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Abstract: Nitrite and Nitrate have been used extensively as additives in various meat products to
enhance flavor, color, and to preserve the meat from the bacterial growth. High concentrations of
nitrite can threat human health since several studies in the literature claim that nitrite is associated
with cancer incidences, leukemia, and brain tumors. Therefore, it is vital to measure the nitrite
concentrations in processed meat products. In this study, an in-lab miniaturized photometric
detection system is fabricated to inspect the nitrite concentration in processed meat products in Jordan.
The analytical performance of nitrite detection is evaluated based on three key statistical parameters;
linearity, limit of detection, and limit of quantitation. Respectively, for the fabricated system, the
three values are found to be equal to 0.995, 1.24 × 10−2 ppm, and 4.12 × 10−2 ppm. Adherence to
Beer’s law is found over the investigated range from 2.63 ppm to 96.0 ppm. The developed system is
utilized for photometric detection of nitrite in processed meat products available in the Jordanian
market like pastrami, salami, and corned beef. In all of the analyzed samples, the nitrite content is
found to be lower than 150 ppm, which represents the maximum allowable nitrite limit.

Keywords: Lab on a Chip; nitrite; griess reaction; processed meat; microfluidic

1. Introduction

Nitrite anion is a triatomic ion with two oxygen atoms and one nitrogen and an overall charge of
−1. With that structure, the nitrogen atom has an oxidation state of 3+ which is not the most stable
oxidation state for nitrogen, therefore, nitrite does not exist naturally except in reductive environments
that facilitate the reduction of nitrate (where nitrogen has the most stable 5+ oxidation state). As a
result, nitrite naturally exists in relatively very low concentrations in nature. Therefore, nitrites are
usually synthesized chemically rather than being extracted naturally [1].

Nitrite has been used for decades as a food additive where it is added as sodium (coded E-250)
or potassium salts (coded E-249). Sodium nitrite is one of the most important additives used in the
meat industry. Nitrite serves many purposes as an additive where it is a bacteriostatic and sporostatic.
As a bacteriostatic, it prevents the growth of bacteria specifically Clostridium botulinum which causes
botulism while as a sporostatic, it inhibits the growth of spores. Without this control of microorganisms,
the shelf life of the meat decreases due to deterioration of the product and loss of quality, which has
negative economic implications. The minimum amount of added nitrite needed to secure a safe shelf
life of cured meat is 25 ppm. However, higher concentrations that vary between 25 ppm and 125 ppm
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are employed since the saltiness of cured meat depends on taste and acceptance of the consumers [2–4].
The microorganisms may also be responsible for human illness after consumption of the spoiled meat.
Moreover, nitrite is used in meat is to enhance its aesthetics or attractiveness. To do so, nitrite is
converted to nitric oxide which associates with the myoglobin in the meat. The myoglobin accounts
for the natural red pigment in uncured meat. The resulting nitric oxide myoglobin gives a deep red
color, which turns to pink when heated in the smoking process of meat [5–8].

Furthermore, nitrites also impede the rancidity of meat products, which may cause off-flavors
and off odors. Lastly, the nitrite additives also have antioxidant characteristics [5–8]. Despite these
numerous advantages, high concentrations of nitrites have adverse health effects making them closely
monitored and regulated. According to the Directive No. 95/2/EC of the European Parliament and
of the Council of February 20, 1995 on food additives other than colors and sweeteners, both sodium
nitrite and potassium nitrite are allowed with maximum concentrations of 150 mg/kg (150 ppm) in
meat products [9]. In high concentrations, nitrite reacts with ferrous ion Fe2+ in hemoglobin and
oxidizes it to form methemoglobin with ferric ion Fe3+. Methemoglobin does not transport oxygen
as well as hemoglobin and would cause further health complications such as blue baby syndrome,
fast heart rate, and breath shortness [10]. Moreover, several studies in the literature claim that there is
a connection between nitrite and cancer and tumors in adults and children.

The detection of nitrite in samples of different origins such as natural waters, processed
meats, and biological samples like urine and blood plasma has been carried out by different
research groups [11–17]. The ion could be detected by the three key instrumental methods, namely
ion chromatography, electrochemistry (both potentiometry and voltammetry), and spectrometry.
Ion chromatography can be used to detect the nitrite anion by suppressed conductivity detection or by
UV absorption. Ion chromatography is often used to detect nitrite in meat samples as it takes a short
retention time, is highly sensitive, and requires small sample volumes [11,12].

At the same time, the potentiometric determination of nitrite ion requires the utilization of the
NO2

− ion selective electrode, which has an internal standard nitrite solution with constant composition
confined by porous membrane. Once the nitrite ion is inserted in the test solution, potential difference
across the membrane is established where it is proportional to the concentration of the nitrite in the
test solution. For the voltammetric quantitation of nitrite, a potential is applied on a sensing electrode
where the potential value is carefully set to the voltages at which nitrite electrolysis takes place,
so nitrite could be reduced to ammonia or oxidized to nitrate. In both cases, the current produced from
the electrolysis process is correlated to nitrite concentration [18–21].

Photometric determination of nitrite is the standard method recommended for nitrite detection,
it is based on Griess reaction [22–24]. According to the reaction, nitrite enters a series of reactions as a
limiting reactant, and these transformations end with colored compound where the absorption of the
nitrite depends on the initial nitrite concentration. The chemical transformation is shown in Figure 1.
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Figure 1. The Griess reaction for the photometric determination of nitrite ion.

The detection of nitrite by miniaturized systems has been performed by different research
groups across the world [14,16,17,25,26]. Key examples on the utilized systems are listed in Table 1.
Miniaturization of detection systems has attracted a lot of attention recently since it is accompanied
by portability, running cost efficiency, simplicity, and convenience in addition to the minimization
of chemicals and reagents consumption, since the desired analyses can be performed completely
and successfully with submillimeter amounts of fluids [13,27–34]. The use of Lab on Chip (LOC) in
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the miniaturized detecting systems has been investigated extensively by researchers. In this study,
the nitrite detection is performed using LOC technology that can ensure the miniaturization of the
chemical procedures required for the nitrite detection. This study was performed with three main
objectives in mind; fabrication of microfluidic system presented by the lab on a chip model, utilization
of the fabricated model for nitrite detection, and finally validation of the employed analytical model
by the key statistical parameters such as linearity, limit of detection, limit of quantitation and recovery.
Statistical validation of the employed system is based on the method external standard method known
also as the calibration curve, as will be shown in the next sections.

Table 1. Detection of nitrite in food and biological samples using different systems.

System LOD in ppm Samples Ref.

PMMA multichannel microfluidic disc 0.00920 × 10−2 Natural water samples taken from
Southampton waters [14]

Acrylic dipstick N.A. Urine samples [25]

µPaper Analytical Device 4.60 × 10−2 Wide range of biological and food
samples; meat, saliva, ham, water, etc. [26]

PMMA single channel chip 7.82 × 10−2 Mineral and tap waters [17]
Present 1.24 × 10−2 meat products

2. Experimental Methodology

2.1. Chemicals Preparations

The detection of nitrite process requires several chemicals which are shown in Table 2.

Table 2. The chemicals used in the nitrite detection in this study.

Chemical Name Source Country

Potassium nitrite Sigma Aldrich St. Louis, MO, USA
Dihydrogen sodium phosphate Sigma Aldrich St. Louis, MO, USA

Phosphoric acid Honeywell-Riedel de Haen Morristown, NJ, USA
Benzensulfanylamide (S.A.) Applichem GmbH Darmstadt, Germany

N-1-naphthylethylenediamin
dihydrochloride (NEDA) Carlo Erba reagents Peypin, France

Potassium hydroxide S.D. Fine Chem Limited Mumbai, India
Nafion Sigma Aldrich St. Louis, MO, USA
Ethanol Tedia Fairfeild, OH, USA

Methanol Tedia Fairfeild, OH, USA

High Performance Liquid Chromatography (HPLC) grade water from UltraMax 372 Yonglin
Water Purification System, Anyang, South Korea is used for the preparation of the tested solutions.
Phosphate buffer solution with pH of 2.0 is used in this study as the working solution, which is
prepared by mixing phosphoric acid and dihydrogen sodium phosphate in appropriate amounts
where 0.1 M NaOH aqueous solution is used to adjust the pH of the working solution. Buffer solutions
of Benzensulfanylamide (S.A.) and N-1-naphthylethylenediamin dihydrochloride (NEDA) with
concentration of 1.0 mM is mixed with potassium nitrite which is prepared with a concentration
of 0.5 mM in order to get the required solution with the desired pink color. Moreover, several samples
of the standard solutions with different concentrations are prepared by serial dilution where the
fabricated detection system is used to measure the absorbance of the solutions.

2.2. Microfluidic Platform Design and Fabrication

As aforementioned, the nitrite detection is done using LOC technology; therefore, it is important to
obtain the suitable microfluidic chip. In this study, a simple microfluidic chip is designed and fabricated
in the laboratory. Figure 2 shows the design of the fabricated microfluidic chip. The microfluidic
chip consists of a detection chamber with a diameter of 10 mm with two venting holes to prevent
the formation of positive pressure inside it which will block the movement of the fluid. Moreover,



Micromachines 2019, 10, 36 4 of 12

the detection chamber is connected to a channel with 2 mm depth and 1mm width where it has an
inlet hole at the end with 1mm diameter for fluid injection as shown in Figure 2a.
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The microfluidic chip is fabricated using polymethyl methacrylate (PMMA) plastic from Moden
Glas, Bangkok, Thailand and transparent pressure-sensitive adhesive (PSA) with 100 µm thickness
from FLEXcon (Spencer, MA, USA). As shown in Figure 2b, the chip consists of two 1 mm PMMA
layers, one 2 mm layer and two PSA layers. The channels and detection chamber are fabricated on
the 2 mm PMMA layer as well as the two PSA layers. On the other hand, the bottom 1 mm PMMA
has no holes or features where it is used as a cover while the top 1 mm layer has one inlet hole and
two venting holes. Bodor CO2 laser cutter (Bodor, Jinan, China) with 90 W maximum power is used
for the fabrication of the microfluidic channels and chamber. The PMMA layers are then cleaned and
washed to get rid of the suspended dust and particles that could affect the bonding effectiveness.
After the cleaning process the PMMA layers are aligned and then bonded together using the PSA
layers. After placing the PSA layers between the PMMA layers, it is placed in a manual press machine
for one day to ensure the maximum adhesion between the layers.

The detection of nitrite requires the suspension of S.A. and NEDA; therefore, the channel in
the microfluidic chip is coated with S.A while the detection chamber is coated with NEDA using a
micropipette. S.A. and NEDA are injected as aqueous solutions in the microfluidic channels and the
detection chamber respectively. After the injection, the solutions are dried at 85 ◦C for one hour in the
oven. It should be noted that each chip is used just once, therefore it is disposable and there is no need
for the S.A. and the NEDA replenishment. The ingredients are immobilized in their locations inside
the channel before sealing of the chip with the upper PMMA layer.

2.3. Detection Setup

The main goal of this work is to develop a low-cost, simple and portable setup for the detection
of chemical compounds such as nitrite. Therefore, a low-cost LOC setup is designed and developed in
a simple laboratory environment where the developed colorimetric detection setup has the ability to
provide the results of the test directly without the need for further procedures. The primary detection
system is placed inside an 80 mm × 84 mm × 90 mm black PMMA box with 3 mm wall thickness
where the front face of the box has a slot for the placement of the microfluidic chip, as shown in
Figure 3. The primary setup consists of three components namely; green LED, photodiode and a
microcontroller. The green LED which is obtained from Farnell, Aschheim, Germany can emit light
with a wavelength in the range of 520 nm to 530 nm through the detection chamber. The photodiode
which is purchased from Farnell, Aschheim, Germany is placed directly to face the LED where the
detection chamber is placed in between. The color of the solution in the detection chamber affects
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the intensity of the light received by the photodiode, which affects the voltage signal output from
the photodiode.
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The output voltage signal from the photodiode is transferred to the microcontroller for processing.
Arduino Mega is used in this work as a microcontroller where it is attached with liquid crystal display
(LCD) shield to preview the detection results directly. It should be noted that the LED is powered
from the Arduino without the need for additional power source. The voltage signal output from
the photodiode is displayed on the LCD where the Arduino is programmed to display on average
20 readings each second where each test trial takes about 5 seconds which is the average of 100 readings.
The intensity of the light transmitted to the photodiode through the detection chamber decreases as
the concentration of nitrite increases, which in return decreases the corresponding voltage signal form
the photodiode.

2.4. Nitrite Extraction from Processed Meat Samples

Five grams of processed meat are blended using a Moulinex blender for 30 s, then added to 50 mL
of 1:1 water –phosphate buffer. The mixture is then ultrasonicated for 15 min and left to settle down
for 10 min. The mixture is then filled in 15 mL corning centrifuge tubes and centrifuged at 3600 rpm
for 10 min. Prior to filtration with C18 filter cartridges (Machery-Nagel, Düren, Germany) the filter
cartridges are conditioned using 5 mL of methanol followed directly with 5 mL of distilled water.
After the cartridges have been conditioned, the meat sample is filtered using the Machery Nagel C18

cartridges and vacuum manifold (JP Selecta, Barcelona, Spain). The overall sample preparation process
takes about 30 min. Afterwards, the filtrated sample becomes ready for the detection process, which is
explained in the next section.

2.5. Operational Concept

The proposed microfluidic chip design only requires pumping sources without the need for a
valving system to start and control the chemical reaction in the coated channel and detection chamber.
In this study a syringe pump is used to push the fluid to the detection chamber through the microfluidic
channel with accurate flow rates. Figure 4 shows the duty cycle of the syringe pump as well as the
location of the fluid during the pump cycle.

During the first 4 min the syringe pump is turned off where the fluid is located in the uncoated
channels. After the first 4 min, the pump is turned on for one minute with a low accuracy flow rate
to push the fluid to the S.A coated channel only. The pump is then turned off for 4 min to allow the
fluid to react with the S.A. coating. After that, the pump is turned on for 1 min to push the fluid to
the detection chamber where it is left there for 4 min to allow the reaction between the fluid and the
NEDA coating. The color of the fluid turns to pink, which indicates that the reaction is over and the
results can be taken where the intensity of the pink color is proportional to the nitrite concentration
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in the sample. The detection results can be then obtained by inserting the microfluidic chip into the
detection setup.Micromachines 2018, 9, x FOR PEER REVIEW  6 of 12 
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3. Results and Discussion

3.1. Calibration Curve and the Statistical Parameters

Nitrite standard solutions with different concentrations are used in order to establish the
calibration curve where the solutions are prepared by serial dilution from a stock with an initial
concentration of 5 × 10−4 M. Table 3 shows the prepared solution and the corresponding absorbance
values, which have been taken in sets of four trials.

Table 3. The absorbance and average absorbance for nitrite solutions of different concentrations which
were used to form the calibration curve.

Concentration (moL/L) Average Absorbance (N = 4) Standard Deviation of the Absorbance STDEV/Average Abs. (%)

2.86 × 10−6 3.645 × 10−3 1.063 × 10−4 2.916
4.17 × 10−6 9.083 × 10−3 4.156 × 10−4 4.575
8.34 × 10−6 0.0134 4.349 × 10−4 3.241
1.67 × 10−5 0.0184 8.762 × 10−4 4.750
4.17 × 10−5 0.0588 8.974 × 10−4 1.525
8.34 × 10−5 0.1002 10.008 × 10−4 0.998
1.04 × 10−4 0.1234 21.668 × 10−4 1.755

The absorbance of the light is related to the analyte concentration via Beer-Lambert law which
defines the relationship between the analyte absorbance and its concentration as;

A = ε × b × c (1)

where A is the absorbance, b is the path length in cm and c is the concentration in M. ε is the molar
absorptivity and has the units M−1·cm−1.

As shown in Table 3, the employed concentration range resides between the limits where there
is linear adherence between concentration and absorbance. The limits are 1.00 µM and 0.0100 M,
deviation from linearity is usually observed below 1.00 × 10−6 M due to scarcity of the absorbing
species, as a consequence, negative deviation is observed. Above 1.00 × 10−2 M, the solution becomes
opaque, therefore a significant portion of the incident light is reflected rather than being absorbed
and negative deviation from linearity is reported [35]. Th e average absorbance and nitrite solution
concentration (in ppm) are plotted to form the calibration curve as in Figure 5.
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The concentration of nitrite in the minced meat samples is first found from the obtained correlation
in Figure 5, then the concentration in mol/L is converted to ppm; a sample calculation is presented
below to clarify the steps followed.

For Sharawi Extra Corned Beef, the reported absorbance for the very first trial is 0.02019 (Table A1).
The corresponding concentration in molarity could be calculated from the linear equation that correlates
absorbance to concentration in molarity as:

Concentration = (A − 0.0029)/1172.9
= (0.02019 − 0.0029)/1172.9 = 1.474 × 10−5 M
= 1.474 × 10−5 mol nitrite/L solution
The next step is the conversion of the calculated nitrite in molarity to the nitrite content in the

meat sample in ppm which can be done as follow;
(1.474 × 10−5 moL nitrite/L solution) × (46.01g nitrite/1 moL nitrite) × (0.10 L solution/5.00 g

meat) × (106 µg nitrite/1 g meat) = 13.56 µg nitrite/1g meat = 13.56 ppm.
The correlation coefficient (R2), the limit of detection (LOD) and the limit of quantitation (LOQ)

which are considered as the three key statistical parameters, are calculated in terms of absorbance and
concentration using Beer’s Law. The LOD and LOQ can be calculated as:

LOD = 3σ/m (2)

LOQ = 10σ/m (3)

where σ is the standard deviation and m is the slope of the line that correlates the absorbance values to
their corresponding concentrations. Table 4 shows the statistical parameters obtained.

Table 4. The reported statistical parameters.

Absorbance
for Blank

Average Absorbance of
the Blank (N = 4)

Standard Deviation of
the Blank Absorbance

STDEV/Average
Abs. (%) LOD (ppm) LOQ (ppm)

9.00 × 10−5

9.22 × 10−5 5.252 × 10−6 5.698 0.0124 0.0412
1.00 × 10−4

9.00 × 10−5

8.87 × 10−5

The key improvement in this work when compared to the work published in the literature could
be attributed to a combination of two factors, the absence of cadmium powder which is used for nitrate
to nitrite reduction. That powder leaches through the channel and reduces the obtained sensitivity.
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The other factor is the solid phase extraction technique used in this study, which is responsible for
the removal of most of the contaminants and interfering agents that may reduce the system ability to
detect the nitrite. As a consequence, 6.3 times enhancement in the limit of detection is achieved with a
LOD of 1.24 × 10−2 ppm [17].

The reported percentage standard deviation (5.698%) could be attributed to the utilization of
a single beam setup. Usually absorbance measurements are performed using either single beam
or double beam configuration, with preference for the double beam design since it is based on the
continuous comparison of the signal obtained from the absorbing analyte and its blank or;

A = log(Po/P) = log(Vo/V) (4)

where Po and P are power intensities of the signals transmitted from the blank (analyte free solution)
and the analyte solution, respectively. As a consequence, any source fluctuations (from the LED in
this study) will affect both signals to the same extent. In single beam devices, the analyte signal is
compared with that taken at beginning of the spectrometric measurements, therefore, any disturbance
in the radiant intensity could not be accounted for, during course of the measurements.

3.2. Nitrite content detected in meat sample using Lab on Chip (LOC)

The nitrite content of seven different processed meat samples purchased from the local market is
evaluated based on the obtained calibration curve where each sample is tested 10 times as shown in
Appendix A. Table 5 shows the average nitrite concentration in the tested samples. It can be concluded
from Table 5 that the nitrite levels in all of the tested samples are within the acceptable range (below
150 ppm) and so the consumption of the analyzed processed meat samples is safe and has no negative
impact on human health.

Table 5. The nitrite detected in various meat samples using the Lab on Chip (LOC).

Brand Average [NO2
−] (ppm) STDEV [NO2

−] (ppm)

Toulkarem Roast Chicken Breast 8.82 0.474
Siniora Roast Beef Shoulder 10.79 0.168

Siniora Pastrami 13.59 0.281
Siniora Salami 19.04 0.200

Siniora Italian Roast Beef 5.89 0.218
Zwan Chicken Luncheon Meat 6.83 0.296

Sharawi Extra Corned Beef 14.77 0.774

As shown in Table 5, the detected nitrite content varies from 5.89 ppm to 19.04 ppm. Variation
in the obtained numerical values not only depends on amount of the nitrite added during course of
the curing, but also on nature of the analyzed meat and the extraction approach. Practically, solid
phase extraction of NO2

− from dehydrated samples such as salami was more convenient than that
of the rest of the sample because of the low moist content, therefore, well chopped meat samples
were obtained from mincing of the salami sample, that is then sonicated and treated according to the
procedure mentioned in the experimental section. As a consequence, almost all of the nitrite content
could be extracted from the salami sample. In this context, it is worth it to mention that salami is
usually cured with a relatively high amount of sodium nitrite to elongate its shelf life since it is usually
kept at ambient conditions.

4. Conclusions and Future Work

Nitrite has been used as an additive to plenty of products in the last few centuries as a preservative
and as flavor enhancer, however the consumption of excess amount of nitrite causes severe health
issues for humans. Therefore, the measurement of nitrite concentration in human goods using a
low-cost setup is vital. In this work, a homemade lab on a chip setup is designed and fabricated
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to measure the nitrite concentration in various meat samples. The developed detection device is
characterized by its low-cost, effectiveness, small size and portability, which makes it suitable for
measurements conducted in remote research areas and refugee camps. Moreover, a major improvement
over the previous studies is presented in this work where the nitrite detection is carried out without the
use of cadmium powder in addition to the solid phase extraction technique for the meat samples, which
enhanced the limit of detection achieved by more than 6 times. The developed setup is used to test the
nitrite concentration in the processed meat available in the market, where the results show that all the
tested subjects had nitrite concentrations in the safe range and are suitable for human consumption.

For future work, the device can be further developed into a two-beam measuring device so that
the blank and sample absorbance are measured simultaneously instead of first measuring the blank
absorbance followed by the sample absorbance.
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Appendix A

Table A1. The absorbance and the nitirite concentration in the tested meat samples.

Brand Trial Absorbance [NO2
−] (M) [NO2

−] (ppm)

Toulkarem Roast Chicken Breast

1 0.01346 9.003 × 10−6 8.28
2 0.01452 9.907 × 10−6 9.12
3 0.01383 9.319 × 10−6 8.58
4 0.01392 9.396 × 10−6 8.65
5 0.01376 9.259 × 10−6 8.52
6 0.01373 9.234 × 10−6 8.50
7 0.01379 9.285 × 10−6 8.54
8 0.01407 9.523 × 10−6 8.76
9 0.01514 1.044 × 10−5 9.60

10 0.01519 1.048 × 10−5 9.64

Siniora Roast Beef Shoulder

1 0.01694 1.197 × 10−5 11.02
2 0.01701 1.203 × 10−5 11.07
3 0.01687 1.191 × 10−5 10.96
4 0.01665 1.172 × 10−5 10.79
5 0.01658 1.166 × 10−5 10.73
6 0.01659 1.167 × 10−5 10.74
7 0.01652 1.161 × 10−5 10.69
8 0.01641 1.152 × 10−5 10.60
9 0.01647 1.157 × 10−5 10.65

10 0.01645 1.155 × 10−5 10.63

Siniora Pastrami

1 0.02015 1.471 × 10−5 13.53
2 0.02023 1.478 × 10−5 13.60
3 0.02120 1.560 × 10−5 14.36
4 0.02023 1.478 × 10−5 13.60
5 0.02022 1.477 × 10−5 13.59
6 0.02009 1.466 × 10−5 13.49
7 0.01997 1.455 × 10−5 13.39
8 0.02002 1.460 × 10−5 13.43
9 0.02007 1.464 × 10−5 13.47

10 0.01999 1.457 × 10−5 13.41
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Table A1. Cont.

Brand Trial Absorbance [NO2
−] (M) [NO2

−] (ppm)

Siniora Salami

1 0.02745 2.093 × 10−5 19.26
2 0.02747 2.095 × 10−5 19.28
3 0.02745 2.093 × 10−5 19.26
4 0.02735 2.085 × 10−5 19.18
5 0.02719 2.071 × 10−5 19.06
6 0.02707 2.061 × 10−5 18.96
7 0.02696 2.051 × 10−5 18.88
8 0.02683 2.040 × 10−5 18.77
9 0.02705 2.059 × 10−5 18.95

10 0.02682 2.039 × 10−5 18.77

Siniora Itialian Roast Beef

1 0.00744 6.343 × 10−6 5.84
2 0.00714 6.087 × 10−6 5.60
3 0.00769 6.556 × 10−6 6.03
4 0.00763 6.505 × 10−6 5.99
5 0.00695 5.925 ×10−6 5.45
6 0.00767 6.539 × 10−6 6.02
7 0.00747 6.369 × 10−6 5.86
8 0.00752 6.411 × 10−6 5.90
9 0.00765 6.522 × 10−6 6.00

10 0.00790 6.735 × 10−6 6.20

Zwan Chicken Luncheon Meat

1 0.01114 7.025 × 10−6 6.46
2 0.01142 7.264 × 10−6 6.68
3 0.01190 7.673 × 10−6 7.06
4 0.01117 7.051 × 10−6 6.49
5 0.01157 7.392 × 10−6 6.80
6 0.01227 7.989 × 10−6 7.35
7 0.01152 7.349 × 10−6 6.76
8 0.01170 7.503 × 10−6 6.90
9 0.01207 7.818 × 10−6 7.19

10 0.01131 7.170 × 10−6 6.60

Sharawi Extra Corned Beef

1 0.02019 1.474 × 10−5 13.56
2 0.02068 1.516 × 10−5 13.95
3 0.02131 1.570 × 10−5 14.44
4 0.02161 1.595 × 10−5 14.68
5 0.02294 1.709 × 10−5 15.72
6 0.02202 1.630 × 10−5 15.00
7 0.02077 1.524 × 10−5 14.02
8 0.02286 1.702 × 10−5 15.66
9 0.02288 1.703 × 10−5 15.68

10 0.02194 1.623 × 10−5 14.94
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