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Introduction
Liver cancer is the second leading cause of cancer-related death 
worldwide. The most common type of liver cancer is hepato-
cellular carcinoma (HCC), which accounts for more than 80% 
of cases. According to GLOBOCAN 2020, the region with the 
highest incidence rate of liver cancer is Southeast Asia, includ-
ing Thailand. The elevated mortality observed in patients with 
HCC can be attributed to many factors, which include insuf-
ficient early detection strategies, the absence of curative treat-
ments for individuals diagnosed at later stages, and inconsistent 
implementation of curative therapies in clinical practice. The 
stage of the tumor at the time of diagnosis is linked to the like-
lihood of receiving curative treatment and affects overall sur-
vival. For instance, 5-year survival rates are less than 5% for 
individuals with advanced-stage HCC compared with more 
than 70% for those diagnosed with early stage HCC.1 Thus, 
minimizing the global impact of HCC is a primary concern, 
and this can be accomplished through improvements in early 
detection and effective management.2

For liver cancer screening, most serum biomarkers are pro-
teins such as alpha-fetoprotein (AFP) or des-gamma-carboxy 
prothrombin (DCP), which has low sensitivity and specificity 
in HCC early detection.3 Although conventional biomarkers 
are usually proteins, most of the human genome consists of 
non-protein-coding regions. Therefore, we are focusing on 
long non-coding RNAs (lncRNAs), which make up most non-
coding RNAs (ncRNAs) in the human genome. Accordingly, 
there is a need to identify new and promising biomarkers for 
patients with liver cancer.

Currently, an extensive amount of sequence data, including 
genomics, epigenomics, and transcriptomics, have been gener-
ated using next-generation sequencing technology. This tran-
scriptomics data, which includes messenger RNAs (mRNAs) 
and ncRNAs such as micro RNAs (miRNAs), lncRNAs, and 
circular RNAs (circRNAs), have been selected for studying 
HCC detection.4 Compared with other ncRNAs, lncRNAs 
were the most of ncRNAs with length exceeding 200 nucleo-
tides and are more tissue- or condition-specific than mRNAs.5 
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There are several studies showing that lncRNAs are the regu-
lators related to multiple major biological processes in various 
types of cancers.6-8 In HCC, lncRNAs play an important role 
in cancer development and progression through several mech-
anisms such as epigenetic regulation, chromatin remodeling, 
RNA binding, and cell proliferation.9 Moreover, previous 
studies have revealed that lncRNAs are critical in regulating 
HCC, functioning either as oncogenes or as tumor suppressor 
genes.4 For instance, increased levels of lncRNA 
CDKN2B-AS1 are associated with an unfavorable prognosis 
in patients with HCC.10 CDKN2B-AS1 plays a role in 
advancing HCC, as it interacts with E2F transcription factor 
1 (E2F) in HCC cells to enhance the expression of oncogenes 
G protein subunit alpha Z (GNAZ). Up-regulation of lncR-
NAs MALAT1 is related to HCC progression,11 and 
HOTAIR, an oncogenic molecule has been used as potential 
biomarkers of HCC recurrence.12 In addition, there is evi-
dence represented that lncRNAs-UCA1 and lncRNA-
WRAP53 can be used as biomarkers in HCC diagnosis.13,14 
Moreover, lncRNAs have been reported as potential therapeu-
tic targets for several cancers’ treatment.15 For example, some 
FDA-approved drugs based on lncRNAs have progressed into 
clinical trials, demonstrating their promising potential for 
tumor treatment. Andes-1537, specifically designed to target 
mitochondrial lncRNA (mtlncRNA), exhibited therapeutic 
efficacy at well-tolerated doses during phase 1 clinical trials 
(NCT03985072) for multiple solid tumors.16

Due to the low expression levels of lncRNAs, the RNA-
sequencing (RNA-Seq) technique is a highly sensitive method 
commonly used to identify novel lncRNA transcripts. 
Therefore, bioinformatics approaches have become a vital part 
of data analysis techniques for identifying candidate lncRNAs. 
Recently, various data mining and machine-learning tech-
niques have been applied as bioinformatics tools in many fields 
of research, especially in the biological and clinical sciences.17 
These techniques were used to identify insights into biological 
data including expression data, single nucleotide polymor-
phism data, metagenomic data, methylation data, and clinical 
data.18 Several research has demonstrated that machine-learn-
ing and data mining techniques have been used for discovering 
novel biomarkers for many cancers from large data sets,19-21 
especially in whole-transcriptome sequencing (RNA-Seq).

Recently, many research studies have applied machine-learn-
ing techniques such as random forest (RF), K-nearest neighbor 
(KNN), and Naïve Bayes (NB) to RNA-seq data.22-24 Previous 
studies have indicated that using machine learning is a suitable 
method for analyzing data and making predictions in investiga-
tions of lncRNAs associated with cancer and other diseases. In 
liver cancer research, it was demonstrated that the hub lncRNA 
CAHM might be a novel biomarker for chemotherapy resist-
ance in HCC.25 In addition, lncRNAs, including PARP2-202, 
SPON2-203, and CYREN-211, were identified using a 
machine-learning approach.26 Despite numerous lncRNAs 

being identified by previous research, most were discovered 
from the different expression profiles, which are available in 
various repositories and literature in different formats such as 
cBioPortal, BioXpress, and OncoMX. Moreover, they were 
either not updated or relied solely on information from The 
Cancer Genome Atlas (TCGA) database.27-29 Thus, a gap 
remains in investigating lncRNAs using comprehensive data 
collection from a liver cancer-specific database. The Liver 
Cancer Expression Resource (CancerLivER) database offers 
significant benefits to the scientific community engaged in liver 
cancer research, as follows: First, the database consolidates vari-
ous updated data sets and biomarker information in a consistent 
format. Second, it provides user-friendly tools for data queries 
and browsing, enabling the extraction of information about bio-
markers and data sets. Third, the database is a freely accessible 
resource.30

For a more comprehensive discovery of new biomarkers, we 
applied machine learning to investigate candidate lncRNAs in 
differentiating tumor stages and predicting the overall survival 
of liver cancer using the CancerLivER database.30 This research 
could provide insight into the significant candidate lncRNAs 
from various feature selection techniques, which could be used 
as novel biomarkers in liver cancer.

Method
Data sets and SMOTE process for normal and liver 
cancer data

The liver cancer ncRNA-seq expression data set was down-
loaded from the Liver Cancer Expression Resource 
(CancerLivER).30 CancerLivER is a liver cancer database that 
contains gene expression data sets curated from public reposi-
tories including the National Center for Biotechnology 
Information (NCBI) database and TCGA database. The data 
set of lncRNA expression in liver cancer data included 50 nor-
mal samples (negative data set) and 374 cancer samples (posi-
tive data set), which included all stages of liver cancer based on 
The Barcelona Clinic Liver Cancer (BCLC) staging scores 1, 
2, 3, and 4. To handle the imbalance data set of positive data 
set and negative data set, synthetic minority oversampling 
technique (SMOTE)31 involves creating synthetic examples 
of the minority class by interpolating between the feature vec-
tors of existing minority class examples was applied in liver 
cancer ncRNA-seq expression data set.

Feature selection and model building for 
classif ication between normal and cancer

A total of 40 699 lncRNA genes (features) were filtered with 
expression value. The expression values less than 0.5 were 
removed from the expression data set. Various feature selection 
techniques, including correlation-based feature selection 
(CFS),32 information gain,33 and recursive feature elimina-
tion34 were used on a lncRNA-seq expression data set for liver 
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cancer. Each technique was used to select the top 50 significant 
features from the data set. Furthermore, a Venn diagram analy-
sis was performed to select significant features that were found 
in all feature selection techniques. Several classifier algorithms, 
including NB, RF, logistic regression, KNN, multi-layer per-
ceptron, XG Boost, light gradient boosting, and decision tree, 
were trained on a data set that was balanced using SMOTE 
and consisted of the significant features identified through 
Venn diagram analysis. The best classifier was chosen based on 
its performance in classifying positive and negative samples 
during 10-fold cross-validation. The selected classifier algo-
rithm was then tested on a separate test set. The overall work-
flow of this work is shown in Figure 1.

Data sets and SMOTE process for early and late 
stage of liver cancer data

In the data set of lncRNA expression in liver cancer data from 
the CancerLivER database, there are labels indicating the 

stages in each sample, including stages 1, 2, 3, and 4, and “not 
reported.” The samples with the label “not reported” were 
excluded from the data set. To address the imbalance in the 
data across different cancer stages, SMOTE was applied. The 
total number of samples in each stage before and after SMOTE 
can be found in Supplemental Table 1.

Performance measurement

For measuring the performance of each classifier model in 
10-fold cross-validation, we used accuracy, area under the curve 
(AUC), recall, precision, and F1 score. Eight classifier algo-
rithms, including NB, RF, logistic regression, KNN, multi-layer 
perceptron, XG Boost, light gradient boosting, and decision 
tree were used to compare performance to select the suitable 
classifier algorithm. Each of the algorithms was trained and 
compared using default parameters of the sklearn library in 
Python.

Statistical analysis in selected feature importance

Selected significant features (non-coding genes) from the 
selected model were used to test normal and cancer in our data 
set after SMOTE processed. For the statistical testing, inde-
pendent t test was used to identify the differential lncRNA 
expression between groups.10,35 Furthermore, the receiver oper-
ating characteristic (ROC) curve analysis and the AUC were 
performed in 2 groups of data, including cancer stage 1 vs can-
cer stages 2,3, and 4 (A), and cancer stages 1 and 2 vs cancer 
stages 3 and 4 (B). Receiver operating characteristic curve 
analysis is an approach to represent the performance of the test 
signal using sensitivity and specificity. In addition, AUC from 
ROC curve is also used for prediction evaluation. The top 
important features from the selected model were used for clini-
cal correlation. Overall survival analysis of the lncRNAs was 
performed using Gene Expression Profiling Interactive 
Analysis (GEPIA) web server (http://gepia.cancer-pku.cn/
index.html).36

Results
Feature selections and Venn diagram analysis

The top 50 significant lncRNA genes shown in Supplemental 
Table 2 were selected using various feature selection tech-
niques, including CFS, information gain, and recursive feature 
elimination. A Venn diagram analysis was conducted to iden-
tify the common significant genes found in all 3 techniques 
(Figure 2).

In addition, the details of the 23 common significant 
lncRNA genes and these lncRNAs-related publications are 
shown in Table 1. Eleven out of 23 lncRNAs including 
MAPKAPK5-AS1, TRIM52-AS1, CRYZL2P, RNF216P1, 
CD63-AS1, WAC-AS1, PMS2P1, Alu-mediated p21 tran-
scriptional regulator (APTR), ARRDC1-AS1, PPIAP22, and 

Figure 1.  Workflow of machine-learning process in this study: (A) the 

workflow of normal and cancer data set and (b) the workflow of early 

stage and late-stage data set.

http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html


4	 Bioinformatics and Biology Insights ﻿

HEIH were related to HCC, whereas the FCF1P2, 
OTUD6B-AS1, and MHENCR were related to osteosar-
coma, renal cancer, and melanoma, respectively.

Performance of classif ier models for normal and 
cancer in liver cancer data set

To assess the performance of the classifier models for differen-
tiating liver cancer, the liver cancer balance data set after using 
SMOTE technique including 374 normal samples (negative 
data set) and 374 cancer samples (positive data set) was used 
and compared the classifiers including NB, RF, logistic regres-
sion, KNN, multi-layer perceptron, XG boost, light gradient 
boosting, and decision tree algorithms. The 10-fold cross-vali-
dation was used to be benchmarked in each algorithm. The 
ROC curve was plotted and calculated for AUC. Our result 
showed that AUC of the RF algorithm achieves 0.999, which 
is better than those obtained by the other methods (Figure 3).

However, the result of the model testing with test set showed 
that the light gradient boosting, XG boost, and RF algorithms 
show the highest accuracy at 98.9%, recall at 98.1%, and F1 
score at 99.0% (Table 2). Therefore, we selected the RF algo-
rithm based on AUC area, which is a versatile and user-friendly 
approach to machine learning to build the model for discrimi-
nating between normal and cancer using lncRNAs-seq expres-
sion profiles.

Statistical testing in liver cancer data set

The expression profiles of the 23 candidate lncRNAs from 
database between cancer and non-cancer tissues of patients 
were subgroup analysis. We separated the liver cancer data set 
into 2 subgroups, including cancer stage 1 vs cancer stages 2,3, 
and 4 (group A), and cancer stages 1 and 2 vs cancer stages 3 
and 4 (group B). To investigate the differential lncRNA expres-
sion between those subgroups, an independent t test was 

performed. The summary results of the statistical analysis in 
each group are shown in Table 3.

For group A, 10 lncRNAs showed a statistically significant 
difference in the expression level between stage 1 and stages 2 
to 4 including SNHG30 (ENSG00000267321.1), AC133528.2 
(ENSG00000228989.1), TRIM52-AS1 (ENSG00000248 
275.1), MAPKAPK5-AS1 (ENSG00000234608.6), ARRD 
C1-AS1 (ENSG00000203993.4), CD63-AS1 (ENSG0000 
0258056.2), WAC-AS1 (ENSG00000254635.4), APTR 
(ENSG00000214293.7), HEIH (ENSG00000278970.1), and 
PMS2P1 (ENSG00000078319.8). For group B, 7 lncRNAs 
including SNHG30, AC133528.2, RNF216P1 (ENSG 
00000196204.10), MAPKAPK5-AS1, ARRDC1-AS1, 
WAC-AS1, and FCF1P2 (ENSG00000228638.1) were statis-
tically significant between stages 1 to 2 and stages 3 and 4. 
These data suggested that the significant of lncRNAs from 
statistical testing between early and late stage (groups A and B) 
might be candidate potential lncRNA genes to classify the 
stages of liver cancer. In addition, the expression values of 
lncRNAs in group A and group B were shown in Supplemental 
Figures 1 and 2.

Performance of classif ier models for early and late 
stage in liver cancer data set

To prove the significance of the 10 and 7 lncRNA genes 
between early and late stage, including groups A and B, respec-
tively, we performed a 10-fold cross-validation using 8 models, 
including NB, RF, logistic regression, KNN, multi-layer per-
ceptron, XG boost, light gradient boosting, and decision tree 
algorithms. These models were trained on a balanced data set 
of lncRNAs and used to evaluate the performance of classifica-
tion between early and late stages of liver cancer lncRNA-seq 
data set. Our results in Figure 4A showed that the light gradi-
ent boosting algorithm achieved the highest AUC area com-
pared with other classifier algorithms, with a value of 0.802 for 
group A. However, the RF algorithm achieved an AUC area 
with values of 0.798 that are not significantly different from 
those of the light gradient boosting algorithm. On the contrary, 
the RF algorithm achieved the highest AUC area compared 
with other classifier algorithms, with values of 0.840 for group 
B (Figure 4B).

Furthermore, RF was selected and tested using a testing set, 
achieving AUC areas of 0.840 and 0.830 for groups A and B, 
respectively (Figure 5A and 5B).

Prognostic analysis of the single significant gene in 
this study

Based on the significant candidate lncRNA genes in Table 1, 
SNHG30, AC133528.2, MAPKAPK5-AS1, ARRDC1-AS1, 
and WAC-AS1 showed statistical significance in both groups. 
The 5 significant genes were then subjected to survival analysis 
using the GEPIA web server, and the results in Figure 6A to E 

Figure 2.  Venn diagram analysis of 3 feature selection techniques 

including correlation-based feature selection (CFS), information gain 

(infogain), and recursive feature elimination.
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Table 1.  Description of the top 23 significant long non-coding RNA genes.

Gene ID Gene name (HGNC 
symbol)

Description Detail Reference

ENSG00000253738.1 OTUD6B-AS1 OTUD6B antisense RNA 
1

Related to renal cancer. Wang et al37

ENSG00000267321.1 SNHG30 Small nucleolar RNA 
host gene 30

— —

ENSG00000228989.1 AC133528.2 — — —

ENSG00000270696.1a — Novel transcript, 
antisense to C2orf3

— —

ENSG00000248275.1 TRIM52-AS1 TRIM52 antisense RNA 1 Related to hepatocellular 
carcinoma

Liu et al38

ENSG00000232442.1 MHENCR Melanoma highly 
expressed competing 
endogenous lncRNA for 
miR-425 and miR-489

Related to melanoma Chen et al39

ENSG00000242193.8 CRYZL2P Crystallin zeta like 2, 
pseudogene

Related to hepatocellular 
carcinoma

Wang et al40

ENSG00000196204.10 RNF216P1 Ring finger protein 216 
pseudogene 1

Related to hepatocellular 
carcinoma

Zhang et al41

ENSG00000260766.1a — — — —

ENSG00000272779.1 BMS1P20 BMS1 pseudogene 20 Related to lung 
carcinoma

Li et al42

ENSG00000258056.2 CD63-AS1 CD63 antisense RNA 1 Related to hepatocellular 
carcinoma

Yu et al43

ENSG00000254635.4 WAC-AS1 WAC antisense RNA Related to hepatocellular 
carcinoma

Xia et al44

ENSG00000269958.1a — Novel transcript, sense 
intronic to KLC

— —

ENSG00000279528.1a — TEC — —

ENSG00000268713.1a — Novel transcript — —

ENSG00000234608.6 MAPKAPK5-AS1 MAPKAPK5 antisense 
RNA 1

Related to hepatocellular 
carcinoma progression

Peng et al45

ENSG00000267317.2a — Novel transcript, 
antisense to APC2

— —

ENSG00000078319.8 PMS2P1 PMS1 homolog 2, 
mismatch repair system 
component pseudogene 
1

Related to hepatocellular 
carcinoma

Liu et al46

ENSG00000214293.7 APTR Alu-mediated CDKN1A/
p21 transcriptional 
regulator

Related to activation of 
hepatic stellate cells and 
the progression of liver 
fibrosis

Yu et al47

ENSG00000203993.4 ARRDC1-AS1 ARRDC1 antisense RNA 
1

Related to breast cancer Li et al48

ENSG00000268205.1a — Novel transcript — —

ENSG00000228638.1 FCF1P2 FCF1 pseudogene 2 Related to osteosarcoma Liu et al49

ENSG00000278970.1 HEIH Hepatocellular carcinoma 
upregulated EZH2-
associated long 
non-coding RNA

Related to multiple 
cancers

Sun and Ni50

aNot found in current ensemble database (searched on 5 April 2023).
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showed that the survival curves indicated a correlation between 
the expression of WAC-AS1, MAPKAPK5-AS1, and 
ARRDC1-AS1 and overall survival (log rank P < .05). 
However, there was no significant difference in overall survival 
observed in the LIHC data set from the GEPIA web server for 
the AC133528.2 and SNHG30 genes.

Discussion
Increasing the transcriptome data generated by microarray and 
RNA-sequencing technology leads to variation of huge data 
set, which requires the comprehensive integration of transcrip-
tomic data and its analysis.51,52 Here, CancerLivER database, 
the uniform RNA-sequencing data, and user-friendly access 
platform for biomarkers related to liver cancer which inte-
grated 115 annotated expression data sets with clinical data for 
9611 samples were selected to identify the candidate lncRNAs 
using several classifier algorithms after SMOTE technique. 
Our results showed in line with previous study that RF algo-
rithm achieves the highest performance in classifying disease-
related lncRNAs.

In this study, we found the issue of class imbalance arising 
from varying sample sizes across different stage of liver cancer. 
The SMOTE was applied to liver cancer data set in our study. 
This approach leverages the KNN algorithm to synthetically 
generate new data points for the underrepresented class. There 
are several research showed that the SMOTE methods can 
handle imbalanced biological data set.22,53

Throughout our research, the candidate potential lncRNAs 
were derived from various feature selection techniques in 
machine learning including CFS,32 information gain,33 and 
recursive feature elimination,34 which differed from those used 
in previous studies that selected lncRNAs based on criteria 
including log2 fold change in RNA expression levels in TCGA 
database.54-57 These feature selection methods have the poten-
tial to enhance the identification of key discriminative features 
for disease classification, reduce computational expenses, and 
offer a better understanding of extensive data sets.58

In total, we identified 23 specific lncRNAs that differenti-
ated cancer and non-cancer tissues from this pipeline. In sub-
group analysis, 10 and 7 lncRNAs could discriminate the early 
(stage 1) vs late stages (stages 2-4) and stages 1 to 2 vs stages 3 
to 4 of liver cancer, respectively. These results suggested that 
the lncRNAs reflect tumor progression in liver cancer. The 
complication of its function in cellular processes might be asso-
ciated with tumorigenesis. However, some results differed from 
those in previous studies, potentially due to variations arising 
from the use of cell culture models, different databases, or the 
types of liver cancer.10,35,59 lncRNA HANR has been identified 
as significantly overexpressed in cholangiocarcinoma cell lines 
and related to the Notch signaling pathway.35 However, in our 
study, this lncRNA was not observed, which may be attributed 
to the predominance of data sourced from HCC in 
CancerLivER database. lncRNA SNHG30 was significantly 
increased in patients with advanced stage of prostate cancer 
and associated with cancer recurrence.60 In our study also 
observed lower level of SNHG30 in early than late stage in 
liver cancer. However, there have been no reported studies 
investigating the role of SNHG30 in cancer. Thus, SNHG30 

Figure 3.  ROC curve analysis of each algorithm for normal and cancer 

data set.

Table 2.  Performance measurement of each classifier algorithm with test set.

Model Accuracy Recall Precision F1 score

Naïve Bayes 0.979 0.981 0.981 0.981

Random forest 0.989 0.981 1.000 0.990

Logistic regression 0.984 0.971 1.000 0.985

XG boost 0.989 0.981 1.000 0.990

K-nearest neighbors 0.968 0.942 1.000 0.970

Light gradient boosting 0.989 0.981 1.000 0.990

Decision tree 0.973 0.981 0.971 0.976

Multi-layer perceptron 0.984 0.971 1.000 0.985
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should be further investigated in experimental and clinical 
studies. Alu-mediated p21 transcriptional regulator gene was 
statistically different between early and late stage of liver can-
cer from our analysis. Alu-mediated p21 transcriptional regu-
lator first identified in glioblastomas cell lines.61 This research 
showed that the APTR gene was related to proliferative factor 
in cancer cell lines. Moreover, there is evidence that the APTR 
gene was related to liver fibrosis.47

The expression level of WAC-AS1 was higher in tumor tis-
sue in ovarian cancer, colorectal cancer, and HCC.44,62,63 
WAC-AS1 was a competing endogenous RNA and regulated 
tumor glycolysis.44 Moreover, patients with glioma who had 
high expression of WAC-AS1 had more progression of the 

disease when compared to patients with low level of WAC-AS1.64 
We also observed high expression of WAC-AS1 in patients with 
advance stage of liver cancer and correlated with short overall 
survival time. It was demonstrated that the overexpression of 
WAC-AS1 played a role in the progression of liver cancer.

The MAPKAPK5-AS1 lncRNA gene is the new lncRNA, 
which plays vital roles in carcinogenesis and is related to colo-
rectal cancer. The first experimental study in 50 patients with 
colorectal cancers65 showed that increased expression in the 
MAPKAPK5-AS1 gene was related to an advanced patho-
logical stage and a larger tumor size. Furthermore, data from an 
in vitro study showed that the MAPKAPK5-AS1 gene was 
related to invasion and proliferation processes in HCC cell 

Table 3.  The statistical significance level of the expression level of long non-coding genes between early and late stage of liver cancer.

Gene ID Gene name A
Stage 1 vs stages 2-4

B
Stages 1-2 vs stages 3-4

ENSG00000253738.1 OTUD6B-AS1 NS NS

ENSG00000267321.1 SNHG30 * *

ENSG00000228989.1 AC133528.2 * *

ENSG00000267317.2a — NS NS

ENSG00000270696.1a — NS NS

ENSG00000248275.1 TRIM52-AS1 * NS

ENSG00000232442.1 MHENCR NS NS

ENSG00000242193.8 CRYZL2P NS NS

ENSG00000196204.10 RNF216P1 NS *

ENSG00000260766.1a — NS NS

ENSG00000268205.1a — NS NS

ENSG00000234608.6 MAPKAPK5-AS1 ** *

ENSG00000203993.4 ARRDC1-AS1 * *

ENSG00000272779.1 BMS1P20 NS NS

ENSG00000258056.2 CD63-AS1 * NS

ENSG00000254635.4 WAC-AS1 * *

ENSG00000228638.1 FCF1P2 NS *

ENSG00000214293.7 APTR * NS

ENSG00000278970.1 HEIH * NS

ENSG00000269958.1a — NS NS

ENSG00000279528.1a — NS NS

ENSG00000268713.1a — NS NS

ENSG00000078319.8 PMS2P1 * NS

Comparison between early stage of cancer (stage 1) and late stage of cancer (stages 2, 3, and 4) (A) and comparison between cancer (stages 1 and 2) and cancer 
stage (stages 3 and 4) (B). Not significant (NS).
aNot found in current ensemble database (searched on 5 April 2023).
P < .05 (*) and P < .001 (**).
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lines66 and related to the development of HCC in vivo and in 
vitro studies via binding with miR-429 to promote Zinc finger 
E-box binding homeobox 1 (ZEB1) expression and induce 
epithelial-mesenchymal transition (EMT) of the cells.45 
Moreover, high expression of MAPKAPK5-AS1 was associ-
ated with shorter overall survival in our study, which in line 
with previous studies.66

From our data analysis, the expression of ARRDC1-AS1 
was significantly higher in late stage than early stage of liver 
cancer. The higher expression of ARRDC1-AS1 was associ-
ated with shorter overall survival in patients with liver cancer. 
These findings were in accordance with findings reported by Li 
et al. They demonstrated that ARRDC1-AS1 overexpression 
was associated breast cancer by sponging miR-4731-5p and 
subsequently upregulated AKT1 expression resulting in tumor 
growth and proliferation48,67 and sponging miR-432-5p and 
activated PRMT5 expression in glioma, which related to the 
proliferation, invasion, and poor prognosis of the disease.68

In our study, lncRNA HEIH exhibited significant differ-
ences between the early and late stages of liver cancer. This 
result is in line with previous studies that reported high expres-
sion of lncRNA HEIH in multiple cancers.50 lncRNA HEIH 
has been shown to involve in cell proliferation, invasion, and 
drug resistance of cancer cells through various underlying 
mechanisms.50 However, significant challenges remain as 
there is a lack of suitable animal models before translating to 
clinical trials, particularly the studies of HEIH that might 
have a discrepancy between species in pre-clinical experi-
ments. However, our study has some limitations including the 
unbalancing of liver cancer samples in RNA-seq expression 
data set. This is the reason why the SMOTE technique was 
used to address the issue of sample imbalance in the liver can-
cer data set in this study. Our study mainly focuses on high-
throughput lncRNA data sets, and these lncRNAs should be 
validated in clinical samples. Moreover, RNA-seq data of liver 
cancer patient are still required to analyze and find the insight 

Figure 4.  ROC curve analysis of each algorithm in this study: (A) ROC curve for early stage and late stage in group A and (B) ROC curve for early stage 

and late stage in group B.

Figure 5.  ROC curve analysis of random forest algorithms: (A) ROC curve for early stage and late stage in group A and (B) ROC curve for early stage 

and late stage in group B (B).
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of lncRNA expression profiles between Thai patients and 
TCGA patients’ data.

Conclusions
In this study, we used several feature selection techniques, 
including CFS, information gain, and ridge regression, to iden-
tify significant features. We then trained the RF algorithm on 
the liver cancer data set, using these significant lncRNA gene 
features, which achieved an AUC of 0.840 in classifying 
between early and late stages of liver cancer. Interestingly, 

WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 showed 
good diagnostic values and were associated with overall sur-
vival. These lncRNAs might be used as diagnosis and progno-
sis biomarkers for patients with liver cancers. In further study, 
it would be valuable to validate the significant lncRNAs that 
are found to be common among the feature selection tech-
niques, as identified by the Venn diagram, in clinical samples. 
In addition, we plan to develop a web-based computational 
pipeline that will track and screen the risk of liver cancer from 
RNA-seq profiles.

Figure 6.  Overall survival analysis of WAC-AS1 (A), AC133528.2 (B), MAPKAPK5-AS1 (C), ARRDC1-AS1 (D), and RP11-1094M14.11 (E) using GEPIA 

database. The high expression of lncRNAs was represented by red line, and the low expression of lncRNAs was represented by blue line.
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