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The unique features of gamma-delta (γδ) T cells, related to their antigen recognition capac-
ity, their tissue tropism, and their cytotoxic function, make these cells ideal candidates 
that could be targeted to induce durable immunity in the context of different pathologies. 
In this review, we focus on the main characteristics of human γδ T-cell subsets in diseases 
and the key mechanisms that could be explored to target these cells.

Keywords: human gamma-delta T cell, cytotoxicity, cytokine, nK receptor, antigen presentation, cancer, infection, 
autoimmunity

inTRODUCTiOn

Gamma-delta (γδ) T cells are an important subset of “unconventional” T lymphocytes as they have 
the ability to recognize a broad range of antigens without the presence of major histocompatibility 
complex (MHC) molecules. They can attack target cells directly through their cytotoxic activity or 
indirectly through the activation of other immune cells. γδ T-cell functional responses are induced 
upon the recognition of stress antigens, which promotes cytokine production and regulates pathogen 
clearance, inflammation, and tissue homeostasis in response to stress (1).

However, given that different parameters concerning human γδ T-cell function and phenotype 
within tissues are still not well understood, it is important to be updated on the current state of 
knowledge of human γδ T cells. This will permit a better understanding of what could be performed 
in the future and how to target them in order to improve the management of patients.

For this aim, this review describes the main features of human γδ T-cell subsets in various 
pathologies and discusses the mechanisms by which they influence the outcome of the immune 
response that could be targeted for immunotherapy.

PLeiOTROPiC ROLe OF HUMAn γδ T CeLL SUBSeTS

In humans, there are two major subsets of γδ T cells identified by their Vδ chain. Vδ1 T cells are 
predominant in the thymus and peripheral tissues and recognize various stress-related antigens 
mostly uncharacterized. Vδ2 T cells constitute the majority of blood γδ T cells (2). They always 
associate to the Vγ9 chain in adults and mainly recognize phosphoantigens, i.e., phosphorylated 
non-peptidic molecules that are metabolic intermediates of the isoprenoid biosynthesis (3).

Major Cytokines and Cytotoxic Potential
Both human γδ T-cell subsets exhibit a cytotoxic potential that is induced through the expression of 
cell surface receptors [i.e., γδ TCR (T-cell receptor) and NKG2D (natural killer group 2D)] and is pre-
ponderantly mediated by the release of soluble mediators (i.e., perforin and granzymes) (4, 5). They 
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can produce granulysin, which is a potent anti-microbial protein 
(6, 7), and express ligands such as CD95L and Tumor necrosis 
factor-related apoptosis-inducing ligand, which engage several 
death receptors on target cells. In addition, they can kill their tar-
gets indirectly through antibody-dependent cellular cytotoxicity 
(ADCC) in a CD16-dependent mechanism (8). Other molecules 
such as DNAM-1 (DNAX accessory molecule-1), leukocyte 
function-associated antigen-1, and the co-stimulatory receptor 
CD27 are also involved in γδ T-cell activation and cytotoxicity (9).

Importantly, cord blood naïve γδ T cells can differentiate into 
the IL-17+IFN-γ− Vγ9Vδ2 T cells with a cytotoxic potential in the 
presence of IL-23 and a TCR signaling (10). In contrast, thymic 
naïve γδ T cells secrete IFN-γ in the presence of IL-2 or IL-15, 
through the de novo expression of T-bet and eomesodermin, and 
the release of cytotoxic molecules against leukemia cells (11). 
Other studies reported IL-17+ γδ T-lymphocyte differentiation 
in the presence of IL-7 (12) or other activation stimuli (13) and 
high inflammatory conditions (14, 15).

Altogether, human γδ T  cells represent key actors of the 
immunity because of their pro-inflammatory phenotype and 
cytotoxic potential.

Antigen Presentation Capacity
Human γδ T  cells can exhibit an antigen-presenting capacity. 
Similar to dendritic cells (DCs), blood Vγ9Vδ2 T cells are able to 
respond to signals from microbes and tumors and prime CD4+ 
and CD8+ T cells (16). Indeed, γδ T-APCs were also described 
to cross-present antigens to CD8+ T cells (17). The intracellular 
protein degradation and endosomal acidification are significantly 
delayed in γδ T cells in comparison to monocyte-derived DCs 
(18). The antigens are transported across IRAP (Insulin-
Regulated AminoPeptidase)-positive early and late endosomes 
(19), and their processing consists of an export to the cytosol 
for degradation by the proteasome before being imported into 
a MHC-I-loading compartment (18). Moreover, activated γδ 
T cells are able to phagocytose tumor antigens and apoptotic or 
live cancer cells possibly through the scavenger receptor CD36 
in a C/EBPα (CCAAT/enhancer-binding protein α)-dependent 
mechanism and mount a tumor antigen-specific CD8+ T-cell 
response (20). Moreover, γδ T cells can induce DC maturation 
through TNF-α production (21, 22).

Overall, γδ T cells can process a wide range of antigens for 
presentation and stimulate other immune cells. Therefore, their 
implication in response to infections or cancer would help to 
design new strategies in order to improve clinical response of 
human γδ T cell-based immunotherapy.

Key Receptors in immune Surveillance
Different receptors namely the TCR, co-stimulatory molecules, 
and NK receptors play a key role in the regulation of γδ T-cell-
mediated immune responses [reviewed in Ref. (23)]. For instance, 
the activation of blood Vγ9Vδ2 T cells by anti-NKG2D antibody 
or its ligand MICA (MHC class I chain-related sequence A) 
induces TNF-α production and the release of cytolytic granules 
(24). Moreover, the triggering of NKG2D enhanced their response 
to microbe-associated antigens (25). In lymphocytic leukemia, a 
hematologic tumor highly resistant to activated Vγ9Vδ2 T cells, 

IL-2 or IL-15, and TCR stimulation upregulates the expression 
of NK receptors NKp44, NKp46, and NKp30 on Vδ1+ T  cells, 
allowing their acquisition of cytotoxicity against leukemia cells 
(26). DNAM-1 engagement can also promote the activation of 
Vδ2 T  cells and ultimately, the killing of tumor cells (27, 28). 
Phosphoantigen stimulation of Vγ9Vδ2 T cells is able to induce 
TNF-α production through the upregulation of CD16 expres-
sion (29). Its role in mediating ADCC was highlighted using 
therapeutic antibodies such as anti-CD20 (Rituximab) (30) and 
anti-HER2 antibody (Trastuzumab) (31).

The CD27–CD70 axis can enhance phosphoantigen-
dependent activation, survival, proliferation, and secretion of 
pro-inflammatory cytokines of Vγ9Vδ2 T cells (32). These results 
suggest that CD27 can modulate Vδ2 T-cell activation and hence 
seems to be a major tool that could be manipulated in clinical 
settings. Of note, CD27 is expressed on Vδ1+ cells and, thus, may 
also play a role in their effector functions (32).

The promotion of a robust NK  cell-mediated antitumor 
cytotoxicity has also been described through CD137 (4-1BB) 
engagement on blood activated γδ T lymphocytes which in turn 
induces the upregulation of NKG2D by NK cells, followed by the 
eradication of tumor cells (33).

In contrast, regulatory receptors for self-MHC class I 
molecules, particularly KIR (Killer cell Immunoglobulin-like 
Receptor) and LIR (Leukocyte Immunoglobulin-like Receptor) 
receptors, were reported to negatively regulate γδ T-cell activa-
tion (34, 35). This inhibition is due to the presence of intracy-
toplasmic ITIM (Immunoreceptor Tyrosine-based Inhibitory 
Motif) motif in the sequence of these receptors which turn off the 
activation signals upon phosphorylation. The ligation of BTLA 
(B- and T-Lymphocyte Attenuator), another regulatory receptor 
strongly expressed by resting Vγ9Vδ2 T  cells, attenuates their 
own proliferation (36). The engagement of PD-1 (programmed 
cell death-1) expressed on activated γδ T  cells downregulates 
IFN-γ production and their cytotoxic function (37).

Understanding the role of these mechanisms in γδ T  cell-
implication in pathological situations needs further investigations 
that would be important to develop proper strategies targeting 
these activation and inhibitory receptors. This would ensure an 
efficient activation of human γδ T cells in immune surveillance 
against tumors, pathogens, or autoimmunity and ultimately avoid 
undesired cytotoxicity against the host through a better discrimi-
nation between normal and altered tissues.

HUMAn γδ T-CeLL SUBSeTS in CAnCeR, 
inFeCTiOUS DiSeASeS, AnD 
AUTOiMMUniTY

Pro- and Antitumor effect of γδ T-Cell 
Subsets
Tumor-infiltrating γδ T cells have been demonstrated to be the 
most favorable prognostic immune population among many 
cancer types (38), in agreement with their capacity to kill different 
tumor cells like leukemia, neuroblastoma, and carcinomas (9).

Vδ1 and Vγ9Vδ2 T cells express distinct chemokine receptors 
(39, 40) and cell adhesion molecules (41) (Table  1), suggesting 
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TABLe 1 | Main features of human γδ T-cell subsets in cancers.

Pathology Human γδ T-cell subset features Reference

vδ1+ vδ2+ Other vδ2− (non-vδ1)

Solid cancers Lysis of the autologous tumor when 
extracted from TILs and expanded in vitro in 
the presence of IL-2

– – (42)

– Cytotoxic function, IFN-γ production, and almost 
a complete lysis of tumor targets in different 
malignancies (after chemotherapy and zoledronate 
treatment)

– (43)

Expansion and improved cytotoxicity in the  
presence of phosphoantigens, amino-
biphosphonates, or a tumor-targeting antibody in 
cancer immunotherapy

Reviewed in 
Ref. (44)

CCR5 expression for migration to tumor 
sites

CCR5 and CXCR3 expression (consistent with a 
Th1-like phenotype)

– (39)

CCR2 expression for migration to tumor 
sites (antitumor effect: production of IFN-γ 
and cytotoxic function)

No CCR2 expression detected – (40)

Expression of various adhesion molecules: 
LFA-1, VLA-α4 (CD49d), VLA-α5 (CD49e), 
L-selectin (CD62-L), and αEβ7(CD103)

Only LFA-1, L-selectin, and CD44v6 expression – (41)

Ability to kill tumor cells of all melanoma-
isolated Vδ1 cell lines

Significant cytotoxic activity for only two out of eight 
Vδ2 cell lines

– (45)

Lower susceptibility to activation-induced 
cell death, persistence in the circulation for 
many years (durable immunity)

– – Reviewed in 
Ref. (46)

Major cellular source of IL–17 (pro-tumor 
role: chronic inflammation in CRC patients)

– – (15)

Immunosuppressive and regulatory 
properties, such as suppression of dendritic 
cell maturation, T-cell proliferation, and IL-2 
secretion

– – (47)

Hematological 
malignancies

– Activation of Vγ9Vδ2 T cells by zoledronate: 
cytotoxicity largely dependent on granule exocytosis 
and partly on TRAIL pathways, TCR-mediated, and 
dependent on isoprenoid production by leukemia 
cells

– (48)

– Leukemia/lymphoma cell killing by γδ T cells 
essentially mediated by ULBP1/NKG2D interaction

– (49)

Cytotoxicity against lymphoid leukemia cells 
associated with the expression of several NK 
receptors (mainly NKp30)

– – (26)

– – Increased percentage of Vδ2− 
T cells following CMV infection 
in kidney transplant recipients 

associated with reduced cancer 
risk (among which lymphoma)

(50)

CMV, cytomegalovirus; CRC, colorectal cancer; LFA-1, leukocyte function-associated antigen-1; NKG2D, natural killer group 2D; TIL, tumor-infiltrating lymphocyte; TRAIL, tumor 
necrosis factor-related apoptosis-inducing ligand; ULBP1, UL16-binding protein 1; VLA-α4, very late antigen-4.
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different homing mechanisms in tumors that can be selectively 
targeted for immunotherapy. Moreover, isolated Vδ1 lymphocytes 
from human lung tumors can selectively lyse autologous malignant 
cells ex vivo (42). Interestingly, administration of Vγ9Vδ2 T cells 
at suitable intervals after chemotherapy and zoledronate treat-
ment increase the cytotoxic function and IFN-γ production by 
γδ T cells followed by a complete lysis of tumor cells in different  

malignancies (43). Different studies also reported the activation 
of γδ T cells after phosphoantigen or aminobiphosphonate injec-
tion, an approach which provides promising clinical activity by 
improving the cytotoxicity of γδ T  cells particularly in presence 
of tumor-targeting antibody (44). In melanoma, tumor-infiltrating 
effector-memory γδ T  cells have been shown to control tumor 
growth through distinct cytotoxic mechanisms (45) (Table  1). 
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Furthermore, Vδ1 T cells were less susceptible to activation-induced 
cell death and could persist in the circulation for many years, which 
is in favor of a durable antitumor immunity (46) (Table 1).

Lamb et  al. reported an association between the increased 
frequency of γδ T  cells and improved disease-free survival of 
leukemia patients who received αβ T cell-depleted bone marrow 
transplants (51). An increased percentage of Vδ2− T cells following 
cytomegalovirus (CMV) infection in kidney transplant recipients 
was also associated with reduced cancer risk (i.e., lymphoma) 
(50), suggesting a protective role of γδ T cells. In the context of 
chronic myelogenous leukemia (CML), the activation of Vγ9Vδ2 
T  cells by zoledronate was shown to increase anti-leukemia 
activities in a NKG2D-dependent manner, notably in CML-
resistant patients (48). Indeed, UL16-binding protein 1 (ULBP1) 
is involved in lymphoma susceptibility to γδ T-cell-mediated 
cytolysis and the blockade of its receptor NKG2D significantly 
inhibits lymphoma cell killing. Thus, the authors propose that 
γδ T cytotoxic function is achieved through a two-step process 
(a TCR stimulation presumably by endogenous phophoantigens 
and a tumor cell recognition by NKG2D) and that ULBP1 could 
be used as a leukemia/lymphoma biomarker in clinical trials (49). 
Moreover, since Vδ1+ T cells were shown to express several NK 
receptors that are correlated with a high cytotoxic potential (26), 
they may constitute a potent therapeutic lymphocyte population 
that could be targeted for the immunotherapy of lymphocytic 
leukemia patients that are resistant to activated Vγ9Vδ2 T cells.

Nonetheless, a pro-tumor role of Vδ1 T  cells has also been 
reported. Indeed, in colorectal cancer (CRC), these cells are 
responsible of the chronic inflammation in CRC patients through 
IL-17 secretion (15). In addition, some Vδ1 populations could 
exhibit immunosuppressive properties (i.e., inhibition of DC 
maturation, suppression of T-cell proliferation and IL-2 secre-
tion), a function that can also be exploited for cancer therapy 
(47) (Table 1). A high γδ T-cell infiltrate in breast tumors was 
positively correlated with advanced tumor stages, HER2 expres-
sion status, and lymph node metastasis and ultimately associated 
with poor outcome of the patients (52). In this study, γδ T cells 
were considered as the most significant independent prognostic 
factor among many parameters including clinical grade and, 
thus, may serve as a valuable biomarker and potential therapeutic 
target for breast cancer.

Altogether, the natural contribution in tumor immunosur-
veillance and the effector functions of Vγ9Vδ2 T cells represent 
major advantages that have to be better exploited alone or 
in combination with current therapies (i.e., phosphoanti-
gens + monoclonal antibodies). However, repeated injection of 
phosphoantigens may also lead to the anergy or exhaustion of 
effector γδ T cells. From an immunotherapeutic standpoint, the 
rather limited antitumor efficacy of adoptively transferred Vδ2 
T cells and active immunotherapy trials using Vδ2 agonists can 
be the result of a suboptimal recognition of ex vivo tumor cells, 
presumably due to insufficient phosphoantigen levels. Therefore, 
it is now critical to better characterize human γδ T-cell subsets 
and the engaged mechanisms in individual cancers, especially 
the stage of differentiation, the activation status, and the immune 
checkpoint (ICP)/ICP-ligand expression, to irreversibly convert 
them toward an antitumor function for efficient immunotherapy.

γδ T-Cell Subsets in infections
γδ T-cell subsets have been described as potent effector popula-
tions against pathogens (Table 2). Indeed, Vγ9Vδ2 T cells can 
recognize phosphoantigens that are overexpressed in the 
methyl-erythritol phosphate biochemical pathway (MEP, also 
called DOXP (1-desoxy-d-xylulose-5-phosphate) pathway), a 
pathway which is used by many bacteria, fungi and parasites, 
such as Plasmodium falciparum, Mycobacterium tuberculosis, 
Toxoplasma gondii, and Listeria monocytogenes [reviewed in Ref. 
(53, 54)]. Vγ9Vδ2 T cells are thus activated and able to expand in 
the blood of infected individuals.

During mycobacterial infection, human Vγ9Vδ2 T  cells are 
potently able to inhibit intracellular mycobacteria growth through 
the secretion of granzyme A and TNF-α (64). In children with 
bacterial meningitis, an increased percentage of IL-17+ Vγ9Vδ2 
lymphocytes was detected in the peripheral blood and infected 
tissues but could be reversed following anti-bacterial therapy (14).

Among Vδ2− γδ T cells, different clones were demonstrated 
to be reactive against CMV-infected cells (55), in agreement 
with their expansion in the blood of CMV-infected patients (57, 
68–70) (Table  2). More recently, the Vγ4Vδ5 γδ T-cell clone 
isolated from a CMV-infected transplant patient was shown to 
be reactive against CMV-infected endothelial cells as well as epi-
thelial tumors after binding to the endothelial protein C receptor 
(56). In addition, CD16 expression by γδ T cells induces IFN-γ 
responses by opsonized CMV virions in a TCR-independent 
manner and, thus, contributes to the surveillance of CMV reac-
tivation in transplant recipients (8). In a case of severe combined 
immunodeficiency patient, specific antibody responses to some 
infectious agents were reported with a predominance of Vδ2− γδ 
T-cell clones reactive against CMV-infected cells, suggesting 
functional potentials of γδ T cells in providing B cell help (57). 
Therefore, γδ T cells do not only serve as sentinels in the innate 
system but can also act as a bridge between innate and adaptive 
immune responses.

Regarding the Vδ1 T-cell subset, their expansion and 
activation were also observed in many patients following viral 
infection such as HCV (hepatitis C virus) (65, 66) and HIV  
(58, 71). The specific depletion of Vδ2 T cells is the consequence 
of the virus infection through gp120-CCR5 interaction (63, 72). 
Nevertheless, uninfected Vγ9Vδ2 cells are able to produce large 
amounts of IFN-γ, TNF-α, and chemokines such as CCL4 and 
CCL5 [reviewed in Ref. (73)], which bind to CCR4 and CCR5 (the 
HIV co-receptors), respectively (74, 75). Interestingly, in  vitro 
stimulation of Vγ9Vδ2 cells with phosphoantigens induces the 
release of these chemokines, saturates the co-receptors of HIV, 
and thus prevents HIV entry and interfere with its replication 
(76). It also permits the recruitment of more Vγ9Vδ2 cells able 
to release additional chemokines that would block HIV entry and 
kill infected cells through direct cytotoxicity or ADCC (62).

Freshly isolated Vδ1 T  cells from HIV-infected patients 
were shown to express CD27, CCR7, and CD161, a molecule 
involved in γδ T-cell transendothelial migration and interest-
ingly to proliferate and produce IFN-γ and IL-17 in response 
to Candida albicans ex vivo (59) (Table 2). These observations 
suggest that Vδ1 lymphocytes might play a major role in the con-
trol of HIV infection and in the defense against opportunistic 
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TABLe 2 | Main features of human γδ T-cell subsets in infectious diseases.

Pathology Human γδ T-cell subset features Reference

vδ1+ vδ2+ Other vδ2− (non-vδ1)

CMV infection – – Reactivity of different Vδ2− γδ  
T cell clones against CMV-infected 
cells

(55)

– – Recognition of CMV-targeted 
endothelial cells and epithelial 
tumors (Vγ4Vδ5 clone interaction 
with EPCR)

(56)

Antibody response and reactivity against CMV-
infected cells (in a case of SCID patient)

No reactivity reported Reactivity against CMV-infected 
cells like in the case of Vδ1 T cells

(57)

Opsonization of CMV virions through CD16 
(FcγRIIIa) expression and induction of IFN-γ 
responses 

– CD16 (FcγRIIIa) expression like 
Vδ1 T cells

(8)

HIV infection Increased levels of Vδ1 T cells – – (58)

Co-expression of IFN-γ and IL-17 (defense 
against opportunistic infections), CD27 (memory 
phenotype), CCR7 (homing), and CD161 
(transendothelial migration) 

– – (59)

Cytotoxicity against HIV-infected CD4+ T cells 
through NKG2C triggering

– – (60)

Production of CCL3, CCL4, and CCL5 and 
suppression of HIV replication through NKp30 
engagement 

– – (61)

– Large production of IFN-γ, TNF-α, and the 
chemokines CCL4/CCL5: blockade of HIV 
co-receptors, attraction of more Vδ2+ T cells 
able to release additional chemokine blocking 
HIV entry and kill infected cells through direct 
cytotoxicity or ADCC 

– (62)

– Signaling through the CCR5-gp120 
interaction: depletion of Vδ2+ T cells 

– (63)

Bacterial 
meningitis

– Detection of IL-17+ Vγ9Vδ2+ lymphocytes in 
the peripheral blood and at the site of disease 
(a phenotype reversed by anti-bacterial 
therapy)

– (14)

Mycobacterial 
infection

– Control of mycobacteria replication through 
granzyme A and TNF-α (produced by 
macrophages)

– (64)

Hepatitis C virus Expansion and activation of Vδ1+ T cells in the 
liver

– – (65, 66)

Production of IFN-γ after polyclonal activation 
in vitro. Contribution to necroinflammatory liver 
disease because of their compartmentalization

Human Herpes 
virus 8

Expanded Vδ1+ T cell populations with reactivity 
toward HHV8-infected cells in vitro

– – (67)

ADCC, antibody-dependent cellular cytotoxicity; CMV, cytomegalovirus; EPCR, endothelial protein C receptor; SCID, severe combined immunodeficiency.
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infections. NKG2C was outlined as the major triggering recep-
tor involved in the Vδ1 T-cell-mediated cytotoxicity against 
HIV-infected CD4+ T  cells (60). The engagement of NKp30 
on Vδ1 T  cells induces CCL3, CCL4, and CCL5 production 
and suppress HIV replication (61). Altogether, these results 
are consistent with an antiviral potential of the Vδ1 T  cells, 
possibly compensating the impairment of the CD4+ T-cell 
function during HIV infection.

Thus, the identification of stress-induced self antigens as 
targets expressed by infected cells may lead to the development 
of new therapeutic tools in infectious diseases. However, γδ 
T-cell-based therapy may give rise to an uncontrolled inflam-
mation with unwanted tissue destruction. Therefore, exploiting 
the underlying mechanisms of γδ T-cell functions in infections 
will permit the modulation of their immunopathological conse-
quences and could be beneficial to target pathogen proliferation.
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TABLe 3 | Main features of human γδ T-cell subsets in chronic inflammatory manifestations.

Pathology Human γδ T-cell subset features Reference

vδ1+ vδ2+ Other 
vδ2− (non-vδ1)

Myositis – Recognition of AA-RS (also targeted by anti-Jo-1 autoantibodies) by a 
specific clone of Vγ1.3Vδ2− TCR (link between γδ T and B cells)

– (77)

Psoriasis – Biomarkers for psoriasis, homing to the skin, production of pro-
inflammatory cytokines (IFN-γ, TNF-α, and IL-17A), induction of 
immune cell recruitment from the circulation, release of growth factors 
and tissue remodeling 

– (78)

Rheumatoid arthritis – Antigen presentation capacity of effector-memory Vγ9Vδ2+ T cell 
stimulated with IPP to CD4+ T cells, secretion of pro-inflammatory 
cytokines (IFN-γ and IL-17), disease progression

– (79)

Systemic lupus 
erythematosus

Decrease of CD27+CD25highFoxP3+ 
immunoregulatory Vδ1+ T cells 

– – (80)

AA-RS, aminoacyl-histidyl-tRNA synthetase; IPP, isopentenyl pyrophosphate.
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γδ T-Cell Subsets in Autoimmune and 
Other Chronic inflammatory Diseases
γδ T cells were also reported to play a key role in various chronic 
inflammatory pathologies (Table  3). For instance, in a rare 
variant of myositis, referred to as γδ T-cell-mediated myositis, 
muscle fibers are attacked by CD8-negative T cells expressing the 
γδ-TCR. A Vγ1.3Vδ2 TCR clone (M88) was able to recognize 
the aminoacyl-histidyl-tRNA synthetase, an antigen also targeted 
by autoantibodies (77), suggesting a link between γδ T cells and 
antibody-dependent response in autoimmune myositis.

In rheumatoid arthritis, stimulation of effector-memory 
Vγ9Vδ2 T  cell with isopentenyl pyrophosphate induces cell 
surface HLA-DR and co-stimulatory molecule expression and 
IFN-γ and IL-17 secretion. This consequently activated antigen 
presentation to CD4+ T  cells, sustained T  cell activation, and 
aggravated the disease (79).

A subset of CD27+CD25high Vδ1 T  cells, expressing FoxP3 
similarly to regulatory CD4+ T cells, was reported in patients with 
systemic lupus erythematosus (SLE). Their immunoregulatory 
activity is mainly cell-to-cell contact dependent. Unfortunately, 
this population is decreased in the blood of SLE patients, which 
could be important for the understanding of the pathogenesis of 
this disease (80).

In psoriasis patients, a homing/redistribution of Vγ9Vδ2 
T cells from blood to skin was observed. These cells produced 
an array of pro-inflammatory cytokines, such as IFN-γ, TNF-α, 
and IL-17A, which induced the recruitment of blood immune 
cells, the release of growth factors, and the tissue remodeling. A  
psoriasis-targeted therapy could normalize the decreased num-
bers of circulating Vγ9Vδ2 T cells indicating that they represent 
an important biomarker (78). Of note, skin-γδ T  cells were 
reported to play an important role in wound healing (81).

Given that γδ T  cells could influence the pathogenesis of 
chronic inflammatory diseases, these cells will require a balance 
between their need for inflammatory mediators to function 
normally and a negative regulation of their unfavorable impact 
of the chronic inflammation (82). Therefore, additional studies 

should be carried out on human γδ T-cell subsets to develop 
personalized γδ T-cell-based therapies.

COnCLUSiOn AnD PeRSPeCTiveS

These studies give us more insights about the relative contribu-
tion of Vδ1 and Vδ2 T cells, as well as the mechanisms that could 
be targeted in order to develop efficient γδ T-cell-based therapies. 
However, more extensive investigation is required to better 
evaluate the impact of these cells, i.e., their effector function, the 
subset plasticity and cell lineage. Furthermore, a deeper charac-
terization of γδ T-cell subsets in human is required given that 
most studies are conducted in mice. This will ultimately permit 
the manipulation of a specific subset according to a particular 
microenvironment. It is also important to understand how the 
novel therapies (e.g., ICP blockade) modulate γδ T-cell function. 
Finally, one may speculate that γδ T-cell subset-targeting could be 
beneficial to enhance or inhibit the outcome of adaptive immune 
responses against cancer, pathogens, or autoantigens, given their 
involvement in the regulation of other immune cell function.
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