-

hort participants. We demonstrate this application for an

English birth cohort study, the Avon Longitudinal Study of

Parents and Children (ALSPAC). We constructed preg-

nancy trimester- and first year of life-specific exposure esti-

mates based on previously modelled spatially and

temporally detailed particulate matter of diameter �10

mm (PM10) concentrations18 at: (i) residential address at

birth; and (ii) using reconstructed address histories for

each participant to account for mobility during pregnancy

and the infants’ first year of life; and we then compared the

differences in PM10 concentrations between these two

methods.

Methods

ALSPAC, a prospective observational study, is one of the

best-characterized birth cohort studies in the world.19 It

was set up to explore modifiable influences on health

across the life course. Centred on the city of Bristol in the

South West of England, ALSPAC recruited 14 541 preg-

nant women with expected dates of delivery between 1

April 1991 and 31 December 1992. This resulted in

14 062 live-born children, of whom 13 985 survived to the

end of the first year of life.19 Those children have been fol-

lowed up multiple times and follow-up is still ongoing.

Using a bespoke geocoding algorithm and Ordnance

Survey’s AddressBase PlusVC , we geocoded all residential

addresses held in the ALSPAC contact database

(n¼ 45 771), allowing us to assign geographical coordi-

nates to 96.2% of addresses (n¼ 40 446). We restricted

our study to children who did not move outside the origi-

nal ALSPAC study area which was the extent of the air

pollution modelling domain (1333 km2), resulting in

36 986 addresses for which we modelled daily air pollution

concentrations.

The air pollution modelling is described in detail else-

where.18 In brief, daily average PM10 concentrations were

modelled for all maternal residential addresses of ALSPAC

mothers and their children, between the estimated date of

conception of the first baby born in 1991 (1 August 1990)

until the end of the first year of life of the last baby born in

1992 (31 December 1993). Dispersion models were used

to separately model local (i.e. traffic, housing, industry)

and regional (i.e. long-range transport) anthropogenic par-

ticulate sources, and added a time-invariant constant to re-

flect background, non-anthropogenic sources. We focused

on PM10, although particulate matter of diameter �2.5

mm (PM2.5) might be a more relevant pollutant in terms of

birth outcomes11; but such measurements were not avail-

able before 2008, which was outside our study period.

In order to assign daily exposure values to ALSPAC par-

ticipants, we developed ALGAE to systematically clean the

addresses stored in the ALSPAC contact database and ac-

count for temporal gaps or overlaps between successive ad-

dress periods that might be present. Having assigned daily

exposure estimates to each participant, based on the clean

address history, ALGAE then aggregated daily exposures

for each pregnancy trimester (T), early infancy (EI, 0–

6 months) and late infancy (LI, 7–12 months) accounting

for residential mobility.

ALGAE is an automated PostgreSQL script (doi:

10.5281/zenodo.1303960) that runs with PostgreSQL

v9.3. ALGAE is freely available under the open source li-

cense GPL v3.0 on GitHub [https://smallareahealthstatistic

sunit.github.io/algae/] and is extensively documented.20

Here we cover some of the key aspects of the process.

The temporal boundaries of life stages were based on

date of birth (DoB) and date of conception (DoC), where

DoC is defined as DoB�(7 x gestation age at birth in

weeks)�1 day, as shown in Table 1. For some premature

births, the third trimester (T3) was non-existing and the

second trimester (T2) overlapped with days in EI. We fixed

these overlaps by deleting T3 and computed the end date

of T2 as: DoB�1 day. The ALGAE code clearly highlights

the trimester calculations, so modifications to the temporal

boundaries of life stages can easily be made.

The ALSPAC contact address database records each in-

stance of change of address, not when study members be-

gan living at an address. The ALGAE protocol, therefore,

Table 1. Start and end dates of life stages as calculated by

ALGAE

Life stage Description

Start date End date

Pregnancy (P) DoCa DoB

Trimester 1 (T1) DoC DoC þ 92 days

Trimester 2 (T2) DoC þ93 days DoC þ 183 days

Trimester 3 (T3)a DoC þ 184 days DoB - 1 day

Early infancy (EI) DoB DoB þ 6 months – 1 day

Late infancy (LI) DoB þ 6 months DoB þ 12 months – 1 day

aDate of Conception (DoC): Date of Birth (DoB)�(7 x gestation age at

birth in weeks)�1 day.
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favours preserving start dates over end dates when gaps

and overlaps are encountered, assuming the start date of

an address period to be a stronger and more reliable signal

of location than the end date. This assumption is based on

the fact that in an administrative system, start dates will

likely correspond to time stamps but end dates will likely

be imputed in relation to start dates. In case of gaps and

overlaps in address periods, ALGAE therefore imputes

start dates with DoC and missing end dates with the cur-

rent date. Figure 1 illustrates the three scenarios: tempo-

rally contiguous address periods (Contiguous); gap

between two address periods (Gap); overlap of two address

periods (Overlap).

In addition, we corrected address periods if we could

not assign geographical coordinates to an address because

the address was unknown or fell outside the study area.

Corrections were done only if the address period was im-

mediately followed by an address period with a valid geo-

code, and the duration of the address period with invalid

geocode did not overlap by more than 25% of days with

any live stage. Such address periods were corrected by

allowing the address period after it to subsume it. This pro-

cess places each individual for each day of each life stage at

one address. ALGAE could then assign life-stage specific

exposures based on the modelled daily PM10 concentra-

tions for each location and computed mean, median and

cumulative exposures across each life stage using the ad-

dress history.

We compared estimated exposures obtained using the

reconstructed address histories with those obtained using

residence at birth for the whole duration of pregnancy and

infancy (i.e. as often used in epidemiological studies), to

explore the impact of reconstructing address histories on

potential exposure misclassification. We used descriptive

statistics, R2 and Spearman’s correlation to describe the re-

lationship between the two different exposure estimates.

Results

Of all address periods processed, ALGAE corrected the

start and end dates of 69% of records; 19% of address

periods had more than one date changed. Based on the cor-

rected address periods, we reconstructed residential ad-

dress histories for 14 027 pregnant women, 10 028 of

whom had gaps and overlaps in their address periods cor-

rected. We assigned life stage-specific exposure to �92%

of women.

Accounting for residential mobility, mean PM10 expo-

sure during pregnancy (n¼12 752) across all women was

32.6 lg/m3 (S.D. ¼ 3.0 lg/m3) and 31.4 lg/m3 (S.D. ¼
2.6 lg/m3) during infancy (n¼ 12 525); 3414 women in-

cluded in the study (24%) changed address during preg-

nancy and first year of life of their baby. The majority of

those moves occurred after birth: 6.7% (n¼937) of moth-

ers moved during pregnancy and 18.0% (n¼2477) of

mothers moved during infancy of their baby. Among those

who moved, 95% moved once, 4.5% moved twice and

0.5% moved three times. The average number of addresses

women lived at was 1.3.

In comparing estimated PM10 exposures using address

at birth and those accounting for residential mobility

(Figure 2), differences were up to 26% during pregnancy,

ranging from �5.3 lg/m3 to 12.4 lg/m3 (5th to 95th per-

centileile, �1.1 to 1.0 lg/m3), and up to 27% during in-

fancy, ranging from �7.2 lg/m3 to 7.6 lg/m3 (5th to 95th

percentile, �1.7 to 1.3 lg/m3). Using address at birth

Figure 1. ALGAE’s conditions for cleaning address periods (an) derived from a contact database showing cases of: (i) contiguous address periods

with complete information of address start (an start) and end (an end) dates; (ii) gaps in address periods where 1 or more days are missing; and (iii) over-

lap in address periods where one or more addresses are recorded for the same day for the same individual. In case of gaps or overlaps in address

periods, ALGAE favours preserving the start date of address periods over end date.
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explained 92% of the variability in estimated PM10 expo-

sures for pregnancy and 85% for infancy, compared with

using residential mobility. Most individual exposure

changed by <5% (95% and 90% for pregnancy and in-

fancy, respectively) despite the relatively large changes that

were seen both in pregnancy and infancy (Figure 2).

Discussion

Our study used a cohort contact database to clean and re-

construct residential address histories for cohort members

for a rich and well-characterized birth cohort, ALSPAC.

To do so we developed ALGAE, an automated protocol to

assess historical exposure to air pollution for members of

longitudinal cohort studies. The protocol could easily be

adapted to support different environmental pollutants and

is intended as a generic and re-usable tool to link environ-

mental exposures to cohort studies by: (i) reconstructing

residential address histories; (ii) assigning exposure esti-

mates to cohort participants based on residential address;

and (iii) aggregating exposure estimates over different time

periods such as pregnancy, infancy and childhood through

to adolescence. We used as an example an English birth co-

hort, but ALGAE is readily transferable and adaptable to

other settings with similar demands on reconstructing ad-

dress histories.

By correcting address histories for 69% of participants,

we were able to assign daily exposure estimates to 92% of

all women (n¼ 12 905). We were limited in that we could

not include women who moved outside the study area

(�3.5%) as we did not have exposure data outside the

modelling domain. The number of women changing

address during pregnancy within the study area (�7%)

was consequently lower compared with other studies. In

the UK, Hodgson et al. (2015)21 identified 24% movers in

a study of 5399 pregnant women in the North East of

England. Canfield et al. (2006),13 for example, reported

that out of 1085 mothers in a Texan case-control study on

birth defects, �30% of mothers changed address during

pregnancy. Chen et al. (2010)14 found that in a New York

birth cohort study, 16.5% of expecting mothers moved.

The consensus across these studies was that mobility varied

significantly by maternal age and socioeconomic depriva-

tion, with older, more affluent mothers less likely to move.

Such sociodemographic data were not analysed as part of

the present study.

When comparing estimated exposures obtained using

the reconstructed address histories with those obtained us-

ing address at birth for the whole duration of pregnancy,

exposure estimates varied little overall, with differences be-

tween the two methods for the majority of individuals

smaller than 5%. This is consistent with previous studies

which only reported small changes between exposures at

birth compared with those taking into account residential

mobility. At the extreme end, however, we observed differ-

ences in exposure estimates of up to 26% during preg-

nancy and up to 27% during the first year of the child’s

life. The extent of exposure misclassification introduced by

ignoring these observed residential mobility patterns. and

instead assigning exposure to the address at delivery. will

depend on the degree of spatial and temporal variability in

the exposures and the geographical resolution at which

they are estimated.21 Chen et al. (2010),14 for example,

noted that the majority of moves during pregnancy

Figure 2. Estimated PM10 exposure at residential address comparing birth address only with residential mobility during pregnancy and infancy. Solid

line is the linear regression fit line and the dashed line is identity.
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occurred over short distances (median distance 4 km) and,

therefore, exposure estimates did not change substantially

when compared with those obtained only at place of birth.

They concluded that the level of observed agreement is

likely to decrease for studies using higher resolution expo-

sure estimates. We did not have information about the av-

erage distance women moved as part of this study, to

preserve the un-identifiability of study participants. Our

primary interest was in air pollution exposure, but derived

distance output could be added to the ALGAE code base if

required for other studies, subject to ethical approval.

The granularity of exposure assignment relates to the

type of geographical unit used to represent the address,

from areas such as regions and districts to addresses (points

with X/Y coordinates). Using address locations is espe-

cially important in studies where local, discrete air pollu-

tion sources (e.g. roads, industrial stacks) are modelled, as

exposure estimates may vary substantially over short dis-

tances from sources, as shown in Figure 3. In ALSPAC, for

example, we modelled PM10 emissions from >1500 road

sources, so it was important to have a complete record of

spatially resolved address locations for exposure

assignment.

Another consideration is the temporal resolution of the

exposure data. For this study we computed daily exposure

estimates for each address. Reconstructing address histo-

ries therefore may only be worthwhile if the exposure

modelling is sufficiently granular relevant to the exposure

window, such as daily or weekly averages for pregnancy

exposure.

Our study is the largest to date to explore the effect of

residential mobility during pregnancy on exposure misclas-

sification. A considerable strength is the availability of

daily exposure estimates at each residential address. By de-

veloping ALGAE, we were able to reconstruct residential

mobility and assign trimester-specific exposure estimates

for 12 752 pregnancies. The use of ambient air pollution

exposure estimates at a residential address, however, does

not take account of personal activity patterns of

individuals or air pollution from indoor sources. The

results presented here, therefore, are only a proxy for per-

sonal exposure which might vary substantially by individ-

ual, depending on daily activity or occupation.

Our study highlights the need for temporally and spa-

tially detailed information on residential location in envi-

ronmental epidemiological studies. Residential location is

often used to assign spatially variable environmental risk

factors as a proxy for individual exposure. Our case study

demonstrates how the cohort contact database can be used

and enhanced to achieve a consecutive temporal address

history in cases where recalled address information is not

available. We were not able to compare our results with

those from recalled address histories as this information

was not available in ALSPAC. Previous studies have, how-

ever, found an up to 90% agreement between recalled ad-

dress histories and those obtained from public record

databases.22 Also, we assume that the start date of an ad-

dress period is a stronger signal than the end date of the ad-

dress period, a decision which was taken in collaboration

with ALSPAC. The ALGAE code base has the flexibility to

allow alterative assumptions which might be more appro-

priate within other cohort settings.

Our paper highlights ways to improve exposure assess-

ment in cohort studies, where exposures relate to aspects

of the environment associated with location of residence.

This includes exposures related to the physical environ-

ment such as air and noise pollution, as well as social fac-

tors such as access to health care services or area-level

deprivation. Brokamp et al. (2016),23 for example,

showed that using a single address at one point in time to

assign environmental exposures, and other place-based

factors such as socioeconomic status, can result in differ-

ential exposure misclassification leading to bias towards

the null. The ability to identify frequent moves may also

be important for other studies; for example looking at

mental health outcomes, as frequent moving in childhood

has been associated with poorer mental health in

adulthood.24

Figure 3. The effect of geographical resolution on exposure assessments that take account of mobility: left—low-resolution exposure (E) will result in

same exposure estimates across all addresses (a); middle—medium resolution exposure will have low impact on exposure misclassification; right—

exposure misclassification is potentially substantial if high-level exposure (e.g. address-specific) is available.
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In conclusion, whereas ignoring residential changes dur-

ing pregnancy may on average have a relatively small effect

on environmental exposure estimates at residence, at least

in the ALSPAC cohort studied here, for some individuals

there may be quite marked exposure misclassification

which could introduce bias into the study through either

random or systematic errors (or both). Differences in expo-

sure are likely to be larger in more mobile populations.

Our bespoke software to assign air pollution data to resi-

dential histories, dealing with gaps, overlaps and errors in

address records, offers a ready solution to link environ-

mental data to individuals in longitudinal cohort studies.

Its generic code base makes the ALGAE re-usable for other

cohort studies in the UK and internationally, providing an

accessible and low-cost means to enhance such studies

with environmental exposure data.
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