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Abstract 

Background:  Large variability in mortality exists in patients of acute respiratory distress syndrome (ARDS), especially 
those with invasive ventilation. The aim of this study was to develop a model to predict risk of in-hospital death in 
ventilated ARDS patients.

Methods:  Ventilated patients with ARDS from two public databases (MIMIC-III and eICU-CRD) were randomly divided 
as training cohort and internal validation cohort. Least absolute shrinkage and selection operator (LASSO) and then 
Logistic regression was used to construct a predictive model with demographic, clinical, laboratory, comorbidities 
and ventilation variables ascertained at first 24 h of ICU admission and invasive ventilation. Our model was externally 
validated using data from another database (MIMIC-IV).

Results:  A total of 1075 adult patients from MIMIC-III and eICU were randomly divided into training cohort (70%, n 
= 752) and internal validation cohort (30%, n = 323). 521 patients were included from MIMIC-IV. From 176 potential 
predictors, 9 independent predictive factors were included in the final model. Five variables were ascertained within 
the first 24 h of ICU admission, including age (OR, 1.02; 95% CI: 1.01–1.03), mean of respiratory rate (OR, 1.04; 95% CI: 
1.01–1.08), the maximum of INR (OR, 1.14; 95% CI: 1.03–1.31) and alveolo-arterial oxygen difference (OR, 1.002; 95% CI: 
1.001–1.003) and the minimum of RDW (OR, 1.17; 95% CI: 1.09–1.27). And four variables were collected within the first 
24 h of invasive ventilation: mean of temperature (OR, 0.70; 95% CI: 0.57–0.86), the maximum of lactate (OR, 1.15; 95% 
CI: 1.09–1.22), the minimum of blood urea nitrogen (OR, 1.02; 95% CI: 1.01–1.03) and white blood cell counts (OR, 1.03; 
95% CI: 1.01–1.06). Our model achieved good discrimination (AUC: 0.77, 95% CI: 0.73–0.80) in training cohort but the 
performance declined in internal (AUC: 0.75, 95% CI: 0.69–0.80) and external validation cohort (0.70, 95% CI: 0.65–0.74) 
and showed modest calibration.

Conclusions:  A risk score based on routinely collected variables at the start of admission to ICU and invasive ventila-
tion can predict mortality of ventilated ARDS patients, with a moderate performance.
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Background
Acute respiratory distress syndrome (ARDS) is an acute 
diffuse inflammatory lung injury, featuring increased 
pulmonary vascular permeability and lung weight 
mechanistically, and clinically hypoxemia and bilat-
eral radiographic opacities [1]. Although numerous 
interventions, for example, low tidal volume ventila-
tion [2] and conservative fluid strategies [3], have been 
employed in the management of ARDS, whose hospital 
mortality remained significantly high in critical illness 
patients in intensive care unit (ICU), especially that of 
invasive ventilation [4]. In addition, the large variability 
in mortality exists in ARDS, which was thought to con-
tribute to indeterminate or conflicting study results in 
most randomized clinical trials in patients with ARDS 
[5].

As risk stratification for ARDS would aid in medi-
cal decision making and clinical trial design, lots of 
effort have been made to develop a model of predict-
ing ARDS-induced/related mortality [6–8]. Sequen-
tial Organ Failure Assessment (SOFA) [9] was initially 
designed for assessing organ dysfunction/failure over 
time, yet it’s also widely adopted for clinical outcome 
prognostication of critical ill patients and those with 
ARDS [10–12]. Other scoring systems, for instance, 
Simplified Acute Physiology Score II (SAPS II) [13], 
Acute Physiology and Chronic Health Evaluation IV 
(APACHE IV) score [14] and Oxford Acute Severity of 
Illness Score (OASIS) [15], not intentionally focused 
on ARDS patients though, have been associated with 
patient outcomes. However, these scoring systems 
failed to provide consistent and accurate predictive 
estimates of the risk of death in patient populations 
with a specific disease process. In addition, some of 
the models above require laborious data collection and 
not easily to be calculated at the bedside. A few previ-
ous studies attempted to establish a prognostic model 
by integrating some predictors of death in ARDS [6–8, 
16], but whose predictive power remain controversial. 
Most of those studies developed their models based on 
the patients participating in clinical trials and receiving 
specific treatments, resulting in failure of external vali-
dation in real-world patients [17].

Currently, there’s no reliable predictive model avail-
able for ARDS patients’ hospital outcomes based on 
data straight from the bedside and the patients’ actual 
condition. The primary aim of this study is to develop a 
clinician-friendly prognostic model incorporating vari-
ables that may be relevant to ARDS prognosis and that 

clinicians could routinely collect and easily calculate to 
predict risk of in-hospital death in ARDS patients with 
invasive mechanical ventilation (IMV).

Methods
Data sources
All data used in the study was extracted from Medi-
cal Information Mart for Intensive Care III (MIMIC-
III) database (v1.4) [18], Medical Information Mart for 
Intensive Care IV (MIMIC-IV) database (v1.0) and eICU 
Collaborative Research Database (eICU-CRD) [19]. The 
MIMIC-III includes unidentified health-related data of 
more than 60,000 ICU stays at Beth Israel Deaconess 
Medical Center (BIDMC) from June 2001 to October 
2012. The MIMIC-IV consists of data of BIDMC from 
2008 to 2019. The eICU-CRD is a multicenter database 
comprising identified health data associated with over 
200,000 ICU encounters from 335 units at 208 hospi-
tals located throughout the US between 2014 and 2015. 
Authors who conduct data acquisition from the data-
bases have completed the course Protecting Human 
Research Participants on the website of National Insti-
tutes of Health and obtained the certification (Record ID: 
28006489) prior to accession. The three databases have 
received ethical approval from the Institutional Review 
Boards (IRBs) at BIDMC and Massachusetts Institute of 
Technology (MIT). As the databases do not contain iden-
tified health information, a waiver of informed consent 
was included in the approval.

Study population
All patients in the MIMIC-III, MIMIC-IV and eICU-
CRD databases that meet the following criteria will be 
included in the study. The inclusion criteria were: (I) 
patients who were 16 years old or more; (II) patients 
diagnosed as ARDS in the first 48 h of ventilation; (III) 
receiving invasive ventilation for at least 48 consecu-
tive hours. As onset of ARDS is acute and our cohort is 
only recently mechanically ventilated patients, patients 
receiving ventilation through a tracheostomy cannula 
were excluded. And patients who were extubated or 
died during the first 48 h were also excluded. Worth 
noticing, only data of the first ICU admission of the 
first hospitalization were analyzed. The subjects pooled 
from MIMIC-III and eICU databases were randomly 
divided into the training set (70%) to develop the model 
and the internal validation set (30%) to test the perfor-
mance of the model. Cohort extracted from MIMIC-
IV database according to the same inclusion criteria of 

Keywords:  Acute respiratory distress syndrome, Database, Mortality, Prediction, Ventilation



Page 3 of 11Ye et al. BMC Pulmonary Medicine          (2022) 22:268 	

MIMIC-III and eICU was served as the external vali-
dation cohort. In MIMIC-IV, only data between 2014 
and 2019 were included to avoid data duplication with 
MIMIC-III.

Data extraction
Structured Query Language (SQL) based on Post-
greSQL tools (version 9.6) were used for data extrac-
tion. Considering patients from MIMIC-III were 
admitted before publication of Berlin definition, pres-
ence of the ARDS in the first 48 h of ventilation was 
identified according to the Berlin definition[1] with 
the SQL code published by PROVE Network Inves-
tigators [20]. As the patients from eICU-CRD and 
MIMIC-IV were admitted at least one year after pub-
lication of Berlin definition, we hypothesized patients 
would be diagnosed as ARDS according to Berlin defi-
nition and identified ARDS with International Classi-
fication of Diseases (ICD) in the databases. Following 
demographic data were extracted: age, gender, ethnic-
ity, weight, height, and body mass index (BMI) at the 
first ICU admission. Medical history included num-
ber of comorbidities, asthma, congestive heart failure 
(CHF), atrial fibrillation (AFIB), chronic renal disease, 
liver disease, chronic obstructive pulmonary disease, 
coronary artery disease (CAD), diabetes, hyperten-
sion, stroke, and malignancy. Information of diagnosis 
was also extracted for exploring the etiology of ARDS 
by classifying ARDS into direct (pulmonary) or indirect 
(extrapulmonary) ARDS according to previous studies 
[21, 22]. The usage of vasopressor within the first 24 h 
of ICU admission was collected. The score including 
SAPS II in MIMIC-III, APACHE IV in eICU, OASIS 
and SOFA in the three databases were calculated using 
the original data. Age, PaO2/FiO2, and Plateau Pres-
sure Score (APPS) [8] were also calculated. Then, we 
collected vital signs of the patients within the first 24 
h of ICU stay and within the first 24 h of IMV, includ-
ing heart rate (HR), systolic blood pressure (SBP), 
diastolic blood pressure (DBP), mean arterial pressure 
(MAP), temperature, respiratory rate and oxyhemo-
globin saturation (SpO2). Afterwards, laboratory val-
ues within the first 24 h of ICU admission and within 
the first 24 h of IMV, such as blood routine examina-
tion, liver and kidney function, blood glucose, and arte-
rial blood gas (ABG) were extracted. Furthermore, the 
ventilator parameters within the first 24 h of IMV were 
also extracted. Owing to the high sampling frequency, 
we use the maximum, minimum and the mean value 
when incorporating the characteristics of vital signs, 
while the related laboratory indicators and ventila-
tor parameters were presented with the maximum and 

minimum. The data of in-hospital death record were 
also extracted.

Statistical analysis
Normally and non-normally distributed continuous 
variables were presented as the mean ± SD and the 
median with interquartile range (IQR) respectively. 
Continuous variables of normal distribution were 
tested by Kolmogorov-Smirnov test. Student’s t-test, 
One-way ANOVA, Mann-Whitney U-test or Kruskal-
Wallis H-test were used to compare continuous data, 
if appropriate. Categorical variables were expressed as 
numbers with percentages and assessed using the Chi-
square (χ2) test or Fisher’s exact test according to differ-
ent sample sizes as proper. The Multivariate Imputation 
by Chained Equations (MICE) package was used for 
imputations of missing data. Variables whose missing 
data more than 30% were excluded from the variable 
selection process.

All patients in the training set were included for vari-
ables selection and risk model development. A total of 
176 variables were finally entered into the selection pro-
cess. Least Absolute Shrinkage and Selection Operatory 
(LASSO) regression was employed to identify the poten-
tial strong predictors. Subsequently, variables identi-
fied by LASSO regression analysis were entered into the 
Logistic regression model and those that were consist-
ently statistically significant were further applied to con-
struct the risk model. A nomogram was used to interpret 
and visualize the risk model.

The risk model was validated in the validation sets. To 
assess the discrimination of the model, the areas under 
the receiver operating characteristic curves (AUROCs) 
for our model and other severity scores were calculated. 
The calibration slope and the Brier score was constructed 
for the evaluation of calibration. Decision curve analysis 
(DCA) [23] was used to determine the clinical usefulness 
of our model by quantifying the net benefits at different 
threshold probabilities. The net benefits were calculated 
by subtracting the proportion of all false-positive patients 
from the proportion of true-positive patients and by 
weighing the relative harm of for-going interventions 
compared with the negative consequences of unneces-
sary intervention. To assess whether the performance 
of our model would be affected by the etiology of ARDS 
and source of patients admitted to hospitals, we further 
compared the model performance between direct ARDS 
and indirect ARDS, as well as the model performance 
between transferred and non-transferred patients.

The data were analyzed with R software (version 4.0.3, 
R Foundation). A two-tailed P < 0.05 was considered sta-
tistically significant.
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Results
Participants and the characteristics of the final cohorts
A total of 1596 patients (535 from MIMIC-III, 521 
from MIMIC-IV and 540 from eICU, respectively) were 
included in the final cohort to be analyzed (Additional 
File 1: Fig. S1). The subjects pooled from MIMIC-III and 

eICU were randomly divided into a training cohort (70%, 
n=752) and an internal validation cohort (30%, n=323). 
Data from MIMIC-IV was used for external validation. In 
the training cohort, the overall in hospital mortality was 
32.7% and 358 (47.6%) patients developed severe ARDS 
within the first 48 h of ventilation. Age, comorbidity of 

Table 1.  Baseline characteristics of the train cohort comparing survived vs non-survived patients

BMI body mass index, CHF chronic heart failure, AFIB atrial fibrillation, COPD chronic obstructive pulmonary disease, CAD coronary artery disease,ARDS Acute 
Respiratory Distress Syndromes, SAPS II Simplified Acute Physiology Score II, SOFA Sequential Organ Failure Assessment, OASIS Oxford Acute Severity of Illness Score, 
APACHE IV Acute Physiology and Chronic Health Evaluation IV, APPS Age, PaO2/FiO2, and Plateau Pressure Score
* ARDS severity: Mild (200 mmHg < PaO2/FiO2 ≤300 mmHg); Moderate (100 < PaO2/FiO2 ≤200 mmHg); Severe (PaO2/FiO2 ≤100 mmHg)

Survivor (n=506) Non-survivor (n=246) P

Age, yr (median [IQR]) 58.19 [46.64, 68.06] 64.25 [55.00, 76.92] <0.001

BMI (median [IQR]) 28.53 [24.10, 35.34] 27.64 [23.73, 33.53] 0.187

Gender(male) 284 (56.1%) 138 (56.1%) >0.999

Comorbidity, n (%)

Asthma 28 (5.5) 10 (4.1) 0.493

CHF 126 (24.9) 71 (28.9) 0.284

AFIB 93 (18.4) 55 (22.4) 0.234

Renal diseases 37 (7.3) 29 (11.8) 0.058

Liver diseases 17 (3.4) 20 (8.1) 0.008

COPD 65 (12.8) 30 (12.2) 0.893

CAD 41 (8.1) 19 (7.7) 0.971

Diabetes 70 (13.8) 32 (13.0) 0.844

Hypertension 120 (23.7) 49 (19.9) 0.281

Stroke 27 (5.3) 16 (6.5) 0.631

Malignancy 53 (10.5) 39 (15.9) 0.046

Number of comorbidities, n (%) 0.297

0 179 (35.4) 66 (26.8)

1 139 (27.5) 76 (30.9)

2 93 (18.4) 49 (19.9)

3 50 (9.9) 35 (14.2)

4 28 (5.5) 13 (5.3)

5 13 (2.6) 4 (1.6)

6 3 (0.6) 2 (0.8)

7 1 (0.2) 1 (0.4)

Vasopressor usage 182 (36.0) 111 (45.1) 0.020

ARDS severity, n (%) * 0.003

Mild 60 (11.9) 28 (11.4)

Moderate 226 (44.7) 80 (32.5)

Severe 220 (43.5) 138 (56.1)

Subgroup of ARDS, n (%) 0.643

Direct (pulmonary) ARDS 325 (64.2) 153 (62.2)

Indirect (extrapulmonary) ARDS 181 (35.6) 93 (37.8)

Severity score

SAPS II (median [IQR]) 41.00 [32.00, 50.00] 49.00 [39.00, 60.00] <0.001

SOFA (median [IQR]) 7.00 [4.00, 9.00] 8.00 [5.00, 11.00] <0.001

OASIS (median [IQR]) 36.00 [31.00, 42.00] 40.00 [34.00, 45.00] <0.001

APACHE IV (median [IQR]) 72.00 [53.00, 91.00] 91.50 [70.75, 114.75] <0.001

APPS (median [IQR]) 6.00 [5.00, 7.00] 6.00 [5.00, 7.00] <0.001
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liver diseases, comorbidity of malignancy, vasopressor 
usage at admission, and severity of ARDS are shown sig-
nificantly different between the deceased patients and the 
survivors in the training cohort (Table  1). Comparisons 
upon vital signs, laboratory test results and urine out-
put within both the first 24 h of ICU and the first 24 h 
of invasive mechanical ventilation between survivors and 
non-survivors in training cohort are shown in Additional 
File 1: Tables S1, S2. Differences in ventilator parameters 
within the first 24 h of ventilation in training cohort are 
included in Table  S2. Characteristics of interval vali-
dation and external validation cohort are presented in 
Table S3 and Table S4, respectively.

Predictors selection and model development
A total of 176 variables measured within the first 24 h 
of ICU admission and within the first 24 h of IMV were 
included in the LASSO regression (Additional File 1: Fig. 
S2). Twelve variables were identified through LASSO 
regression selection as significant predictors of in-hospi-
tal death, including six acquired within the first 24 h after 
admission to ICU: age, mean of respiratory rate, maxi-
mum of international normalized ratio (INR), minimum 
of red blood cell count, minimum of red blood cell dis-
tribution width (RDW) and maximum of alveolo-arterial 
oxygen difference (AaDO2), and six acquired within the 
first 24 h of IMV: mean of temperature, maximum of 
lactate, platelet, mean red cell volume (MCV), and mini-
mum of blood urea nitrogen (BUN) and white blood cell 
count.

Subsequently, these twelve variables were included 
in a Logistic regression model and eventually, nine of 
them outstood as independently statistically significant 
predictors of in-hospital mortality were included in the 
risk model. Five variables were ascertained within the 
first 24 h after ICU admission, including age (OR, 1.02; 
95% CI, 1.01–1.03), mean of respiratory rate (OR, 1.04; 
95% CI, 1.01–1.08), the maximum of INR (OR, 1.14; 95% 
CI, 1.03–1.31) and AaDO2 (OR, 1.002; 95% CI, 1.001–
1.003), and the minimum of RDW (OR, 1.17; 95% CI, 
1.09–1.27). And four factors were measured within the 
first 24 h after start of IMV, including the mean of tem-
perature (OR, 0.70; 95% CI, 0.57-0.86), the maximum of 
lactate (OR, 1.15; 95% CI, 1.09–1.22), the minimum of 
blood urea nitrogen (BUN) (OR, 1.02; 95% CI, 1.01–1.03) 
and white blood counts (OR, 1.03; 95% CI, 1.01–1.06) 
(Table 2). Figure 1 presents the nomogram of our model. 
Our model had a good discrimination (AUC: 0.77; 95% 
CI: 0.73–0.80) in the training cohort, featuring significant 
superiority over SOFA, OASIS, SAPS II, APACHE IV 
and APPS (De Long method, model vs. SOFA: P < 0.001; 
model vs. OASIS: P < 0.001; model vs. SAPS II P < 0.001; 
model vs. APACHE IV: P < 0.001; model vs. APPS P < 

0.001) (Fig.  2a) and good calibration (Calibration slope: 
1.000, P =0.741; Brier score = 0.175) (Fig. 3a).

Model performance
Discrimination and calibration of the model were evalu-
ated in both internal and external validation cohorts. 
Our model remained well-discriminated in the inter-
nal validation cohort (AUC: 0.75, 95% CI: 0.69–0.80), 
which was greater than APACHE IV, SOFA, OASIS 
and APPS (AUC: APACHE IV 0.65; SOFA 0.62; OASIS 
0.63; APPS 0.62; Fig.  2b). Although the discrimination 
was lower than that of SAPS II (AUC: 0.76), no statisti-
cal significance was observed (De Long method, model 
vs. SAPS II P =0.49). In addition, a considerable calibra-
tion was showed in our model (Calibration slope: 0.846; 
Brier score = 0.183) (Fig. 3b). In terms of predicting in-
hospital mortality, the DCA results of our model, SAPS 
II, OASIS, SOFA, APACHE IV and APPS were shown in 
Fig. 4. DCA of our model indicates that if the threshold 
probability of a patient is set between 20% and 60%, then 
the use of our model is more beneficial to patients com-
pared with the extreme situation of mortality of ARDS 
in all patients or none. These findings suggest that our 
model provides a higher net benefit across a reasonably 
wide range of threshold probabilities for predicting mor-
tality of ARDS, and thus has good clinical utility. The 
net benefit of our model was also better than the SAPS 
II, OASIS, SOFA, APACHE IV and APPS in this range. 
We further externally validated our model in a cohort of 
MIMIC-IV and our model outperformed the SAPS II, 
OASIS, SOFA and APPS (Fig. 2c). The AUC of our model 

Table 2  Multivariable logistic regression model for predicting 
hospital mortality in training cohort.

INR international normalized ratio, RDW red blood cell distribution width, AaDO2 
alveolo-arterial oxygen difference, Tempc Body temperature, BUN blood urea 
nitrogen, WBC white blood cell, vent ventilation, max maximum, min minimum. 
Variable name with the prefix of vent means the data was collected within 24 h 
of invasive ventilation

Variables Odd ratio (95% CI) P value

Variables on the first 24 hour of ICU admission

Age 1.02 (1.01–1.03) <0.001

Respiratory rate mean 1.04 (1.01–1.08) 0.027

INR max 1.14 (1.03–1.31) 0.029

RDW min 1.17 (1.09–1.27) <0.001

AaDO2 max 1.002 (1.001–1.003) 0.002

Variables on the first 24 hour of invasive ventilation

vent_Tempc mean 0.70 (0.57–0.86) <0.001

vent_Lactate max 1.15 (1.09–1.22) <0.001

vent_BUN min 1.02 (1.01–1.03) <0.001

vent_WBC min 1.03 (1.01–1.06) 0.021

constant 205.66
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Fig. 1  Nomogram to estimate the risk of mortality in ARDS patients. INR international normalized ratio, RDW red blood cell distribution width, 
AaDO2 alveolo-arterial oxygen difference, Tempc Body temperature, BUN blood urea nitrogen, WBC white blood cell, vent ventilation, max 
maximum, min minimum. Note: Variable name with the prefix of vent means the data was collected within the first 24 h of invasive ventilation

Fig. 2  The ROC curves of our model and other severity scores. a Training cohort; b Internal validation cohort; c External validation cohort. SAPS 
II simplified acute physiology score II, SOFA sequential organ failure assessment, OASIS oxford acute severity of illness score, APACHE IV acute 
physiology and chronic health evaluation IV, APPS Age, PaO2/FiO2, and Plateau Pressure Score
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in external validation was 0.70 (95% CI: 0.65–0.74) with 
a brier score of 0.208 (Fig.  3c). The performance of our 
model in patients of direct ARDS and indirect ARDS is 
shown in Additional File 1: Fig. S3. The performance of 
our model in patients of transferred and non-transferred 
from other hospitals is shown in Additional File 1: Fig. S4.

Discussion
In this study, we developed and externally validated 
a clinical risk model and constructed a nomogram to 
predict the mortality of ventilated ARDS patients with 
LASSO method, which is suitable for the regression of 
high-dimensional data. Our model shows a moderate 
performance in predicting in-hospital mortality specifi-
cally for ventilated ARDS patients. Only nine simple vari-
ables routinely recorded in clinical practice are required 
for the prediction of in-hospital mortality in our model. 
Hence, our model can be easily implemented with the 
nomogram. In the validation cohort, the discrimination 
of our model was comparable to SAPS II and was signifi-
cantly better APACHE IV, SOFA and OASIS.

Mortality prediction in ICU patients has been widely 
investigated in recent years, but the general ICU sever-
ity scores were not sufficient for predicting mortality in 
the population of invasively ventilated ARDS patients 
accurately and reliably. Several studies evaluated scoring 
systems (including APACHE IV, SOFA, APACHE II etc.) 
in ARDS patients, reporting poor to moderate discrimi-
nation for these scores [24–26]. In our study, the AUC 
of APACHE IV, SOFA and OASIS on predicting hospital 
mortality of ventilated ARDS were < 0.65 in internal vali-
dation cohort or external validation cohort, suggesting a 
low discriminatory power. Efforts on predicting mortal-
ity in patients with ARDS had been made by investiga-
tors. The APPS score, with a 9-point scale, incorporated 
the variables of age, plateau pressure and arterial oxygen 

partial pressure to fractional inspired oxygen ratio (PaO2/
FiO2) reached an AUC of 0.80 [8], but its AUC signifi-
cantly decreased to 0.62 in an independent cohort [17], 
which is similar to the performance in our cohort. Zhao 
and colleagues constructed a model combining age, 
APACHE III, surfactant protein D (SP-D) and interleu-
kin-8 (IL-8) for the prediction of ARDS mortality based 
on ALVEOLI cohort [7] and the performance in two 
external cohorts (FACTT and VALID) [27] were com-
parable to our model. However, neither SP-D nor IL-8 
is prosaically tested in clinics, as well as the complicated 
calculation of APACHE III score consisting of a mul-
titude of variables, turning the timely clinical decision 
making into a major challenge for intensivists confront-
ing ARDS patients. Huang et al [28] constructed a model 
based on Random Forest algorithm showed better per-
formance in external validation compared to our model 
(Random Forest vs. Logistic: 0.74 vs. 0.70) but included 
more variables (twelve) than ours. Generally, the perfor-
mance of a scoring system improves as factors increase. 
In addition, Huang et al did not provide a visualized tool 
for evaluating the risk of mortality (nomogram or scoring 
system), which limits its clinical practicability. A system-
atic review [29] showed that regarding clinical prediction 
model with binary outcome, so far, no evidence supports 
that machine learning algorithm performs better than 
traditional Logistic regression in terms of prediction 
ability.

Therefore, we aimed at developing a model with a 
handful of routinely checked variables for mortality 
prediction for the ventilated ARDS patients that can 
be easily worked out by the bedside. Nine independent 
variables from 176 clinical features were finally identified 
using LASSO method and subsequent Logistic regression 
by examining the predictor-outcome association.

Fig. 3  Calibration of our model. a Training cohort; b Internal validation cohort; c External validation cohort
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Interestingly, increased body temperature within the 
first 24 h of ventilation was negatively related to death in 
our model, which is consistent with results noted in two 
published studies [30, 31]. Although a prospective clini-
cal trial reported that aggressive fever suppression group 
showed a higher mortality compared to permissive group 
based on a cohort of critically ill trauma patients [32], the 
underlying mechanism remained unknown.

In addition, RDW within the first 24 h of admission 
was included in our model as an important risk factor. 
RDW is a measurement of the amount of red blood cell 
variation in volume and size, which has been recently 
found to be abnormally increased in COVID-19 [33] and 
an independent risk factor for the development and out-
come of ARDS [34–36]. High lactate level is considered 
as a nonspecific marker for tissue hypoxemia, which has 
been reported as a predictive factor for a poor outcome 
among critical ill patients [37–39]. Another crucial pre-
dictive factor in our model is INR, which, however, was 
not included in existing risk scores. A previous study 
reported that INR was associated with hospital mortal-
ity of ARDS [40]. INR was also found to be significantly 
higher in ARDS patients with diffuse alveolar damage 
(DAD) compared with those without DAD [41]. Other 
variables such as advanced age, high respiratory rate, 
increased AaDO2, high BUN, and hyperleukocytosis 
were found to be associated with ARDS events or out-
come of ARDS [8, 11, 42–44].

Our model is simple for calculation and easy to use with 
the nomogram, and has robust discrimination and cali-
bration. Besides, we carried out the decision curve analy-
sis to explore the clinical use of our model, and there was 
a considerable range of alternative threshold probability. 
Also, our model was constructed based on multicenter 
data and the external validation was also performed, 

which improved its generalizability. Moreover, the 
predictors that we adopted are no extraordinary data 
regularly obtained from the patients, enabling ICU car-
egivers to predict the mortality risk of ventilated ARDS 
patients and improve clinical decision-making right at 
the bedside. A previous study which secondly analyzed 
the VALID trial, reported that direct and indirect ARDS 
have distinct features that may differentially affect risk 
prediction and clinical outcomes, while the discrimina-
tion of our model seems to be stable and did not affect 
by direct or indirect etiology [22]. The discriminations of 
our model seem to be not affected by direct or indirect 
etiology (direct: AUC: 0.69, 95% CI: 0.63–0.75) (indirect: 
AUC: 0.70, 95% CI: 0.62–0.78) (P=0.858). Whether the 
predictors of hospital mortality differ among different 
etiologies of ARDS is still unknown and studies focus on 
this are valuable.

Several limitations need to be acknowledged. First of 
all, as the study was retrospective and observationally 
designed, several inherent limitations like selection bias, 
loss to follow up and the presence of confounding fac-
tors cannot be avoided. Further prospective studies are 
needed to evaluate the effectiveness of our model. Sec-
ondly, some of the variables were excluded for the miss-
ing data although previous research has shown that they 
might be associated with mortality of ARDS patients, 
such as albumin [45], hepatic function [46, 47] and neu-
trophil-to-lymphocyte ratio (NLR) [48]. Thirdly, some 
studies reported that echocardiographic findings were 
associated with the outcomes of ARDS and COVID-
19 [49–51], but we did not include relevant variables 
because information of echocardiographic findings was 
only available in a small part of patients in MIMIC-III 
database but not recorded in eICU and MIMIC-IV data-
bases. Future study including echocardiographic findings 

Fig. 4  Decision curve analysis of our model and other severity scores. a Training cohort; b Internal validation cohort; c External validation cohort 
SAPS II simplified acute physiology score II, SOFA sequential organ failure assessment, OASIS oxford acute severity of illness score, APACHE IV acute 
physiology and chronic health evaluation IV, APPS Age, PaO2/FiO2, and Plateau Pressure Score
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is appreciated. Last but not least, similar to previous risk 
sores, the results of external validation indicated that the 
discrimination and calibration were decreased compared 
with that of the training cohort and internal validation 
cohort, with an overestimate of hospital mortality, which 
would be owing to the changing strategy of managing 
ARDS over a long period. Further optimization with 
more updated data of ARDS patients (recent five years) 
would be appreciated.

Conclusions
A risk score based on routinely collected variables at 
the start of admission to ICU and invasive ventilation 
can predict mortality of ventilated ARDS patients, with 
a moderate performance. And further evaluation of our 
model is required.
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