
OR I G I N A L A R T I C L E

Identification of a coagulation-related signature correlated
with immune infiltration and their prognostic implications
in lung adenocarcinoma

Siqian Yang1,2 | Shiqi Chen1,3,4 | Yue Zhao1,3,4 | Tao Wu5 | Yuquan Wang1,2 |

Tingting Li1,2 | Liwan Fu6 | Ting Ye1,3,4 | Yue-Qing Hu1,2,7 | Haiquan Chen1,2,3,4

1Department of Thoracic Surgery and State Key
Laboratory of Genetic Engineering, Fudan
University Shanghai Cancer Center, Shanghai, China
2Institute of Biostatistics, School of Life Sciences,
Human Phenome Institute, Fudan University,
Shanghai, China
3Institute of Thoracic Oncology, Fudan
University, Shanghai, China
4Department of Oncology, Shanghai Medical
College, Fudan University, Shanghai, China
5Sheng Yushou Center of Cell Biology and
Immunology, Joint International Research
Laboratory of Metabolic & Developmental
Sciences, School of Life Science and
Biotechnology, Shanghai Jiao Tong University,
Shanghai, China
6Center for Non-communicable Disease Management,
Beijing Children’s Hospital, Beijing, China
7Shanghai Center for Mathematical Sciences,
Fudan University, Shanghai, China

Correspondence
Ting Ye and Haiquan Chen, Department of Thoracic
Surgery and State Key Laboratory of Genetic
Engineering, Fudan University Shanghai Cancer
Center, 270 Dong’an Road, Shanghai 200032, China.
Email: yeting831011@hotmail.com and
hqchen1@yahoo.com

Yue-Qing Hu, Institute of Biostatistics, School of Life
Sciences, Human Phenome Institute, Fudan
University, 2005 Song’hu Road, Shanghai 200438,
China.
Email: yuehu@fudan.edu.cn

Funding information
Cooperation Project of Conquering Major
Diseases in Xuhui District, Grant/Award Number:
XHLHGG202101; National Natural Science
Foundation of China, Grant/Award Numbers:
11571082, 11971117, 81930073; Shanghai
Municipal Key Clinical Specialty Project,
Grant/Award Number: SHSLCZDZK02104;
Shanghai Technology Innovation Action Project,
Grant/Award Number: 20JC1417200

Abstract
Background: Lung adenocarcinoma (LUAD) is a fatal form of lung cancer with a
poor prognosis. Coagulation system had been confirmed closely related to tumor
progression and the hypercoagulable state encouraged the immune infiltration
and development of tumor cells, leading to a poor prognosis in cancer patients.
However, the use of the coagulation-related genes (CRGs) for prognosis in LUAD
has yet to be determined. In this study, we constructed an immune-related signa-
ture (CRRS) and identified a potential coagulation-related biomarker (P2RX1).
Methods: We obtained a total of 209 CRGs based on two coagulation-related
KEGG pathways, then developed the CRRS signature by using the TCGA-LUAD
RNA-seq data via the procedure of LASSO-Cox regression, stepwise-Cox regres-
sion, univariate and multivariate Cox regression. Grouped by the CRRS, Kaplan–
Meier survival curves and receiver operating characteristic curves were drawn for
the training and validation sets, respectively. In addition, single-sample gene set
enrichment analysis was exploited to explore immune infiltration level. More-
over, immunophenotypes and immunotherapy grouped by CRRS were further
analyzed.
Results: We developed an immune-related signature (CRRS) composed of
COL1A2, F2, PLAUR, C4BPA, and P2RX1 in LUAD. CRRS was an independent
risk factor for overall survival and displayed stable and powerful performance.
Additionally, CRRS possessed distinctly superior accuracy than traditional clinical
variables and molecular features. Functional analysis indicated that the differen-
tially high expressed genes in the low-risk group significantly enriched in T cell
and B cell receptor signaling pathways. The low-risk group was sensitive to anti-
PD-1/PD-L1 immunotherapy and displayed abundant immune infiltration and
immune checkpoint gene expression. Finally, we identified an independent prog-
nostic gene P2RX1. Low expression of P2RX1 associated with poor overall survival
and decreased immune infiltration.
Conclusions: Our study revealed a significant correlation between CRRS and immune
infiltration. CRRS could serve as a promising tool to improve the clinical outcomes
for individual LUAD patients.
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INTRODUCTION

Lung cancer is the most common tumor with the second
highest rate of incidence and mortality worldwide.1 Lung
adenocarcinoma (LUAD) is the most prevalent pathological
subtype of lung cancer, accounting for approximately 40%
of all cases,2 which results in more than one million related
deaths each year. Despite surgery, chemoradiotherapy, targeted
therapy, and immunotherapy being used in the treatment of
lung cancer, the prognosis remains disheartening with a 5-year
survival of only 4%–17%.3,4 Although many biomarkers have
been identified as potential predictors of LUAD prognosis,
most of them are still in the molecular research phase and have
not yet been applied in clinical practice. Therefore, there is an
urgent need to identify novel and effective prognostic bio-
markers for predicting LUAD prognosis and to carry out per-
sonalized therapeutic strategies for patients.

The coagulation system is an innate defense mechanism
that can be activated either by the extrinsic or intrinsic path-
ways.5 Cancer patients often have many coagulation abnor-
malities, which increase the risk of thrombosis and bleeding.
Many studies have found that tumor cells can express pro-
coagulant factors, such as tissue factor, which trigger the
coagulation cascades leading to thrombin production.6–8

The activation of coagulation and fibrinolysis interacts
directly with malignancy and promotes tumor cell invasion,
progression, induction of angiogenesis, and ultimately poor
prognosis.9 Blockade of coagulation, fibrinolysis, and platelet
activation pathways can effectively prevent tumor progres-
sion.10 Many biomarkers related to coagulation disorders
have been confirmed to be significantly related to prognosis
in lung cancers.11 The impact of coagulation on tumors
becomes an area of intense research interest. However, the
use of the coagulation-related genes (CRGs) for prognosis in
LUAD has yet to be determined.

Recently, some studies revealed that coagulation can
interact with the tumor immune microenvironment (TME)
to orchestrate either tumor progression or inhibition and
even influence the tumor immune response.12,13 In addition,
a retrospective clinical study showed that rivaroxaban, a
coagulation factor-targeted drug, can increase the efficacy of
immune checkpoint inhibitors (ICIs) by restoring host anti-
tumor immunity.14 These findings emphasized the vital
roles of coagulation in the TME and tumor immune evasion.
TME also plays a crucial role in the development of lung
cancer and immunotherapeutic strategies are considered a
promising direction for the treatment of lung cancer.15

Therefore, we employed bioinformatic approaches to assess
the relevance of coagulation with the TME of lung cancer.

To achieve this, we attempted to apply CRGs to develop
and validate a risk stratification signature in 2126 LUAD
patients from seven independent public datasets and a clinical
in-house cohort to assess the prognosis, recurrence, and bene-
fits of PD-1/PD-L1 and ICI treatment in LUAD. Additionally,
we identified an independent prognostic predictor P2RX1. This
study may help optimize precision treatment and further
improve the clinical outcomes of LUAD patients.

METHODS

Dataset and preprocessing

In total, 2027 LUAD patients from seven independent pub-
lic datasets (TCGA-LUAD, GSE13213, GSE31210,
GSE72094, GSE68465, GSE3141, and GSE30219) were
accessed from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO). In-house LUAD cohort
(n = 99) was collected from Fudan University Shanghai
Cancer Center (FUSCC).16 These datasets encompassing
complete OS information were used for the construction
and validation of our signature. For drug-related datasets,
we enrolled two non-small cell lung cancer (NSCLC) data-
sets treated with anti-PD-1/PD-L1 (GSE161537 and
GSE135222). These drug-related datasets were applied to
assess the performance of CRRS in predicting immunother-
apy benefits in LUAD (Figure 1).

RNA-seq raw read count of these datasets were log2
(exp + 1) transformed and normalized before further analy-
sis. The detailed baselines of the seven enrolled datasets are
summarized in Supporting Information S1.

Somatic mutation and copy number variation
analysis

A total of 209 CRGs in two coagulation pathways, hsa04610
(complement and coagulation cascades) and hsa04611
(platelet activation)17 were downloaded using the R package
KEGGREST. It ißs well known that DNA alterations include
mutations (truncations and missenses) and copy number
variations (amplifications and deep deletions). To reduce
the false positive rate, we only kept nonsilent mutations such
as missense mutation, nonsense mutation, nonstop muta-
tion, frame shift del, frame shift ins, in frame del, and in
frame ins. Mutation frequencies and the OncoPrint plot of
209 CRGs in TCGA LUAD patients were analyzed by the R
package “maftools”.18 In the copy number variation dataset,
values equal to 2 and � 2 were considered being amplifica-
tions and deep deletions. We downloaded the somatic copy
number alteration (SCNA) stack bar plot from the cBioPor-
tal online tool (https://www.cbioportal.org/).19 We analyzed
the overall survival (OS) and recurrence-free survival (RFS)
in patients with and without DNA alterations (SCNA and
mutation), and the gene expression between with and with-
out SCNA/mutations.

Construction of a coagulation-related risk score
(CRRS) signature

The signature generation procedure was as follows:
(a) LASSO-Cox regression was performed 100 times on the
209 CRGs to select six prognostic biomarkers based on
the 10-fold cross-validation framework in the TCGA LUAD
cohort; (b) Then, stepwise-Cox regression identified five
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prognostic biomarkers; (c) Finally, univariate and multivari-
ate Cox regression generated the optimal signature CRRS;
(d) The signature CRRS was validated in eight validation
datasets (GSE13213, GSE31210, GSE72094, GSE68465,
GSE3141, GSE30219, meta cohort, and FUSCC cohort);
(d) Finally, the Harrell’s concordance index (C-index) and
receiver operating characteristic (ROC) curve was calculated
across all validation datasets.

Immune cell infiltration estimation

In the TCGA-LUAD cohort, the gene set variation analysis
(GSVA) method of the R package GSVA was used to calcu-
late the normalized enrichment score (NES) of the pathway and
functional annotations.20 We implemented DEGs-based gene
set enrichment analysis (GSEA) by the R package clusterProfiler,
and visualized the GSEA result by the R package GSEA.21 The
stromal score, immune score, and ESTIMATE score were calcu-
lated by the R package estimate.22 Single-sample gene set enrich-
ment analysis (ssGSEA)23 implemented in R package GSVA
was employed to quantify the relative infiltration of 28 immune
cells in the TCGA-LUAD cohort.

Differential expression profiling of coagulation-
related genes

Using fold-change ≥1.2 and FDR <0.05, we performed the
differential expression profiling on TCGA and FUSCC
LUAD cohort between the tumor and normal tissues.24 We
performed overlapping analysis on five CRGs and the
TCGA and FUSCC DEGs, leading to a key CRG P2RX1.The
tumor mutational burden (TMB) was calculated based on
the DNA mutation dataset by the R package maftools.

Statistical analysis

All data processing, statistical analysis, and plotting were
conducted in R 4.2.1 software. Kaplan–Meier survival curves
were constructed using the ggsurvplot package. The contin-
uous variables were compared through the Wilcoxon rank-
sum test. The survminer package was used to determine the
optimal cutoff value. Cox regression and Kaplan Meier ana-
lyses were performed via the survival package. The C-index
of different variables were compared using the CompareC
package. The ROC curve used to predict binary categorical
variables was implemented via the pROC package. The
time-dependent area under the ROC curve (AUC) for sur-
vival variables was conducted by the timeROC package. All
statistical tests were two-sided. p < 0.05 was regarded as sta-
tistically significant.

RESULTS

Identification of mutations and copy number
variations of coagulation-related genes

For studying the genomic landscape of the CRGs in LUAD,
we analyzed somatic copy number variation (SCNA) and
mutations in 450 TCGA LUAD patients who had at least
one CRG. DNA mutations in the CRGs presented in about
72.44% of patients, and the frequency of DNA mutations in
the CRGs ranged from about 4% to 12% (Figure 2a,b). The
CRGs with the highest mutation frequency were COL3A1
(12%), F8 (10%), ITGAX (10%), ADCY2 (9%), PLCB1 (9%)
and ADCY8 (8%). The main mutation types were missense
mutation, frame shift del, nonstop, splice (Figure 2a and
Figure S1a). Although we did not observe high mutation fre-
quencies in the CRGs, SCNA accounted for the majority of

F I G U R E 1 The overall design of this study.
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DNA alterations. About 72.29% of LUAD patients had at
least one CRG SCNA (Figure 2e). Among the CRGs,
ADCY2, C7, FCGR2A, FCER1G, C9 and C6 had high

amplification frequencies (10%–14%) and few deep dele-
tions. Therefore, most CRGs with high CNA frequencies
tended to be co-amplification rather than codeletion

F I G U R E 2 The SCNA of CRGs in lung adenocarcinoma (LUAD). (a) Landscape of the top 30 CRG mutations in LUAD. Each row represented a gene
and each column represented a patient. (b) The frequency of alterations in TCGA LUAD patients.22 (c) The histogram of different mutational modes in
LUAD.22 (d) The OS and RFS of LUAD patients between amplification and deep deletion groups. (e) Histogram of the proportion of different CNA types in
LUAD.22 (f) Lollipop chart of the CNA proportion in CRGs.
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(Figure 2f). CNA patients had a higher proportion of multi-
ple tumor suppressor genes, such as TP53, PKHD1L1, and
CTNNB1 (Figure 2c). In addition, Kaplan–Meier survival
curves showed that patients with low CNA frequency had
longer OS and RFS than those with high CNA frequency
(Figure 2d,f), but there was no statistically significant differ-
ence in prognosis between the high and low mutation
groups (Figure S1b). Gene amplification and deletion can
change gene expression. We found patients with CNA
amplification of some CRGs had higher gene expression
than those without alterations, but mutations did not affect
gene expression significantly (Figure S1c,d). Taken together,
these results suggested SCNA was responsible for dysregula-
tion of CRGs in LUAD rather than mutation.

Construction of coagulation-related prognostic
signature in LUAD

To determine the correlation between CRGs and TME, we
constructed the CRRS based on the TCGA LUAD cohort.

The top six CRGs whose frequencies were 100% by 100 times
LASSO-Cox regression analysis were selected (Figure 3a).
Then five CRGs were further identified by stepwise-Cox
regression and univariate Cox regression analysis. Next, a
risk score for each patient was calculated using the expres-
sion of five CRGs weighted by their regression coefficients
in a multivariate Cox regression model (Figure 3b). The
associations between the expression levels of five CRGs and
OS are shown in Figure 3c. The expression levels of
COL1A2, F2, and PLAUR had significant positive contribu-
tions to better prognosis, while the expression levels of
P2RX1 and C4BPA played opposite roles.

All patients were assigned into high- and low-risk
groups according to the optimal cutoff value determined by
the survminer package. As illustrated in Figure 3d, patients
in the high-risk group had significantly dismal overall sur-
vival (OS) relative to the low-risk group in the TCGA-
LUAD training dataset and six validation datasets (all
p < 0.05). The meta-cohort that combined all samples also
showed the same trend (p < 0.05). Multivariate Cox regres-
sion demonstrated that CRRS remained statistically

F I G U R E 3 A CRRS model was developed and validated via LASSO-Cox and stepwise-Cox procedure. (a) Frequency of selected features via the
100-times LASSO-Cox procedure. (b) Coefficients of the five CRGs in the multivariate Cox regression model. (c) Multivariate Cox regression of 5 CRGs
regarding to OS in TCGA-LUAD (n = 502). Statistical tests: two-sided Wald test. Data are presented as hazard ratio (HR) ± 95% confidence interval [CI].
(d) Kaplan–Meier curves of OS according to the CRRS in TCGA-LUAD (p < 0.0001), GSE13213 (p = 0.016), GSE31210 (p = 0.00085), GSE70294
(p < 0.0001), GSE30219 (p < 0.0001), GSE68465 (p = 0.011), GSE3141 (p < 0.0001), and meta-cohort (p < 0.0001).
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significant in TCGA and FUSCC LUAD cohorts (p < 0.05)
after adjusting for available clinical traits, such as age;
gender; T, N, M, and stage; TMB; MSI; TP53 and EGFR
mutations, which suggested that CRRS is an independent
risk factor for OS (Figure S2). However, multivariate Cox
regression indicated that CRRS remained statistically signifi-
cant for RFS in TCGA cohort but FUSCC cohort
(Figure S2). Hence, for RFS, CRRS had a certain degree of

predictive value, but it was not an independent prognostic
factor.

Evaluation of the CRRS model

The C-index was 0.666, 0.618, 0.542, 0.662, 0.610, 0.566,
0.615, and 0.611 in the eight cohorts (TCGA-LUAD,

F I G U R E 4 Evaluation of the CRRS model. (a) C-index of CRRS across all datasets. (b) Time-dependent ROC analysis for predicting OS at 1, 3, and
5 years. (c) The performance of CRRS was compared with other clinical and molecular variables in predicting prognosis. Data are presented as mean ± 95%
confidence interval [CI].
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GSE70294, GSE68465, GSE3141, GSE31210, GSE30219,
GSE13213, and meta-cohort) (Figure 4a). ROC analysis
measured the discrimination of CRRS, with 1-, 3-, and
5-year AUCs of 0.700, 0.685, and 0.679 in TCGA-LUAD;
0.644, 0.642, and 0.659 in GSE70294; 0.602, 0.568, and 0.540
in GSE68465; 0.784, 0.678, and 0.704 in GSE3141; 0.617,
0.612, and 0.630 in GSE31210; 0.524, 0.602, and 0.591 in
GSE30219; 0.940, 0.620, and 0.679 in GSE13213; and 0.643,
0.634, and 0.622 in meta-cohort, respectively (Figure 4b).
All these indicators suggested that CRRS had stable and
robust performance in multiple independent cohorts. A
previous study reported that clinical characteristics
(e.g., stage) and molecular alterations (e.g., MSI) were
also used to assess the prognosis of LUAD in clinical
practice. Therefore, we compared the performance of
CRRS with other clinical and molecular variables in pre-
dicting prognosis. As displayed in Figure 4c, CRRS had
distinctly superior accuracy than the other variables
including age; gender; TMB; MSI, excluding stage. An
interesting idea is to combine CRRS with commonly
used clinical traits to further elevate clinical utility. Stage
is a commonly used tool for the clinical management of
LUAD, and multivariate Cox regression analysis of stage
was statistically significant across multiple cohorts.
Thus, we further explored the performance of CRRS
+ Stage. As shown in Figure S3, we found that the per-
formance of CRRS + Stage was significantly better than
that of CRRS or stage alone in multiple datasets. These
results led us to conclude that the combination of CRRS
and stage may further improve the predictive ability of
our model.

Comparison of coagulation-related prognostic
signatures in LUAD

To compare the performance of CRRS with other coagulation-
related signatures, we comprehensively retrieved published sig-
natures, including Jin’s model with 11 signatures
(SERPINA1, CFHR3, PPP1CB, P2RX1, PLCB3, PLCB4,
PIK3R6, GP6, PIK3R1, GP1BA, PLA2G4F) in HCC,17

Chen’s model with seven signatures (SERPINE1, VWF,
F2R, ANXA5, CD59, AXL, MMRN1) in gastric cancer,25

Jia’s model with four signatures (SERPINA1, HMGCS2,
MMP7, PLAT) in invasive ductal cancer,26 Song’s model
with seven signatures (ANG, C1QA, CFB, DUSP6,
KLKB1, MMP7, RABIF) in melanoma.5 The AUC mean
values for Jin’s model, Chen’s model, Jia’s model, Song’s
model and the CRRS were 0.641, 0.655, 0.569, 0.486 and
0.696. Furthermore, the C-index of CRRS was compared
with other signatures; notably, CRRS displayed better
performance (Figure S5a,b). Furthermore, the p-value of
our CRRS model was the most significant compare to
other four models in Kaplan–Meier survival curves
(Figure S5c,d). Our CRRS signature’s remarkable predic-
tive capabilities were highlighted by such outcomes.

Validation in FUSCC LUAD cohort

To further verify the performance of our CRRS model in a
clinically translatable tool, we next evaluated the expression
of these CRGs in FUSCC LUAD cohort (n = 99). Consis-
tently, Kaplan–Meier analysis demonstrated that patients
with high CRRS exhibited dramatically worse OS
(p < 0.0001) and RFS (p < 0.023) (Figure 5a,b). After con-
trolling for confounding variables (including age, gender, T,
N, stage, TP53 and EGFR mutations), the CRRS model
remained statistically significant for OS instead of RFS
(Figure S2c,d). ROC analysis showed a superior accuracy of
CRRS: the AUCs for predicting OS at 1, 2, and 3 years were
0.834, 0.777, and 0.795, respectively (Figure 5c). Similarly, the
C-index reached 0.770 (95% CI = 0.721–0.819). In addition,
we compared the predictive superiority of CRRS with other
clinical features and observed that CRRS maintained optimal
performance (Figure 5d). Collectively, the results from the
FUSCC cohort supported our discovery which validated and
confirmed that our CRRS model was quite robust and can
serve as an independent predictor of prognosis in LUAD.

Immune landscape of the CRRS subgroups

To determine difference in pathway enrichment analysis
between the high- and low-CRRS subgroups in the TCGA
LUAD cohort, GSVA analysis was performed and revealed
the two subgroups had distinct immune infiltration patterns.
The enrichment heatmap illustrated the low-CRRS subgroup
was significantly enriched in immune and inflammatory
pathways, including T cell receptor signaling and B cell
receptor signaling (Figure 6a). GSEA analysis confirmed the
difference of immune pathways between the two subgroups,
and the DEGs with high expression significantly enriched in
the T cell and the B cell receptor signaling pathways were
observed in the low-CRRS subgroup (Figure 6b).

To further explore the difference of the immune infiltra-
tion between the two subgroups, we calculated TMB, stro-
mal score, immune score, and ESTIMATE score based on
the expression profile of TCGA LUAD cohort. The stromal
score generated by ESTIMATE algorithm, which captured
the presence of stroma in the tumor tissue, and the Immune
score which represented the infiltration of the immune cell
in the tumor tissue, and ESTIMATE score inferred tumor
purity. As shown in Figure 6c, compared with the
high-CRRS subgroup, higher stromal score, immune score,
ESTIMATE score, and lower TMB were observed in the
low-CRRS subgroup (Wilcoxon test, p < 0.05). The low-
CRRS subgroup was characterized by higher infiltration of
activated B cell (Act_B), activated CD8+ T cell (Act_CD8),
activated dendritic cell (Act_DC), eosinophil, immature B
cell (Imm_B), macrophage, mast cell (Mast), MDSC, effector
memory CD8+ T cell (Tem_CD8), follicular helper T
cell (Tfh), type 17 T helper cell (Th17), and regulatory T cell
(Treg), and high-CRRS subgroup was characterized by
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higher infiltration of activated CD4+ T cell (Act_CD4),
CD56bright natural killer cell (CD56bright), CD56dim natu-
ral killer cell (CD56dim), immature dendritic cell (iDC),
memory B cell (Mem_B), neutrophils, natural killer T cell
(NKT), central memory CD8+ T cell (Tcm_CD8), gamma
delta T cell (Tgd), and type 2 T helper cell (Th2)
(Figure 6d). Then, we analyzed the differences in major his-
tocompatibility complex (MHC) and T cell stimulating
factors between the two subgroups. Excluding HLA-G,
higher expression of MHC and T cell stimulating factors
were observed in the low-CRRS subgroup (Figure 6e,f).
These findings indicated the high- and low-CRRS sub-
groups had different patterns of tumor immune infiltra-
tion, which indicated that the CRRS significantly
correlated with the TME and may be sensitive to the
response to immunotherapy.

CRRS-based LUAD immunotherapy strategy

Currently, one of the bottlenecks in developing immuno-
therapy was the absence of new predictive biomarkers. Since
the immune infiltration patterns in high- and low-CRRS
subgroups were proved significantly different, we further
analyzed whether CRRS could predict the response to
immunotherapy.

To assess the ability of CRRS as a biomarker for pre-
dicting the response to ICIs, we compared the expression
of three immune checkpoint molecules (PD1, PD-L1,
and CTLA4) in high- and low-CRRS subgroups. Four
immune checkpoint molecules (PD1, PD-L1, and
CTLA4) were significantly higher in the low-CRRS sub-
group (Figure 7a). IPS, IPS-CTLA4, IPS-PD1-CTLA4,
IPS-PD1 immunophenotype scores were quantitative
indicators for evaluating the effectiveness of ICIs. In the
low-CRRS subgroup, IPS, IPS-CTLA4, IPS-PD1-CTLA4,
IPS-PD1 scores were significantly higher (Figure 7b).
Kaplan–Meier curves of OS in two NSCLC anti-PD-1/
PD-L1 cohorts (GSE161537: p = 0.0011; GSE135222:
p = 0.072) showed that the low-risk subgroup had a bet-
ter prognosis which indicated that the low-risk subgroup
may benefit from the anti-PD-1/PD-L1 immunotherapy
(Figure 7c,d).

Identification of key coagulation-related gene

To identify the key CRGs in CRRS, we performed overlap-
ping analysis of DEGs in TCGA and FUSCC LUAD cohorts,
and found a key CRG P2RX1(Figure 8a). In the TCGA
LUAD cohort, CNV analysis revealed that P2RX1 had
higher proportion of SCNA, with higher proportion of

F I G U R E 5 Validation in FUSCC
cohort. (a, b) Kaplan–Meier curves of OS
(p < 0.0001) (a) and RFS (p = 0.023).
(c) Time-dependent ROC analysis for
predicting OS at 1, 2, and 3 years.
(d) The performance of CRRS was
compared with other clinical and
molecular variables in predicting
prognosis in our FUSCC cohort
(n = 99). Data are presented as
mean ± 95% CI.
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F I G U R E 6 Immunoassay of the CRRS subgroups in the TCGA LUAD cohort. (a) GSVA analysis of the biological pathways between high- and low-
CRRS subgroups. Red represented activation of biological pathways and blue represented inhibition of biological pathways. (b) Significant enrichment
immune-related biological pathways by gene set enrichment analysis (GSEA). (c) The TMB, stromal score, immune score, and ESTIMATE score between the
two subgroups. (d) Immune cell infiltration between the two subgroups. (e) Gene expression of MHC and T cell stimulation gene sets between the two
subgroups. Statistical significance at the level of ns ≥0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001.
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deletion than amplification, and with copy number deletion
up to 53% (Figure 8b). Methylation analysis showed the
methylation of P2RX1 was significantly higher in tumor
than in normal samples (Figure 8c). Transcriptome differen-
tial expression analysis showed that P2RX1 was significantly
down-regulated in tumor compared with normal samples
(Figure 8f). It is well known that gene expression is nega-
tively correlated with methylation, while the abundance of
CNA had a positive effect on gene expression.

To better understand the relevance of P2RX1 expression
on the TME, the stromal score, immune score and ESTI-
MATE score were calculated based on the expression profile
of the TCGA-LUAD cohort. The stromal score, immune
score, and ESTIMATE score in the P2RX1 high expression
group were significantly higher than those in the P2RX1 low
expression group (Figure 8d). The Kaplan–Meier survival
curve showed that overexpression of P2RX1 was signifi-
cantly associated with better OS (p = 0.00016) in TCGA-
LUAD cohort and OS (p = 0.00023) in FUSCC LUAD
cohort (Figure 8e). The expression of P2RX1was negatively
correlated with Th2 cells (r = �0.42, p = 2.43e-23) and
positively correlated with Act B cells (r = 0.53, p = 6.17e–
38) (Figure 8g).

These findings confirmed P2RX1 was a key prognostic
protective factor associated with the TME, and copy number
amplification and methylation may be important causes for
the upregulation of P2RX1 in LUAD.

DISCUSSION

The incidence and mortality of lung cancer have been con-
sistently increasing year by year.27 Despite the continuous
improvement in therapeutic drugs and treatment methods,
effective treatment of lung cancer in case of recurrence or
metastasis has remained challenging.4 Previous studies
found interactions and effects between malignant tumor
progression and coagulation.28,29 It has been reported that
hyperfibrinogen and hypercoagulability are associated with
rapidly growing tumors.30 The activation of coagulation and
complement and coagulation cascades are correlated with
overall survival in lung cancer patients.31 Therefore, it is
critical to identify coagulation-related tumor response
markers and to develop effective and novel coagulation-
related prognostic models. In this study, we established a
prognostic risk model that included 5 CRGs as determined

F I G U R E 7 The evaluation of the CRRS for predicting response to immunotherapy. (a) The expression of three immune checkpoint molecules (CTLA4,
PD-1, PD-L1) in high- and low-CRRS subgroups. (b) IPS, IPS-CTLA4, IPS-PD1-CTLA44, and IPS-PD1 scores between the two CRRS subgroups.
(c) Kaplan–Meier curves of OS in GSE161537 (p = 0.0011). (d) Kaplan–Meier curves of OS in GSE135222 (p = 0.072). Statistical significance at the level of
ns ≥0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001.
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by LASSO-Cox regression, stepwise-Cox regression, univari-
ate and multivariate regression analyses. Moreover, the gene
signature was found to be highly associated with tumor-
infiltrated immune cells, which might be used as an inde-
pendent factor. The prognostic risk model consisting of
COL1A2, F2, PLAUR, C4BPA, and P2RX1 acts as a novel
potential biomarker for evaluating the prognosis and the
efficacy of immunotherapy in LUAD.

In this study, we hoped to obtain the coagulation path-
way as entire as possible. Therefore, we searched the key-
words including platelet and coagulation in the KEGG
pathway database. Subsequently, we selected all 209 genes in
hsa04610 (complement and coagulation cascades) and
hsa04611 (platelet activation) for the next analysis. Based on
LASSO Cox regression analysis and univariate Cox regres-
sion, we identified 5 prognostic CRGs (COL1A2, F2,
PLAUR, C4BPA, and P2RX1). Therein, COL1A2, F2, and
PLAUR were the unfavorable genes for the outcome,

whereas other genes presented protective function on the
prognosis of LUAD patients. Cancer-associated fibroblasts
(CAFs) are one of the most important components of the
TME and show a high expression of COL1A2.32 F2 is known
as coagulation factor. The high expression of F2 is associated
with the bad prognosis in LUAD.33 The expression of
PLAUR correlated with the hallmark gene set “TNFα-
signaling via NFκB”, which has a direct pro-coagulant effect.
Upon exposure to TNFα, cancer cells increase their expres-
sion of TF and produce TF-bearing microparticles with
potent local pro-coagulant effects.34,35 P2RX1, a member of
the purinergic receptor family, was found to have impact on
prognosis and immune cell infiltration in several
tumors,36,37 and low P2RX1 expression was associated with
poor prognosis in LUAD.38 It has been confirmed that over-
expression of C4BPA was associated with a higher propor-
tion of infiltrating immune cells and better prognosis in
patients with LUAD, as well as being correlated with

F I G U R E 8 Identification of the key prognostic CRG P2RX1. (a) Venn diagram of overlapping analysis of five CRRS genes set and DEGs of the TCGA-
LUAD dataset and FUSCC-LUAD datasets. (b) Pie plot of P2RX1 CNV percentage. (c) The P2RX1 methylation level between TCGA-LUAD tumor and
normal tissues. (d) The ESTIMATE score, stromal score, and immune score grouped by high and low P2RX1 expression. (e) Kaplan–Meier curves of overall
survival in TCGA-LUAD (p = 0.00016) and FUSCC (p = 0.00023). (f) The P2RX1 expression level between tumor and normal tissues in TCGA-LUAD and
FUSCC LUAD datasets. (g) Scatterplots between Th2 cells (r = �0.42, p = 2.43e–23) and Act B cells (r = 0.53, p = 6.17e-38) with P2RX1 expression are
shown in TCGA-LUAD. Statistical significance at the level of ns ≥0.05, * < 0.05, ** < 0.01, *** < 0.001 and **** < 0.0001.

YANG ET AL. 3305



apoptosis.39,40 These previous studies have revealed that sev-
eral genes were closely related to tumor progression of
LUAD, which also further confirmed the validity and reli-
ability of our prognostic model.

Nowadays, it has become a growing focus for research to
construct prognostic models based on coagulation system
to predict the prognostic or diagnostic value in
tumors.5,17,25,26 However, the power of prognostic predic-
tion of LUAD patients using our signature is better than
their signatures. In this study, patients in low-CRRS group
had better prognosis than patients in high-CRRS group.
Univariate and multivariate Cox regression analysis showed
that the CRRS signature was an independent prognostic
factor.

Tumor immunotherapy stimulates the body’s immune
function by increasing the immunogenicity of tumor cells
and the sensitivity of effector cell killing, thereby inhibiting
and killing tumor cells. The coagulation system plays an
essential role in innate and adaptive immunity.41 Given the
importance of tumor immune infiltration, we performed
the correlation analysis of immune infiltrates using ssGSEA
and stromal score algorithms. Of course, the relationship
between immune cells and tumors was extremely complex,
and different immune cells had different roles. Recent stud-
ies have shown that Th2 cells have tumor-promoting effects
in lung cancer and even human primary NSCLC
tumors.42–44 Neutrophilia has been reported to be a marker
of poor prognosis in solid tumors.45 The iDCs cells are
immunosuppressive cells that lack co-stimulatory molecules
and have a weak ability to present antigens, inhibiting
immune activation.46 Consistent with the above findings, we
identified that higher infiltrations of iDCs, neutrophils, and
Th2 which promote tumor immunosuppression were associ-
ated with a worse cumulative survival of LUAD patients.
Moreover, Existing evidence shows that tumor-infiltrating B
cells play a role in almost all stages of lung cancer.47 CD8+
T cells are cytotoxic cells that induce antitumor responses
by producing interferon-(IFN) gamma.48 We found that
higher infiltrations of B cells and CD8+ T cells which pro-
mote tumor immunity were associated with a better cumula-
tive survival of LUAD patients, these findings which were
well in line with above research. Furthermore, we found that
the low CRRS signature with high MHC and T-cell stimulat-
ing factors was associated with a better prognosis. We also
found that CRRS was negatively correlated with immune
checkpoint expression and IPS score, which indirectly sug-
gested that CRRS might play a key role in predicting immu-
notherapy efficacy and patients in the high-CRRS subgroup
may benefit from the immunotherapy. Thus, it is significant
to provide and improve the reliability and efficacy of sur-
vival risk prediction for LUAD patients by using the novel
prognostic signature.

Of course, our study has some limitations that should be
acknowledged. First, we demonstrated that five CRGs are
associated with prognosis in LUAD, but this was evaluated
solely by data mining. More investigations were needed to
reveal these 5 genes’ functions, and the association between

CRGs and the development of LUAD needed to be further
explored. Second, while we identified the correlation of
coagulation pathways and TME in LUAD patients, the bio-
logical mechanisms underlying these phenomena are
unknown. Therefore, large-scale prospective studies about
functional and mechanistic experiments were needed to vali-
date and interpret the role of coagulation pathways in
LUAD. Thirdly, the median of CRRS was used to divide
LUAD patients into high- and low-CRRS subgroups, but the
optimal cut-off value for the CRRS may be a better stratifi-
cation strategy for LUAD patients. Finally, due to the lack of
public datasets of immunotherapy in LUAD, we collected
the immunotherapy datasets for melanoma instead. How-
ever, it may lead to potential bias for CRRS prediction of
immunotherapy in LUAD.

Nonetheless, our study has advantages of investigating
the correlation between coagulation and TME of LUAD,
focusing on CRGs to assess the prognostic value in LUAD.
We also explored the association between the CRRS
model and immune infiltrating cells, as well as immune
checkpoint expression, which can lead to a new predic-
tive model and therapeutic strategy for the immunother-
apy in LUAD. The CRRS is a powerful tool for LUAD
survival prediction and guiding clinical treatment, and
can help to define the prognosis of LUAD patients and
stratify LUAD patients who benefit from antitumor
immunotherapy. In conclusion, our systematic study of
CRGs provided valuable insights into the role of CRGs in
the LUAD TME.

In conclusion, in this study we revealed a significant cor-
relation between 5 CRGs and immune infiltration and con-
firmed that the CRRS can serve as an independent predictor
of LUAD. Although we lacked enough LUAD datasets with
immunotherapy, we verified the application value of the
CRRS in predict the response of immunotherapy in one
NSCLC cohort and four melanoma cohorts. Patients in the
high-CRRS subgroup may benefit from the immunotherapy.
We also identified an independent prognostic predictor
P2RX1. The CRRS model provided new insights and targets
for the diagnosis, prognosis prediction, and treatment man-
agement of LUAD patients.
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