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Dietary fibers impact gut colonic health, through the production of short-chain fatty
acids. A low-fiber diet has been linked to lower bacterial diversity, obesity, type
2 diabetes, and promotion of mucosal pathogens. Glycoside hydrolases (GHs) are
important enzymes involved in the bacterial catabolism of fiber into short-chain
fatty acids. However, the GH involved in glycan breakdown (adhesion, hydrolysis,
and fermentation) are organized in polysaccharide utilization loci (PUL) with complex
modularity. Our goal was to explore how the capacity of strains, from the Bacteroidetes
phylum, to grow on fiber could be predicted from their genome sequences. We
designed an in silico pipeline called FiberGrowth and independently validated it for
seven different fibers, on 28 genomes from Bacteroidetes-type strains. To do so, we
compared the existing GH annotation tools and built PUL models by using published
growth and gene expression data. FiberGrowth’s prediction performance in terms of
true positive rate (TPR) and false positive rate (FPR) strongly depended on available
data and fiber: arabinoxylan (TPR: 0.89 and FPR: 0), inulin (0.95 and 0.33), heparin
(0.8 and 0.22) laminarin (0.38 and 0.17), levan (0.3 and 0.06), mucus (0.13 and 0.38),
and starch (0.73 and 0.41). Being able to better predict fiber breakdown by bacterial
strains would help to understand their impact on human nutrition and health. Assuming
further gene expression experiment along with discoveries on structural analysis, we
hope computational tools like FiberGrowth will help researchers prioritize and design
in vitro experiments.

Keywords: PUL, human gut bacteria, fiber, prebiotics, annotation, glycosyl hydrolase, growth prediction,
Bacteroidetes

INTRODUCTION

The human large intestine supports an extremely dense and diverse microbial community—up to
100 trillion individuals—known as the gut microbiota (Bäckhed et al., 2005). Over the last decade,
the microbiome has been shown to play an important role in human health, and numerous studies
have documented the link between microbiota composition and metabolic diseases, such as type 2
diabetes (T2D) (Qin et al., 2012), obesity, colorectal cancer (Thomas et al., 2019), immune response
to treatment (Tanoue et al., 2019), and inflammatory bowel diseases such as Crohn’s disease
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(Henke et al., 2019), and also athletic performance (Scheiman
et al., 2019). Microbial dysbiosis has been correlated to modern
lifestyle, environmental parameters, medication, and western
diet (Mosca et al., 2016). Indeed, one of the main drivers of
microbiota composition has been shown to be diet, with long-
term differences and fast responses to drastic diet changes, both
in the metagenome and in the transcriptome (Filippo et al.,
2010; David et al., 2013; Tap et al., 2015). One of the parameters
playing a part in the booming number of individuals affected by
metabolic disorders is the reduction of polysaccharide diversity
in the day-to-day diet. As an example, migration from a non-
Western country to the United States has been associated with
immediate loss of gut microbiome diversity and function (Vangay
et al., 2018). The mechanism of action being the depletion of
dietary fibers—a nutrient category that includes a broad array
of polysaccharides that are not digestible by human enzymes—
in industrialized countries’ diet (Burkitt et al., 1972; Faith et al.,
2011; Sonnenburg and Sonnenburg, 2014; Zmora et al., 2018).

However, the responses to a given diet are characterized by
a large and not-yet-understood individual variability (Leshem
et al., 2020) that complicates the design of specific diets or
targeted foods and the understanding of glycan breakdown.
The human microbiota produces complementary enzymes
enabling the depolymerization and hydrolysis of dietary
polysaccharides into sugars that can further be fermented
into short-chain fatty acids (SCFAs). The enzymes completing
this task, named carbohydrate-active enzymes (CAZymes),
are involved in complex metabolic networks for the synthesis
[glycosyltransferases (GTs)], degradation [glycoside hydrolases
(GHs), polysaccharide lyases (PLs), carbohydrate esterases
(CEs), and enzymes for the auxiliary activities (AAs)], and
recognition [carbohydrate-binding module (CBM)] of all the
carbohydrates on Earth. CAZymes are found in all living
organisms (typically 1–3% of the gene content) and are
particularly abundant (more than 3% of the gene content) in
plants and microbes, e.g., Bacteroides thetaiotaomicron encodes
for 391 CAZymes, which represent 8.2% of its genomic/gene
content. In humans eating more fiber for 5 days, the expression
of GH related to dietary fiber increased while mucus degrading
GH were downregulated (Tap et al., 2015). Another argument
supporting the link between CAZyme gene presence and
strains’ metabolic capacities is the trend between CAZyme gene
count and diversity, being almost a classifier of the bacterial
genomes’ phylogeny (El Kaoutari et al., 2013). CAZyme gene
expression was demonstrated in vitro using RNA-seq when
strains were grown on specific polysaccharides (Rey et al., 2010;
Martens et al., 2011; Scott et al., 2011). However, except for
the Bacteroidetes phylum, there are still very few enzymatic
systems being described and characterized. Annotating the
glycosyl hydrolase genes and their loci organization/synteny is
mandatory to characterize the human gut microbial capacity to
breakdown glycans. Today, the CAZyme database of sequences
and subfamilies is a reference for such genes. The database is
built by an academic laboratory using manual expert editing
of the annotation (Cantarel et al., 2008), while an open-source
annotation tool called dbCAN is also available (Yin et al., 2012;
Zhang et al., 2018).

Annotating CAZyme genes is not an easy task due to the
modularity of the gene structure (Cantarel et al., 2008). Beyond
difficulties to annotate CAZyme genes, the practical question
to further investigate the link between the metabolic disorders
(phenotype-level) and the genomic content of the microbiome
is still an open question. Several publications reported that
the CAZyme genes’ abundance in genomes could account for
a richer metabolic network able to degrade different fibers
or carbohydrates. Despite the link between specific GH and
specific fibers documented by several authors (Zhao et al.,
2018; Kovatcheva-Datchary et al., 2019), a consistent and
complete list of CAZyme genes associated to a specific fiber is
currently missing to any newcomer willing to understand the
metabolic capacities of a strain from its genome sequence (as a
starting point).

In addition to a complicated underlying link between
carbohydrate breakdown and specific CAZy genes, taking into
account the polysaccharide utilization loci (PUL) appears critical
to understand the capacity of strains to hydrolase carbohydrates,
in particular for the Bacteroidetes (Lapébie et al., 2019).
Specifically, within the Bacteroidetes phylum, PULs are reported
to be the genomic area that encodes the capacity to attach,
degrade the fiber, and import oligomers. The term PUL was
first coined by Bjursell et al. (2006) to describe clusters of
colocalized, coregulated genes that contain functions such as
detection, sequestration, enzymatic digestion, and transport of
complex carbohydrates (Martens et al., 2009; Grondin et al.,
2017). Indeed, the PULs encode a complement of cell surface
glycan-binding proteins (SGBPs), TonB-dependent transporters
(TBDTs), CAZymes (most frequently GHs and also PLs and
CEs), and carbohydrate sensors/transcriptional regulators. Less
reported in the literature, a similar structure has also been
mentioned for Gram-positives (gpPULs) for butyrate-producing
species belonging to the Firmicutes (Sheridan et al., 2015).
Therefore, glycosyl hydrolases are encoded within operons that
are not taken into account when simply annotating CAZymes.
Currently, obtaining PUL annotation from a genome is not
straightforward, and we found two available published resources.
The PULDB database (Terrapon et al., 2017) of experimentally
and non-experimentally proven PULs in Bacteroidetes is built as
an extension to the CAZy database. The other one is a prediction
tool called PULpy, identifying CAZymes that are co-localized
with susCD gene pairs. The authors present their tool as a
public version of the PULDB algorithm (Stewart et al., 2018).
These current resources have drawbacks for non-experts: the
first database has to be queried with either fibers or known
species. Therefore, it is hardly usable for any new isolated strain.
In addition, some interesting polysaccharides with prebiotic
properties, such as inulin, are missing. The other tool could
help since it provides an algorithm searching for hits similar
to PULDB. However, the output is a prediction of a potential
PUL with a number referring to the PULDB number and not
specifically to a carbohydrate.

Taking this context into account, the goal of this manuscript is
to attempt to bridge the gap between the microbiome metabolic
capacities and strains’ genomes using a predictive model. Our
approach is based on a simple microbiological standpoint where
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we consider the strains’ ability to grow on a specific carbohydrate
as a measure of their metabolic capacities. This simple proxy
allows us to have a simple experimental measure for which we
suppose the specific genomic content could be predictive of
such capacities. Hence, from a genome sequence, microbiologists
could obtain a prediction of the metabolic capacities of a strain
without having it grown on the fiber. The proof of principle
is based on a benchmark data set that documented the growth
differences of strains on different carbohydrates. We show that
in taking PUL structures into account, our FiberGrowth tool
improves growth prediction in comparison to only relying on
CAZyme annotations of single genes.

MATERIALS AND METHODS

Carbohydrate-Active Enzyme Annotation
Annotation of CAZymes was done using the open-source
dbCAN2 pipeline (Yin et al., 2012; Zhang et al., 2018), which
relies on three different algorithms: (1) hidden Markov models
(HMMER) (Eddy, 2011), (2) alignment (DIAMOND) (Buchfink
et al., 2015), and (3) peptide recognition (Hotpep) (Busk et al.,
2017). The outputs are the genes associated with a CAZy gene
based on each of the three algorithms. We chose to use the
majority consensus rule: when a hit is found by two algorithms
out of the three, then the gene is considered as a CAZy gene.
As expected, the alignment algorithm (DIAMOND) provides
more hits because of the modular structure of GH genes.
In this manuscript, the pipeline dbCAN2 was used with the
default settings.

In addition, we obtained CAZyme annotations from the
CAZy database from B. Henrissat. The annotation was done
in two steps: first, a BLASTP analysis of the predicted ORFs
against the full-length sequences included in the CAZy database
is performed (Cantarel et al., 2008). Second, the remaining
sequences are manually analyzed by both (i) a BLAST search
against individual GH, PL, CE, CBM, and GT modules and
(ii) a HMMER3 search using hidden Markov models built
for each CAZy module family. Raw CAZy annotations are
presented in Supplementary Tables S1, S2. The strain selection
was performed using the available growth dataset used in
this manuscript.

Glycoside Hydrolase Annotation
Comparisons
The comparison between CAZy and dbCAN2 annotations was
performed on 54 genomes on which 87 different GH families
were screened (Supplementary Table S3) on the family level (e.g.,
the subfamily GH43_1 was considered as GH43 family).

Growth Prediction Using Only Glycoside
Hydrolase
To test how growth prediction performs with only one GH,
we gathered such associations from four different publications
(El Kaoutari et al., 2013; Park et al., 2018; Zhao et al., 2018;

Kovatcheva-Datchary et al., 2019). The results are shown in
Supplementary Figure S1.

Building Fiber-Specific Polysaccharide
Utilization Loci Models
PUL models were constructed using CAZyme genes, publicly
available gene expression data, and previously published data
from growth experiments with RNA expression measurements
(Figure 1). In the first step, we created candidate PULs based on
previously published literature showing an association between
CAZymes and fiber metabolism (Supplementary Figure S2;
El Kaoutari et al., 2013; Park et al., 2018; Zhao et al., 2018;
Kovatcheva-Datchary et al., 2019). We then refined the candidate
PULs in analyzing available gene expression data from growth
experiments with fiber-enriched media to refine the gene
composition of PULs (Supplementary Table S4). Co-expressed
neighboring genes of the candidate PULs were added, and genes
without significant change in gene expression were removed.
In addition, the genome sequence of 12 strains in combination
with available growth data (Desai et al., 2016) was used to
identify variations in gene composition and order for each PUL
model. We then retrieved the gene family hidden Markov models
(HMMs) for each gene of the PUL models from Pfam. If no
Pfam annotation was available, we built a custom HMM by
searching NCBI nr (Sayers et al., 2020) for orthologous genes.
The retrieved amino acid sequences were aligned using ClustalW
(default parameters) (Thompson et al., 1994) and HMMs built
using HMMER3 (Eddy, 2011). The PUL model was tested against
the genome from which it was inferred (majority of the PULs
were inferred using the data on B. thetaiotaomicron DSM 2079),
to obtain a positive control that the complete gene cluster was
found. Because of the limited available RNA data, only seven
PULs were built, for arabinoxylan, inulin, heparin, laminarin,
levan, mucus, and starch (Table 1 and Supplementary Table S5
for genes included in each PUL).

Prediction of Polysaccharide Utilization
Loci Using FiberGrowth
The FiberGrowth tool automatically predicts growth using
fiber-specific PULs on a given bacterial genome. As input, it
either takes a genome in fasta format or a gff file with gene
locations together with their amino acid sequences in fasta
format. If only a genome is provided, gene prediction will be
performed using prodigal (Hyatt et al., 2010). In the next step,
members of each fiber-specific reference PUL are identified using
hmmscan of the HMMER package (Eddy, 2011). Based on the
location and function, spatially clustered genes of carbohydrate
active enzymes are determined by performing single linkage
hierarchical clustering on the gene position using Euclidean
distance. PUL candidates are retrieved by using a 5-kb threshold
on the gene distance tree, allowing unannotated genes to be part
of a candidate PUL. In the last step, candidates having all required
core genes are reported (Supplementary Figure S0). Running the
FiberGrowth tool on one bacterial genome takes about 1 min
on a 2.3-GHz Intel Core i9 using one core. FiberGrowth is
implemented in R (R Core Team, 2018) and makes use of the
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FIGURE 1 | FiberGrowth pipeline strategy and proof of concept. The different steps of the pipeline are shown, highlighting the iterations between computing and
integration of microbiology data. The PUL models, once designed, can then be used to process genomes within minutes. See Prediction of Polysaccharide
Utilization Loci Using FiberGrowth in “Materials and Methods” section for additional pipeline specifications.

FIGURE 2 | Number of common and different GH counts obtained by CAZy and dbCAN annotation methods. Annotations were performed on 54 different
Bacteroidetes genomes on which the annotation was performed while screening for 87 different GH families. (A) A similar plot to El Kaoutari et al. (2013) highlighting
a trend between the number of different GH family diversity and the GH total gene counts per genome. (B) A Venn diagram displaying, among all the GH predicted
by dbCAN or CAZy, the number of common ones and different ones. Here, 2,733 genes were identically annotated by the two tools, while the manually curated
CAZy brought 107 different annotations and dbCAN 49 others. Note that CAZy returned more GH genes than dbCAN.

packages data.table (Dowle and Srinivasan, 2019), docopt (de
Jonge, 2020), DT (Xie et al., 2020), gggenes (Wilkins, 2019),
ggplot2 (Wickham, 2016, p. 2), knitr (Xie, 2015), magrittr (Bache
and Wickham, 2014), rhmmer (Arendsee, 2017), rmarkdown
(Allaire et al., 2020), and vroom (Hester and Wickham, 2020).
The FiberGrowth code and PUL models are available on Github
at https://github.com/wholebiome/FiberGrowth.

Validation of FiberGrowth Pipeline With
External Bacterial Growth Datasets
We compared the predictions of FiberGrowth to new external
experimental measures of 28 bacterial strains’ abilities to degrade
a wide variety of dietary and host-derived polysaccharides
performed by Eric Martens (unpublished data, but kindly shared
to benchmark FiberGrowth performance) and from a previous
work (Desai et al., 2016; Supplementary Table S6). Briefly, these

authors documented the growth of 534 strains including 28
types of strains, for which the genome sequence is available,
on several polysaccharides and glycans as sole carbon sources
(n = 2 replicate cultures per glycan substrate). Strains were grown
on (i) a glucose-rich growth medium (PYG), (ii) a carbon-free
minimum medium (PY), and (iii) a minimum medium with a
polysaccharide as the only carbon source (PY + polysaccharide).
The growth (OD600 nm) was recorded every 10 min when cultures
were grown on PY + polysaccharide medium vs. PY medium
only. The custom carbohydrate array was formulated according
to Martens et al. (2011). We transformed the normalized
growth results into a binary table filled with 0’s (no growth)
and 1’s (growth) for each combination of strain and substrate
(Supplementary Table S6). If the normalized growth was above
0.01, the strain was considered able to metabolize the substrate.
Otherwise, the strain was considered not able to degrade
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FIGURE 3 | Polysaccharide utilization loci (PUL) gene models and fiber structures. Gene annotations and organization of each PUL model are shown on the left.
Chemical structures of the associated fibers are drawn on the right.

the substrate. Then, the performance of the pipeline is used
considering the predicted growth and the experimental ones
using indicators such as the true positive rate (TPR—also called
sensitivity) and the false positive rate (FPR), such as

TPR =
Number of true positive predictions

Number of true positive predictions
+Number of false negative prediction

,

FPR =
Number of false positive predictions

Number of false positive predictions
+Number of true negative prediction

.

The TPR and the FPR illustrate different properties of a predictor.
For example if the goal is to find at least one strain growing on a
substrate, a low TPR is a good characteristic. In other words, a
predictor with a low TPR labeling a strain as growing ensures a
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FIGURE 4 | Comparison of FiberGrowth PUL-based predictions with experimental growth data for 28 strains from the Bacteroidales family. For each strain, the
prediction and experimental result of growth (green) or absence of growth (black) on different growth media are shown. Dendrogram is calculated on experimental
growth results.

good confidence on this prediction. But, if the goal is rather to
not forget any strain that has a potential to grow on a strain, then
a predictor with a high TPR is preferred.

RESULTS

CAZy and dbCAN Annotation
Comparison
Since two possible strategies exist to annotate glycosyl hydrolases,
the automatic open-source pipeline dbCAN and a manually
curated CAZyme database, we assessed the annotation
differences between them. Fifty-four different Bacteroidetes
genomes were analyzed, on which the annotations were
performed while screening for 87 different GH families. The
majority of the predictions regarding GH gene counts were
identical and the diversity of the GH was evidenced by the
large number of GH detected per genome, ranging from 100
to 400 (Figure 2A). However, the two annotation tools showed
discrepancies. On a total of 2,889 genes detected on the 54
different genomes, 107 are only detected by CAZy and 49 only
by dbCAN (Figure 2B). Beyond the gene count differences, it is
noteworthy that, under our settings, some GH were not detected
by one of the tools, and it depends on the GH family. For
example, the CAZy detected GH24 and GH142 while dbCAN did
not. Conversely, GH99 was annotated by dbCAN whereas CAZy
was not, for this dataset. A detailed visualization is available on
Supplementary Figure S3. The details of the GH families found
by only one of the methods can be found in Supplementary

Table S3. Using only the glycosyl hydrolase count to predict
growth did not lead to meaningful results, with too many false
positives (see Supplementary Figures S3, S4).

FiberGrowth Prediction: Proof of
Concept and Performance
We designed seven fiber-specific PUL models that are not specific
to a certain genome and thus enable growth prediction on newly
sequenced strains. The number of genes taken into account for
a PUL model varies between 7 and 13, depending on the fiber
(Figure 3 and Supplementary Table S5).

To determine the predictive performance of our method, we
compared the predictions with the experimental data for 28
strains, grown on PYG medium with or without fiber (Figure 4).
One striking characteristic of the experimental growth data was
that, besides inulin, very few strains grew on certain fibers,
leading to table results with many 0’s. Furthermore, based on our
preliminary 0.1 OD600 nm threshold, for Bacteroides intestinalis,
no growth at all was observed in the experimental data, and
Bacteroides vulgatus, Bacteroides caccae, Bacteroides massiliensis,
and Bacteroides fragilis only grew on one substrate. To better fit
the experimental results, a 0.01 OD600−nm threshold was used.
Aware of these limits originating from the experimental data,
we calculated FiberGrowth performance for each PUL model
(Figure 4 and Table 1).

The best performance was measured for arabinoxylan with a
TPR of 0.89 and FPR of 0. Only nine strains grew on arabinoxylan
and only one false negative was detected (for Bacteroides
cellulosilyticus). Our model, designed based on Martens et al.
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TABLE 1 | Performance of the FiberGrowth tool: the growth predictions for 28
genomes growing on seven fibers were compared to experimental data.

Fiber True
positive

rate (TPR)

False
positive

rate (FPR)

Precision Recall Total_data

Arabinoxylan 0.89 0.00 1.00 0.89 28

Heparin 0.80 0.22 0.67 0.8 28

Inulin 0.95 0.33 0.91 0.95 28

Laminarin 0.38 0.17 0.75 0.38 28

Levan 0.30 0.06 0.75 0.3 28

Mucin 0.13 0.38 0.29 0.13 28

Starch 0.73 0.41 0.53 0.73 28

(2008), takes into account a total 10 genes from the operon,
including the regulator of a two-component system (Figure 3).
Here, the information is taken from Figure 2 (expression data for
genes bacova_03417, bacova_03421-36, bacova_03437-40, and
bacova_03448-50) and Supplementary Table S2 (gives more
precisely the necessary three enzymes) with Bacteroides ovatus
gene information. Note that in this reference, experimental data
for B. thetaiotaomicron is reported with no growth and B. ovatus
to grow due to the PUL expression, which is confirmed by the
prediction (see Figure 4).

For heparin (TPR: 0.8; FPR: 0.22), the core genes GH88, PL15,
and PL13 and a sulfatase are part of the model. Adjacent to it,
the antisense PL13 is also part of the model and mostly adapted
to high sulfate regions. Both PL13 and PL12, not included in
the model, produce small oligosaccharides that only the exo-
processive lyase PL15 is able to degrade. GH88 belongs to a
family of enzymes that cleave the glycosidic linkage between the
14,5-unsaturated UA and GlcN/GlcNAc disaccharides.

The model for inulin showed the highest sensitivity (TPR:
0.95) with a FPR of 0.33. This was despite very opposite growth
results compared to arabinoxylan, since 22/28 strains grew
on inulin. The inulin PUL model (Figure 3) was built from
Martens et al. (2011), using four protein-encoding genes: GH32,
a fructokinase domain, a transporter, susC/susD homolog, and
a susHT domain. The growth experiment RNA used was from
B. thetaiotaomicron.

Levan, with a structure similar to inulin and a PUL
composition that shared GH32 but included a specific levanase,
led to not only a low sensitivity (TPR: 0.3) but also a low
number of false positives (FPR: 0.06). The model accurately
predicted growth for Parabacteroides, Odoribacteriaceae, and
Dysgonomonadaceae but over-predicted growth for most
Bacteroides genomes.

Performance of the mucin model was very low (TPR: 0.13;
FPR: 0.38). The PUL model, inferred from gene expression
data of strains growing on mucin, comprises 11 genes with
GH18, GH16, and GH92. However, typical mucus-associated
GH are missing (Figure 3). From a phylogenetic standpoint, it
is worth noting that the model predictions were worse for the
non-Bacteroides genomes, being wrong for all Parabacteroides
genomes and Dysgonomonas mossi.

Laminarin (β1-3 and β1-6−glucan) found in brown algae
is a glycan storage. The prediction performance was very low

(TPR: 0.38; FPR: 0.17) based on the genes selected for the PUL.
Similarly to mucin, it is noteworthy that the predictions were
all wrong for the eight non-Bacteroides genomes, which all grew
on this substrate.

Surprisingly, the starch model led to a high sensitivity (TPR:
0.75) with a FPR of 0.41 as trade-off. This PUL model was
designed using a widely recognized set of genes, consistent
among the literature: the amylase GH13 and GH17 and the
susD-RagB, susF-SusE, susR, and TonB. The model was trained
using Bt transcriptomics data. However, the visualization of the
new PUL shown in Figure 5 highlighted the lack of synteny
of the starch PUL between closely related genomes. The model
wrongly predicted growth of Bacteroides dorei, B. intestinalis,
B. massiliensis, Bacteroides plebeius, B. vulgatus, Parabacteroides
goldsteinii, and Parabacteroides gordonii. On the opposite, it did
not predict growth of five strains B. fragilis, Bacteroides fluxus,
Bacteroides nordii, Bacteroides salyersae, and Dysgomonas mosslii.

Some insights can be obtained by taking into consideration
the taxonomic differences of the genomes analyzed. From
the 28 genomes belonging to the Bacteroidales order, eight
were from different families than the Bacteroidaceae. For the
five Parabacteroides genomes analyzed, the model accurately
predicted growth on inulin for all of them and also on levan,
heparin, and starch for each of the two strains growing on it. The
five strains grew on laminarin and mucin, but the model missed
those five positive growth results. Parabacteroides johnsonii
appeared separated on the clustering dendrogram because of
its results on starch and growth on heparin but no growth
on inulin. Interestingly, for the less studied Dysgonomonas
genus (Dysgonomonadaceae), the strains Dysgonomonas gadei
and Dysgonomonas mossii grew on three and four fibers and
were accurately predicted, except again for mucin for G. gadei
and for starch for D. mossii. Finally, Odoribacter splanchnicus
(Odoribacteraceae) did not grow on any substrates except inulin
and laminarin, and both were wrongly predicted by the model.

DISCUSSION

In this manuscript, we designed a pipeline to predict the growth
of Bacteroidetes species from the human gut on seven different
polysaccharides using a combination of in silico modeling and
validation with microbiology data. To our knowledge, our work
provides the first integrated pipeline to use PUL to investigate the
growth of human gut strains on specific polysaccharides.

PUL models have already been described by Terrapon
et al. (2015), but the approach is different, centered on
specific genomes to provide a unique model based on
previous biochemical characterizations of the enzymes and
proteins involved. For taxonomic assignment and phylogenetic
placement of existing GH or new GH, the SACCHARIS pipeline
automatically annotates GH and provides accurate phylogenetic
functional trees (Jones et al., 2018).

Our hypothesis was that, by using growth and transcriptomics
data from the literature, new fiber-specific PUL models could
be built and assessed on a distinct growth data set. Hence, the
integrated pipeline, including a new automated annotation of
PULs, could provide microbiologists, in a minute, with growth
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FIGURE 5 | Amylase PUL visualization across five Bacteroides genomes. For each strain, only the most complete PUL is represented. The reference to build the
starch model came from Bacteroides thetaiotaomicron. This representation highlights the lack of synteny of the starch PUL within the genomes of strains belonging
to the same genus.

predictions from genome sequences. The pipeline showed very
different accuracies, depending on the fiber, from excellent, up to
96%, to 38% for mucin, close to a random association.

Despite building a PUL model that followed a good agreement
within the scientific community for the GH and associated genes
involved in starch hydrolysis, and using available transcriptomics
data to build the model, it performed poorly compared to the
other models. Anderson and Salyers (1989) first reported in the
late 80s that the breakdown of starch by B. thetaiotaomicron
involved outer membrane bound-attached starch-binding sites
and periplasmic starch-degrading enzymes, rather than only
extracellular enzymes. Since then, starch catabolism has been
largely characterized, and Foley et al. (2016) described the Sus
operon as the model system for starch uptake in Bacteroidetes.
The complexity and substrates’ diversity of starch-related
polysaccharides hardly fit the CAZyme database. GH13 displays
a wide phylogenetic diversity (as described by Stam et al., 2007)
that is now classified under GH13 subfamilies in CAZyme. The
visualization of the genes’ organization of our PUL models for few
Bacteroides genomes is consistent with the large diversity and lack

of synteny between close genomes. In the in vitro experiments we
considered, starch was from potato starch (Eric Martens’ data),
and the results would be different from a different origin or
amylose/amylopectin ratio. Furthermore, starch can be found
under distinct biochemical structures, in in vitro experiments
(RS2 or RS3) and in food: not only starch as found in fruits but
also the different resistant starch structures, formed after cooking
and cooling down starchy food, or chemically processed resistant
starch (RS4). In humans and in pigs, the microbial community
composition was found to be linked to the starch structure,
emphasizing that variability can be explored and understood only
through the use of starches with highly characterized structures
(Warren et al., 2018). It is then possible to speculate that
other uncharacterized operons for starch breakdown exist in
Bacteroidetes genomes, and, as a matter of fact, we detected
incomplete PUL, where annotations are missing. Furthermore,
starch is a carbohydrate storage in plants, hence, relative to the
global evolution, has not been consumed as cooked by humans
until recently. Whether or not this large diversity of amylase
systems reflects recent evolution remains to be determined. It
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is worth noting that in other bacterial phyla, genomic systems
described for the breakdown of starch differ from the common
set of genes typically reported and used in our model. It has
been recently demonstrated that in Ruminococcus bromii L2-63
a cell surface amylosome and sporulation capacity exist for starch
breakdown in strains from the human and rumen microbiota
(Mukhopadhya et al., 2017).

Laminarin is also a storage glucan and the growth prediction
was low. The performance was similar to the one for starch,
despite a very different situation: our PUL model was inadequate
since, based on the methodology and annotation, using GH3 and
GH16, we might not have found an appropriate marker GH.
However, a seven-gene PUL has been described for Bacteroides
uniformis, which includes CBM6/GH3, GH158, and GH16.

Devillé et al. (2007) reported that laminarin modulated
the microbiome and increased propionate and butyrate in
fermenters, pointing toward an effect on not only Bacteroidetes
but also Firmicutes. Furthermore, it modulated mucus
composition in rats’ gastrointestinal tract (Devillé et al.,
2007). It was recently shown by another research group (Strain
et al., 2019) that an addition of laminarin into digesters increased
Lachnospiraceae, compared to fructooligosaccharide (FOS)
and cellulose. The mucin model led to the lowest prediction
performance. Interestingly seven out of the eight non-Bacteroides
genomes led to a false prediction. It was built using PULDB
and included 11 genes, but several key GH involved in mucin
breakdown were not accounted for. The PUL model was based
on transcriptomics data, and because of the complexity of mucin,
the GH genes over-expressed at this time point were limited.
Another issue is cDNA annotation. For instance, one of the main
causes of misannotation of the fuc genes is their similarity to
the genes for rhamnose utilization. Both the FucK and RhaB
proteins belong to the FGGY family of carbohydrate kinases
(Pfam: PF02782).

Mucin used in experiments is very frequently pig gastric
mucin type III. However, mucin composition depends upon the
individual and the GI tract segment, and its complexity has only
recently been acknowledged. Mucin is at a crossroad between
dietary substrates and human secretion. Indeed, using droplet
microfluidics, we recently demonstrated and characterized a new
GH enzyme, active on human gangliosides, with similar structure
to human mucin and milk oligosides and overrepresented
in IBD patients’ metagenomes (Tauzin et al., 2020). The
mucin composition and degradation pathways still remain
to be elucidated.

Interestingly, the link between mucin and heparin has been
shown in vivo: the expression of heparin PUL in mice colonized
with B. thetaiotaomicron (B. theta) could only be observed in
bacteria occupying the mucosal layer of the gastrointestinal tract,
suggesting that in vivo mucus could be a source of heparin in vivo
(Li et al., 2015). Furthermore, GH88 included in our heparin
PUL model plays a key role in bacteria–mucus interaction:
when mice were co-colonized with six other Bacteroidetes
strains in addition to the B. theta mutant, the B. theta GH88–
mutant was much lower in abundance than in mono-colonized
mice, indicating that the ability to degrade heparin is under
increased selection pressure for B. theta in the presence of
other Bacteroidetes. Heparin is an interesting glycan: it is an

anticoagulant drug, with a structure of the glycosaminoglycan
family of carbohydrates, bearing similarities with mucin, since
the most common disaccharide unit is composed of a 2-O-
sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine.
As a matter of fact, heparins from most commercial preparations
originate from beef lung or porcine intestinal mucosa. Our
model led to a good growth prediction, and interestingly, a
posteriori, we had obtained a PUL structure very similar to the
one built by Joglekar et al. (2018). The authors documented the
complex synteny for heparin PULs within the Bacteroides genus:
for example, in Bacteroides eggerthii and Bacteroides galinarium
genomes, another heparin PUL exists, with PL15 but not PL13.
The prediction from our model could be expected to be low for
strains that do not encode for a PL13 or PL15, such as B. eggerthii
DSM20697, B. galinarium DSM 18171, B. stercoris ATCC 43183,
and B. YIT 12058. Because the human epithelium contains high
amounts of heparin sulfate, the biologically relevant glycan PUL
is heparin sulfate, hence with PL13 as a priority gene to target. We
did not include GH95, involved in mucin degradation, because its
α-L-fucosidase activity is only found in very few heparin PULs, in
some B. thetaiotaomicron, B. ovatus, and B. finegoldii genomes.

Growth prediction for inulin shows good performance. FOS
are short-chain oligosaccharides that are generated by hydrolysis
of the polysaccharide inulin, which is composed of 2–60 fructose
monomers. We presented the results of inulin and levan next
to each other because they represent two distinct glycosidic
linkages (2–6 in levan and 2–1 in inulin) that are present
in the fructan homopolymers and that are available to the
gut microbiota. Inulin is found in different nutrients such as
wheat, onion, garlic, and banana and is the most common
used fiber in prebiotics that, when used in combination with
other probiotics, is able to promote the growth of specific
beneficial gut bacteria such as bifidobacteria (Gibson et al.,
1995). GH91, an inulin lyase, has been described as involved
in the hydrolysis of inulin. Interestingly, while GH32 appears
to be always necessary, our results showed that GH91 is not.
A close examination of GH91 indicates that the enzyme activity
releases difructofuranosyl 1,2 23 diamyhide that seems kept
within the cytoplasmic compartment, consistent with the absence
of a signal peptide on the gene sequence (Henrissat, personal
communication). The absence of release of fructose and the
location of the enzymatic activity seem to indicate that GH91 is
not mandatory and that its role might not be on catabolism but
potentially for intra-cytoplasm metabolism or storage.

Recent work by the group of Joglekar et al. (2018) on Bt
strains VPI-5482 (same strain as used in our study) and Bt-
8736 contrasted levan and inulin or fructan operon with GH
phylogenetic trees. They demonstrated that related genetic loci
can encode diversified biochemical pathways in strains from
the same B. thetaiotaomicron species. The presence of GH32,
SGBP, and SusD and SusC-like domain, corresponding to outer
membrane binding proteins, explained the capacity to grow.
Accordingly, in our growth prediction model, B. finegoldii, in the
same phylogenetic cluster as Bt VPI-5482 for the SusC and SusD,
does not grow on inulin. Furthermore, it has been demonstrated
that the presence of the divergent susC/susD gene alone enabled
the hybrid Bt(8736-2) strain to outcompete the wild-type strain
in vivo in mice fed an inulin diet. This pathway does match our
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model, which includes enzymes and carbohydrate-binding and
import proteins with distinct substrate specificities, which could
not have been predicted previously based on sequence data alone.

The discrepancy between databases regarding GH annotation
can be highlighted in the case of levan PUL, looking at the
domain level. Our results showed that taking into account three
GH32 distinct gene copies and a levanase within a PUL model
was sufficient to predict growth on levan, but the model over-
predicted growth in Bacteroides genomes. However, the PUL was
built using transcriptomics data, which raises questions on cross-
annotation of cDNA and genomes. Indeed, Pfam annotation
from the transcriptome provided an N-terminal domain for the
GH32 used in this model, instead of a catalytic domain. One
can predict that the catalytic domain from Pfam would provide
a better performance. Recent work brought some insight onto
the PUL related to inulin or levan metabolism. A closer look at
the inulin/levan- or fructan-associated operon recently described
by Joglekar et al. (2018) confirmed that the specificity for the 2-6
linkage found in levan is from a GH32 cell surface endo-levanase
and an ortholog of BT1761, a surface glycan-binding protein. The
presence of the cell surface levanase of B. thetaiotaomicron VPI-
5482 was critical for the ability of this strain to use the levan. The
authors very elegantly demonstrated how structural differences
present in dietary polysaccharides such as fructans can result in
distinct molecular mechanisms for utilization of these polymers.

Despite obtaining low performance for some fibers, the overall
goal of this analysis is a metabolic functional assessment of the
different strains. We also tested whether an approach involving
the use of GH genes only would be sufficient to obtain a
growth prediction. Several teams applied the following method:
gathering enzymes into functional groups, for example GH23,
GH25, and GH73 being dedicated to peptidoglycan breakdown
and GH13 is dedicated for starch breakdown. A first drawback in
implementing this method into a pipeline is that the attribution of
a function or the link between GH and a substrate or fiber varies
substantially across the literature. For instance, we gathered such
associations from four different publications (El Kaoutari et al.,
2013; Park et al., 2018; Zhao et al., 2018; Kovatcheva-Datchary
et al., 2019) and found that discrepancies can be observed. For
example, GH95 being either associated with mucin degradation
or with cellulose degradation depending on the publication.
Supporting our PUL approach, using GH only led to growth
predictions that were not meaningful.

Several parameters play a part in the model prediction
performance. Both annotation quality and discrepancy between
datasets and gene and enzyme terminology differences have
been a hurdle in designing new PUL models. As shown by
the comparison of GH annotation tools, an accurate annotation
of CAZymes is key to improve prediction performance. Most
automated annotation pipelines for transcriptomic data do not
accurately annotate for GH. Then, the Pfam domain used for
functional domain characterization may easily provide the right
annotation of only one domain of the GH, as we observed for
several PUL where we did not capture the GH catalytic domain.
Another aspect is that our PUL models do not have a size limit, as
long as the distance between neighboring genes annotated as the
same PUL family is less than 5 kb. This is consistent with large
syntenies observed in PULDB. For example, for our PUL amylase

model, B. uniformis PUL is slightly over 6 kb while B. salyersae
PUL reached 10 kb.

False prediction may originate from several reasons including
in vitro conditions or how the model processes growth
data. The PUL models were obviously sensitive to the
growth/OD threshold. For arabinoxylan, the three strains
predicted “no growth” by the model and grew were B. massiliensis,
B. oleiciplinus, and B. merdae. Interestingly, in the four cases
where the model predicted “no growth” and growth was counted
positive based on the model threshold, the OD600−nm recorded
were below 0.1 (B. intestinalis, 0.05; B. johnsonii and B. clarius,
0.06; and B. finegoldii, 0.14). A similar phenomenon happened
for heparin, and a reset growth threshold improved performance.
The growth threshold could be adjusted accordingly for the
different fibers, when more experimental data are available.
However, the experimental growth medium itself influences
growth yield in a strain-to-strain manner that is difficult to
predict. The results would need to be reassessed or taken with
caution if strains were grown in a culture medium that is
different from the reference. The experimental data we used to
measure the pipeline performance were obtained in PY medium.
However, the transcriptomics data used to build the PULs
models were obtained on CM medium, which could account for
differential genes being over-expressed, at the time of sampling,
compared to growth validation data on PY medium. Indeed,
the growth medium may change which genes are prioritized
in the model. It remains to be determined whether this bias
would be more impactful on complex PUL models with large
numbers of genes or complex operon structure where genes, not
co-transcribed, might not be captured in a single transcriptome
time point. The extreme modularity of some PULs indicates that
the conclusions about growth results from one species to another
have to be taken with caution since, like others, we detected
strain-to-strain variations within the same species for inulin
and levan.

The complexity of fiber structures makes the links between
CAZyme genes and functional interpretation very uncertain.
In order to determine the strain capacity to break down
a specific fiber, we linked CAZy genes to a given fiber or
prebiotic. However, this representation has limitations because
(i) the complexity and substrate diversity hardly fit the CAZyme
databases and several families are displaying a wide phylogenetic
diversity, such as amylase GH13 (as described by Stam et al.,
2007) and (ii) certain families can be dedicated to/involved in
different substrates (GH32 targeting inulin and levan as showed
by Sheridan et al., 2015). Different authors reported different
gene and substrate associations. As the gene content is then
associated with functional capacities, it can have far-reaching
consequences on the conclusions and on further applications or
recommendations.

Which experimentations could help refine the pipeline? A
major challenge toward quantifying the degree of redundancy
of CAZymes will be to obtain more in vitro information on
growth and CAZyme expression patterns. Up to now, there are
still very few measurements of purified enzymes to pinpoint the
specific substrate specificity of the CAZymes involved in the
hydrolysis and fermentation of fiber or of the human gut mucus.
We also modeled Firmicutes PULs (Supplementary Figure S5),
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but despite encouraging results, the scarcity of transcriptomics
data available led us to focus on Bacteroidetes.

One way to circumvent these drawbacks or limits is to
obtain massive large datasets performed in the same conditions,
with strains for which the genomes are available. To improve
FiberGrowth pipeline performance, a larger number of strains
should be grown in the exact same conditions. This could be done
using robots under anaerobic chamber, similar to the work by
Zou et al. (2019), leading to > 6,000 isolated strains and 1,520
new genomes sequenced. Note that if more experimental data
become available, it would also be possible to adopt a machine-
learning approach to infer potential PUL rather than having a
deterministic approach such as FiberGrowth.

Another way to increase our capacity to obtain large growth
dataset arises from the recent advances in droplet microfluidic
culture, which can increase the capacity and lower the cost
of purified substrates, to screen for growth on fiber. Villa
et al. (2020) recently demonstrated the potential of microfluidic
droplet assays for comparing the growth rates and functions
of individual bacterial strains isolated from gut microbial
communities. This would be very useful in order to improve
FiberGrowth pipeline on a large number of strains grown in the
exact same conditions.

Interestingly, the authors also investigated how screening for
GH with microfluidics could lead toward the differentiation
of subjects, based on the “fiber profile” being metabolized by
their microbiota. A limit of the characterization of a fiber-
metabolizing potential per microbiota remains the complexity
and modularity of the GH and PUL operons. Predicting the
overall microbiome response to a specific fiber requires to
account for the variability of GH protein structures. However,
an accurate annotation of PUL seems difficult in metagenomics
datasets. We already showed, using 40-kb E. coli fosmid libraries
built from fecal samples or distal ileum mucosa, that glycosyl
hydrolases were modular and subject to recent horizontal gene
transfer, not just between phylogenetically close genomes but
above the genus level (Tasse et al., 2010; Tauzin et al., 2020).
A challenge remains to accurately annotate glycosyl hydrolase
loci in metagenomic data, only feasible with long assembly with
enough coverage.

Predicting individual response to prebiotic or fiber intake, we
previously had demonstrated that the diversity of fiber-rich food
items correlated with microbiome 16S rDNA diversity in young
adults (Tap et al., 2015). Others have demonstrated that a 5-day
regimen with a plant-based diet compared to animal product-
based diet (David et al., 2013) increased microbial diversity.
Mining existing large datasets such as iHMP2 (Proctor et al.,
2019) can be of importance to find correlations between the
breakdown of polymers from human origin, which have been
linked to inflammatory bowel diseases. Those include not only
human mucus and related compounds, such as heparin, but also
human gangliosides. As a growing number of metagenomics
datasets are being generated worldwide, correlations can be
inferred between dietary intake and microbiome composition.
However, most food questionnaires are not designed to
provide indication on specific fiber. Interestingly, new AI-
assisted tools for computing food images on smartphones

may provide a more accurate picture of the ingested fiber
content. There is still a lack of knowledge between a food
element/items and the set of glycosyl hydrolases necessary for
its breakdown and the subsequent production of beneficial
metabolites through fermentation.

CONCLUSION

The diversity of the CAZy gene families involved in the
breakdown of glycans and the extreme modularity of the operons
that encode them, sometimes at the strain level, offer a challenge
to building PUL models that are generic for a given fiber.
However, we demonstrated, for the first time, that a pipeline,
combining automated genome screening and annotation of
PULs, allowed us to build growth prediction models and measure
their accuracies on Bacteroidetes available growth data. Some
PUL models require optimization, while for levan, heparin,
inulin, and arabinoxylan, FiberGrowth pipeline can compute
growth estimations with TPR > 0.8 and FPR < 0.33 in 1 min on
an unannotated genome.

This work also demonstrated that, despite advances in PUL
bioinformatics screening and computing modeling, the lack of
biochemical characterization of glycosyl hydrolases and PUL
systems remains a main issue.
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