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Abstract: Diabetic peripheral neuropathy (DPN) is a common diabetes complication (DM). Aldose
reductase -2 (ALR-2) is an oxidoreductase enzyme that is most extensively studied therapeutic target
for diabetes-related complications that can be inhibited by epalrestat, which has severe adverse effects;
hence the discovery of potent natural inhibitors is desired. In response, a pharmacophore model
based on the properties of eplarestat was generated. The specified pharmacophore model searched
the NuBBEDB database of natural compounds for prospective lead candidates. To assess the drug-
likeness and ADMET profile of the compounds, a series of in silico filtering procedures were applied.
The compounds were then put through molecular docking and interaction analysis. In comparison to
the reference drug, four compounds showed increased binding affinity and demonstrated critical
residue interactions with greater stability and specificity. As a result, we have identified four potent
inhibitors: ZINC000002895847, ZINC000002566593, ZINC000012447255, and ZINC000065074786, that
could be used as pharmacological niches to develop novel ALR-2 inhibitors.

Keywords: pharmacophore; structure-based drug design; NuBBEDB; ADMET; molecular docking

1. Introduction

Diabetes Mellitus (DM) is a health disorder that is rapidly becoming an epidemic in
several countries. A sedentary lifestyle, unhealthy food, obesity, and being overweight
are major factors. Saudi Arabia’s economy has changed dramatically in the previous
four decades. Prosperity and expansion have changed people’s lifestyles [1–3]. Notably,
eating habits and physical activities have deteriorated. Cars, elevators, escalators, and
remotes have reduced activity. Traditional reliance on locally farmed fruits, vegetables, and
wheat has changed. All these factors have contributed to a dramatic increase in diabetes
prevalence in Saudi Arabia [1]. DM is a common endocrine disease with numerous micro-
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and macrovascular consequences. Diabetic peripheral neuropathy (DPN) has long been
a research focus as it is one of the most common consequences of diabetes mellitus (DM).
Diabetic complications are caused by the upregulation of the polyol and hexosamine
pathways and increase the amounts of non-enzymatic glycation products and protein
kinase C activity [2]. Pathological characteristics of DPN, a common consequence of chronic
DM, include axonal atrophy, demyelination, and the delayed regeneration of peripheral
sensory nerve fibers. The pathophysiology of DPN in dysfunctional peripheral nerve repair
and regeneration is not yet clearly known [3]. These issues have a complicated etiology and
can manifest in a variety of ways. ALR-2 is a rate-limiting enzyme in the polyol pathway
that belongs to the oxidoreductase family and is the most intensively researched therapeutic
target for treating diabetes-related consequences [4].

The overactivation of the ALR-2 enzyme in the polyol pathway has also been linked to
an imbalance in the NADPH/NADP+ and NADH/NAD+ ratios, which increases oxidative
stress by lowering reduced glutathione levels (GSH) [5,6]. Oxidative stress is characterized
by increased reactive oxygen species formation and impaired antioxidant defenses due
to an imbalance between oxidative components and antioxidant capabilities [7]. Diabetic
problems are exacerbated by oxidative stress [8]. To guide the treatment, it is vital to
understand how antioxidant defenses differ in diabetic peripheral neuropathy. The polyol
pathway, which is a part of metabolizing glucose, contains an essential enzyme known
as aldose reductase [9]. Diabetic hyperglycemia promotes the polyol pathway, which
uses aldose reductase to convert glucose to sorbitol. Although fructose reductase can
convert sorbitol to fructose, the lack of fructose kinase in peripheral nerve tissue induces
intracellular hypertonia and restricts inositol absorption [2]. As a direct result of this,
aldose reductase inhibitors have been studied for use as potential therapies for patients
suffering from DPN. Epalrestat is an aldose reductase inhibitor that is marketed in Japan,
China, and India. Unlike conventional diabetic neuropathy medications, epalrestat may
abate disease progression. Animal studies have shown that epalrestat reduces sorbitol
in the sciatic nerve, erythrocytes, ocular tissues, and human erythrocytes. Taking 50 mg
of epalrestat three times a day improved motor and sensory nerve conduction velocity
and subjective neuropathy symptoms compared to baseline and placebo [10]. The Food
and Drug Administration (FDA) and the European Medicines Agency (EMA) have not
approved it for use in the United States, and the reason for this is that the only large
multicenter study that assessed its efficacy and safety was an open-label study. [11]. Several
adverse effects of epalrestat include: cerebral infarction, dorsal pruritus, eczema, rash,
skin eruption, diarrhoea, discomfort, nausea, vomiting, increased liver enzyme levels,
increased serum creatinine level, edema, hand stiffness, hot flashes, lightheadedness, thirst,
numbness, vertigo, and lower-extremity weakness [10,12,13].

Natural products have multidimensional chemical structures, which has sparked
interest in their use as biological function modifiers. They have influenced chemicobiology
and have been used to discover new drugs. Physical chemistry has revealed natural
products’ structural diversity. Complex three-dimensional chemical and steric properties
of the natural compound enable the efficiency and selectivity of molecular targets. Drug
development has benefited from natural product research. Various drugs derived from
natural products are being used in treatment successfully. For instance, artemisinin and its
analogs are used as anti-malarial compounds; Vinca alkaloids from Catharanthus roseus and
the terpene paclitaxel from Taxus baccata are among successful anti-cancer drugs and various
anti-hypertensive drugs [4,5]. Due to their chemical diversity and novel mechanisms of
action, natural products have been used in many drug development and research programs.
Natural products have evolved to interact with a wide range of biological targets, and
some have become important drugs in healthcare [6,7]. The natural product database was
used in this work to look for new candidates that might be used as potent and selective
ALR-2 inhibitors with a higher therapeutic index and lesser side effects. Pharmacophoric
properties of a reference drug must be found to include in new hits while screening a
database. Since epalrestat is useful in diabetic neuropathy in clinical investigations, this
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research aimed to find small molecules that demonstrated epalrestat’s pharmacophoric
properties. Pharmacophore modeling is the best method for carrying out this strategy.
Thus, single ligand-based pharmacophore modeling was used for the hierarchical virtual
screening, scoring of ligands based on the LUDI function, drug-likeness and ADMET
characteristics estimates, docking, and intra-molecular interaction studies to identify the
most potent natural compounds to treat DPN. Furthermore, by employing in vitro and
in vivo models using epalrestat as a reference, these hits can be empirically confirmed for
their therapeutic characteristics.

2. Material and Methodology
2.1. Structure-Based Pharmacophore Model Generation

The structure-based pharmacophore model (SBPM) has been successfully employed in
many therapeutic domains to create new drugs with significant biological activity [14]. ALR-
2 X-ray crystal structure with epalrestat was adopted from RCSB Protein Data Bank [15];
PDB ID: 4JIR, resolved at 2.0 Å with a molecular weight of 37.15 kDa and 316 amino acid
residues in a single unique chain [16]. During the study, the implicated pharmacophore
characteristic was predicted using the bound inhibitor-Epalrestat. SBPM was generated in
this study utilizing the Biovia Discovery Studio (DS) module Interaction Pharmacophore
Generation [Dassault Systems, BIOVIA Corp., San Diego, CA, USA, v 21.1] based on
the co-crystal structure of ALR-2 complexed with the epalrestat. The analysis used a
binding site sphere with a radius of 12 Å, which covered all the key residues in the binding
pocket of ALR-2, and the bound inhibitor-eplarestat. This SBPM procedure uses the
bioactive conformation of a drug to generate a selective pharmacophore model from a
single ligand. This technique was created to evaluate the protein–ligand interaction at the
binding pocket, which results in the pharmacophoric properties of hydrogen bond acceptor
(HBA), hydrogen bond donor (HBD), hydrophobic (H), negative ionizable (NI), positive
ionizable (PI), and aromatic ring (RA). Additionally, to improve the effectiveness of virtual
screening, the excluded volumes were taken into account when creating pharmacophore
models [17]. This technique lists all the pharmacophoric properties, scores all possible
pharmacophore combinations, and finally determines the best pharmacophore. A total of
10 hypothesis models were created, with the best one being designated as Hypo 1. The
highly selective pharmacophore model was used to screen the NuBBEDB [8].

2.2. Screening Hits and Enzyme Crystal Structure

Phytochemicals from Nuclei of Bioassays, Ecophysiology, and Biosynthesis of Nat-
ural Products Database (NuBBEDB) were used in this study. NuBBEDB was established
in 2013 as a comprehensive compendium of available biogeochemical knowledge about
Brazilian biodiversity and has shown to be a significant resource for new drug design
and dereplication research with a larger diversity of natural sources. The NuBBEDB con-
tains validated multidisciplinary information, chemical descriptors, species origins, ge-
ographic locations, spectroscopic data (NMR), and pharmacological properties and is
freely accessible online (https://nubbe.iq.unesp.br/portal/nubbedb.html, last accessed on
8 November 2021) [18].

2.3. Scoring the Screened Compounds

Virtual screening relies heavily on scoring and ranking docked ligands. The optimum
scoring function should be employed to increase the chances of success. LUDI scoring
function was applied to score the natural compounds. LUDI is a scoring program from DS
(Dassault Systems, BIOVIA Corp., San Diego, CA, USA, v 21.1) that places small molecules
in the active protein site so that hydrogen bonds can be formed and hydrophobic pockets
can be filled. A 3D structure of the protein-inhibitor complex is often utilized to suggest
novel substituents for an existing inhibitor. LUDI can link fragments to existing ligands
and fit them into interaction sites [19–21].

https://nubbe.iq.unesp.br/portal/nubbedb.html
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2.4. Drug Likeness and ADMET Analysis

Virtually screened natural compounds that passed the LUDI scoring function were
selected for in silico drug-likeness and ADME-Toxicity (ADMET) calculations using Filter
by Lipinski and Veber Rules Module ADMET Descriptors and TOPKAT module from DS.
Calculations were performed on parameters like the log of the n-octanol/water partition
coefficient (LogP), the molecular weight (MW), the number of hydrogen bond acceptors
(HBA), the number of hydrogen bond donors (HBs), the molecular polar surface area (PSA),
and the number of rotatable bonds (RotB) that were included in Lipinski’s rule of five and
Veber rule [22,23].

2.5. Molecular Docking and Interaction Studies

Molecular docking with DS’s CDOCKER Module (Dassault Systems, BIOVIA Corp.,
San Diego, CA, USA, v 21.1) was used to further validate the compounds that best fit the
resulting pharmacophore model. This was done so that the most promising molecules
could be identified. CDOCKER is a method based on molecular dynamics that employs
simulated annealing [24]. Before starting the docking protocol, the selected compounds
were prepared using the “Prepare Ligands” technique from DS to eliminate duplicates,
synthesize 3D conformations, and exclude compounds with undesired features before
molecular docking. Followed by protein preparation, the receptor protein was cleaned
initially, with undesirable crystal structures, water molecules, and other bounded ligands
removed. The receptor protein’s quality was evaluated, then loop refinement was per-
formed, and the receptor protein was validated for the existence of disallowed regions. In
CDOCKER, “Ligand Partial Charge Method” was set to “CFF”, and “Input Site Sphere”
was set to “−6.01145, 8.69569, and 17.4568” in x, y, and z coordinates, respectively, with a
Pose Cluster Radius of 0.1 Å in the binding pocket of ALR-2. For each molecule, just one
top docking pose was reported and stored for subsequent study. We determined the RMSD
values between the optimal ligand docking poses and the conformations in co-crystal
structures. Close intra-molecular interactions between the selected natural compounds and
the active site residues were evaluated to assess the binding affinity and stability of the
complex [25,26].

3. Results and Discussions

Every pharmacological molecule’s pharmacokinetics (PK) and pharmacodynamic (PD)
phases demonstrate its biological response. The in silico investigation of epalrestat-based
potential ALR-2 inhibitors is included in this study, which takes into account multiple
molecular events in both the PK and PD phases. The in silico PD investigation comprises
pharmacophore modeling, virtual screening for lead discovery, molecular docking, and
intra-molecular interactions of the hits with ALR-2 to determine potency. The in silico PK
analysis involves extensive drug-likenesss and ADMET profiling of retrieved hits using a
variety of DS’s basic criteria and tools.

3.1. Structure-Based Pharmacophore Model Generation

The biological activity of a substance is influenced not only by its physical properties,
but also by its three-dimensional conformation. It is a pharmacophore that includes the
steric and electronic features necessary for supramolecular interactions with a specific
biological target and the triggering (or blocking) of its biological response. According
to this approach, bioactive compounds’ interactions with their targets are depicted as a
3D arrangement of abstract properties rather than specific functional groups. Hydrogen
bonding, charged interactions, metal interactions, and hydrophobic and aromatic contacts
are some examples. Many pharmacophore modeling programs allow steric limitations.
The exclusion volumes replicate the geometry of the binding pocket and prohibit the map-
ping of inactive substances due to protein surface conflicts [9]. As a result, the bioactive
conformation of epalrestat was derived from a high-resolution X-ray crystal structure of
ALR-2 complexed with epalrestat from RCSB Protein Data Bank (PDB ID: 4JIR). Pharma-
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cophores of the epalrestat were generated using Interaction Pharmacophore Generation
from DS. Utilizing the epalrestat, the auto pharmacophore was generated, which resulted in
10 pharmacophore models with the same features, such as HBA, H, and sulfur interaction
when the minimum inter feature distance was set as 2, minimum features were set to 4, and
maximum features as 6. Subsequently, 10 pharmacophore models were generated. The first
model was chosen as it aligned well with the known inhibitor-eplarestat, and demonstrated
four HBA, one H, and one sulfur interaction, as illustrated in Figure 1.
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Figure 1. Generated pharmacophore model exploiting eplarestat.

The use of pharmacophore modeling in computational drug development identifies
new candidate compounds that exhibit the important qualities represented by a pharma-
cophore model. As a result, the current research adapts to identify the major important
characteristics described by the epalrestat and ALR-2 interaction.

3.2. Screening and Scoring the Natural Compound Database

To identify the most potent natural compound, 40,000 natural compounds from
NuBBEDB were screened. The virtual screening of NuBBEDB using pharmacophore 1 model
yielded 34 hits, as shown in Table 1. These hits, when scored based on LUDI scoring
function from DS, were found to be in the range of 237 to 1328, indicating the high quality
of the selected pharmacophore model. Some of the compounds were found to score higher
than the eplarestat, as shown in Table 2.
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Table 1. Virtually screened compounds from the natural compound database.

S. No. Zinc ID Pharmprint Frequency Absolute Energy Relative Energy

1. ZINC000000839520 17,776 121.29 6.96097

2. ZINC000002566593 16,450 168.778 16.3736

3. ZINC000002895847 16,228 22.9699 13.843

4. ZINC000004221776 12,899 22.1846 9.94709

5. ZINC000004558041 10,411 123.539 14.3409

6. ZINC000005189601 7480 53.2018 5.80273

7. ZINC000005410978 7028 54.9265 2.95975

8. ZINC000012447255 6756 75.4233 12.904

9. ZINC000012483342 6741 44.9922 7.5057

10. ZINC000013378346 5475 25.5627 14.7066

11. ZINC000013380451 1254 40.2457 17.0317

12. ZINC000018164733 1057 123.565 12.2268

13. ZINC000038281168 1001 58.6725 8.66919

14. ZINC000059585866 989 37.7033 1.78389

15. ZINC000059586551 983 59.5097 6.99921

16. ZINC000065074786 961 76.1116 1.88067

17. ZINC000065259848 953 27.6677 7.31742

18. ZINC000069482290 916 15.8298 5.27962

19. ZINC000070455381 805 25.6468 8.67805

20. ZINC000070686641 724 70.307 13.1053

21. ZINC000070707266 720 33.4486 13.6762

22. ZINC000084394823 703 62.7607 19.8907

23. ZINC000085507556 661 14.4589 2.11996

24. ZINC000085531653 660 27.514 8.40651

25. ZINC000085593748 580 93.4406 18.6682

26. ZINC000085809059 570 40.9 13.4514

27. ZINC000097944195 562 130.569 9.30741

28. ZINC000098022974 510 50.6495 12.9341

29. ZINC000100393110 486 20.0607 9.37799

30. ZINC000103571159 341 18.6231 13.8256

31. ZINC000150349570 336 48.9624 5.99486

32. ZINC000245238479 289 60.8105 5.31395

33. ZINC000245296023 160 25.2688 10.6235

34. ZINC000247764628 89 61.4826 17.7796

Table 2. LUDI scores for the virtually screened compounds.

S. No. ZINC ID Ludi_3

1. ZINC000097944195 1328

2. ZINC000070707266 1307

3. ZINC000247764628 1280

4. ZINC000012447255 1160

5. ZINC000004558041 1013
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Table 2. Cont.

S. No. ZINC ID Ludi_3

6. ZINC000100393110 989

7. ZINC000065074786 964

8. ZINC000004221776 879

9. ZINC000000839520 875

10. ZINC000070455381 832

11. ZINC000085593748 801

12. ZINC000245296023 799

13. ZINC000245238479 783

14. ZINC000098022974 747

15. ZINC000253499410 719

16. ZINC000012483342 705

17. ZINC000065259848 655

18. ZINC000103571159 590

19. ZINC000248015717 523

20. ZINC1533688 (Epalrestat) 490

21. ZINC000085531653 456

22. ZINC000070686641 433

23. ZINC000059586551 427

24. ZINC000038281168 404

25. ZINC000059585866 403

26. ZINC000013380451 367

27. ZINC000084394823 360

28. ZINC000069482290 349

29. ZINC000013378346 324

30. ZINC000085809059 299

31. ZINC000002895847 289

32. ZINC000002566593 282

33. ZINC000005410978 264

34. ZINC000005189601 264

35. ZINC000018164733 237

3.3. Drug Likeness and ADMET Analysis

The drug-like characteristics of the virtually screened natural compounds were evalu-
ated using the Lipinski and Veber rule. Compounds qualifying two or more of the Lipinski
and Veber rule were evaluated for drug-like qualities to achieve better results. Our findings
also demonstrated that 19 natural compounds out of 34 virtually screened compounds
qualified for the drug-likeness parameter, having entirely fulfilled Lipinski’s rule of five,
which specifies that a molecule cannot breach more than two of the following parameters
(MW < 500 Da, LogP < 5, HBD < 5, and HBA < 10) for it to be utilized safely as a therapeutic
agent, as shown in Table 3 of the ADMET analysis. The ADMET properties of a molecule
play a significant role in drug discovery; these attributes are primarily responsible for



Curr. Issues Mol. Biol. 2022, 44 2832

medicine failure in around 60% of clinical trial cases [27]. A molecule with a favorable
ADME profile is absorbed through the gastrointestinal system and available in circulation,
processed by metabolic enzymes and eliminated from the body, and does not interfere
with normal biological processes [22]. The ADMET descriptors module in DS evaluates
AlogP98, PSA (polar surface area), plasma protein binding (PPB), hepatotoxicity, CYP2D6
enzyme inhibition, aqueous solubility blood-brain barrier (BBB), and intestinal absorption
of a drug-like molecule. In water at 25 ◦C, a linear regression model was used to predict
aqueous solubility. After oral administration, the compounds’ absorption and solubility
levels indicate human intestine absorption and drug likeliness. For intestinal absorption,
the values should be ≥0, where 0 signifies good absorption, or 1 (moderate absorption),
and for aqueous solubility, 3 signifies good and 4 is optimal [28]. The hydrophilicity of a
compound is determined by its AlogP98 value, with AlogP98 > 5 indicating high absorp-
tion or permeability. PSA is another important factor that influences drug bioavailability.
Compounds having a PSA ≤ 140 Å are able to be absorbed passively, and as a result,
they have a high oral bioavailability [10–12]. Most of the filtered compounds showed
high absorption and good aqueous solubility. Using 2D PSA and AlogP98 descriptors
with 95% and 99% confidence ellipses, the ADME model predicted intestinal absorption
and blood–brain barrier penetration. The region enclosed within the ellipses defines the
well-absorbed compounds [29]. The current investigation predicted 8 out of 19 substances
with good absorption within the 99% confidence ellipse, as shown in Figure 2. The BBB
level measures the quantity of drug penetration into the central nervous system (CNS) after
oral delivery. A desirable drug would not breach the BBB since it could negatively affect
the CNS. As a result, therapeutic molecules with BBB values of 3 or 2 (low or medium) are
usually thought to be the best for administration [27].

Table 3. Drug-likeness properties of the compounds.

S. No. ZINC ID HBA HBD MW ALogP RoT PSA

1. ZINC000103571159 8 4 394.416 −1.043 1 132.28

2. ZINC000084394823 6 5 180.156 −2.791 5 118.22

3. ZINC000245238479 7 2 382.448 1.389 8 86.61

4. ZINC000018164733 5 4 164.156 −1.903 4 97.99

5. ZINC000100393110 7 2 446.56 2.897 9 113.71

6. ZINC000000839520 8 3 376.43 1.797 6 132.99

7. ZINC000012447255 8 2 359.403 1.586 5 122.91

8. ZINC000013378346 0 0 238.457 2.483 7 101.2

9. ZINC000002895847 4 2 238.324 1.77 7 125.2

10. ZINC000065259848 5 2 328.45 1.476 3 117.08

11. ZINC000248015717 7 3 374.449 0.996 4 146.43

12. ZINC000253499410 6 2 507.706 3.533 5 144.46

13. ZINC000004558041 9 2 381.404 1.747 7 144.1

14. ZINC000004221776 9 6 375.421 −1.836 6 195.43

15. ZINC000065074786 6 2 456.985 1.764 5 110.42

16. ZINC000002566593 4 2 238.324 1.77 7 125.2

17. ZINC000005410978 6 6 254.327 −5.934 8 177.23

18. ZINC000012483342 4 3 253.317 0.693 2 90.01

19. ZINC000098022974 11 0 382.367 −1.218 5 154.63

20. ZINC1533688 (Epalrestat) 4 0 220.289 −0.279 3 112.04

Abbreviations: HBA: Hydrogen bond acceptor; HBD: Hydrogen bond donor; MW: Molecular Weight; PSA:
Molecular polar surface area; RoT: Rotatable Bonds.
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The hepatotoxicity level of a drug compound can be determined by its potential to
cause dose-dependent liver damage, and drug toxicity is usually anticipated using this
information. CYP450 enzymes and isoforms regulate drug metabolism. Inhibiting these
detoxifying enzymes can produce toxicity [30]. CYP2D6 accounts for 2% of the overall
CYP content, yet it biotransforms 20% of hepatically metabolized pharmaceuticals [22].
More than 80% of clinical trial medicines are metabolized by five CYP isoforms (3A4, 2D6,
2C19, 2C9, and 1A2). None of the drugs inhibited the CYP2D6 enzyme in this investigation,
and no severe drug interaction toxicity was observed in the liver. The PPB is a measure of
how well a medicine binds to blood proteins. The drug’s efficacy may be influenced by
the degree to which it binds. The PPB values were categorized into “false” and “true” for
“poorly” and “highly bounded” drug molecules, respectively, as shown in Table 4.

TOPKAT is a widely used technique for evaluating drug candidates’ potential ecotoxi-
city, toxicity, mutagenicity, and reproductive or developmental toxicity [13]. The results
of TOPKAT and ADMET demonstrate that the anticipated carcinogenicity values of the
filtered compounds are within the expected range, and there is no risk of mutagenicity.
A few chemicals, however, induce mild skin irritation, and mild-to-severe eye irritation,
and they may cause developmental or reproductive toxicity if administered long-term
or at higher dosages. Table 5 summarizes other toxicity screening characteristics such as
Rat inhalation LC50, Rat of Oral LD50, Fathead minnow LC50, and Daphnia EC50. Most
of the filtered compounds were found to be non-carcinogenic, non-mutagenic, non-toxic,
with mild-to-moderate skin and ocular irritancy, and degradable. ZINC000012447255
showed a higher Rat Oral LD50 and Rat Inhalation LC50 score than eplarestat, indicating its
lesser toxicity.

3.4. Molecular Docking and Interaction Studies

Molecular docking has emerged as a valuable computational tool for the virtual
screening of drug candidates. It paves the door for faster drug development by evaluat-
ing the activity of a large number of compounds against target proteins and providing
information on candidate ligand–protein interactions in a short period of time, reducing
the cost of laboratory-based screening [31]. The top four virtually screened compounds
having high LUDI scores and qualifying the drug likeness and ADMET analysis were
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considered to evaluate the binding affinity with receptor protein ALR-2. The top four
natural compounds that were obtained using the virtual screening procedures were then
advanced to the molecular docking studies. The purpose of these studies was to analyze
the binding affinities and intra-molecular interactions between the protein and the discov-
ered compounds, and therefore to eliminate any false positives [32]. Molecular docking
studies also define the predicted binding modes of the ligand at the protein active site.
The CDOCKER software, included with the DS, was used to dock the top four natural
compounds into the ALR-2 binding site using the CHARMm-based molecular docking
approach, resulting in random ligand conformations when employing high-temperature
molecular dynamics (MD). CDOCKER is a grid-based docking technique that utilizes
the CDOCKER algorithm to fine-tune docking for a particular receptor protein against
many ligands. High-temperature molecular dynamics and random rotations yield random
ligand conformations during molecular docking. Grid-based (GRID 1) simulated annealing
explores random rotations. The random rotations are further investigated using grid-based
(GRID 1) simulated annealing.

Table 4. In silico pharmacokinetic (ADMET) properties of the filtered compounds.

ZINC ID Solubility BBB Level CYP 2D6 Hepatotoxic Absorption PPB AlogP98 PSA 2D BBB

ZINC000103571159 4 4 FALSE TRUE 1 FALSE −1.043 127.353 -

ZINC000084394823 5 4 FALSE FALSE 3 FALSE −2.791 121.378 -

ZINC000245238479 3 3 FALSE FALSE 0 FALSE 1.388 86.281 −1.09

ZINC000018164733 5 4 FALSE FALSE 1 FALSE −1.903 100.562 -

ZINC000100393110 2 4 FALSE FALSE 0 FALSE 2.897 105.998 -

ZINC000000839520 3 3 FALSE FALSE 0 FALSE 1.991 109.004 −1.26

ZINC000012447255 3 3 FALSE TRUE 0 FALSE 1.586 97.084 −1.2

ZINC000013378346 3 1 FALSE TRUE 1 FALSE 2.483 0 0.61

ZINC000002895847 4 3 FALSE FALSE 0 FALSE 1.77 76.232 −0.81

ZINC000065259848 3 3 FALSE TRUE 0 TRUE 1.526 81.794 −0.97

ZINC000248015717 3 4 FALSE FALSE 0 FALSE 0.996 123.278 -

ZINC000253499410 2 3 FALSE FALSE 0 FALSE 3.009 88.515 −0.62

ZINC000004558041 3 4 FALSE TRUE 0 FALSE 1.747 117.664 -

ZINC000004221776 4 4 FALSE TRUE 3 FALSE −1.786 162.994 -

ZINC000065074786 2 3 FALSE TRUE 0 TRUE 2.229 74.897 −0.65

ZINC000002566593 4 3 FALSE FALSE 0 FALSE 1.77 76.232 −0.81

ZINC000005410978 4 4 FALSE FALSE 1 FALSE −0.976 129.312 -

ZINC000012483342 3 3 FALSE TRUE 0 FALSE 0.693 65.215 −0.97

ZINC000098022974 4 4 FALSE TRUE 2 FALSE −1.219 136.9 -

ZINC1533688 4 3 FALSE TRUE 1 FALSE −0.894 55.254 −1.30

Note: Aqueous solubility level (Solubility)-0: extremely low, 1: very low, 2: low, 3: good, 4: optimal; Blood-brain
barrier (BBB) level-0: Very High, 1: High, 2: Medium, 3: Low, 4: Undefined; Intestinal absorption (Absorption)-0:
Good absorption, 1: Moderate absorption, 2: Low absorption, 3: Very low absorption.

Before starting the docking procedure, the receptor protein was cleaned from co-crystal
ligands and water molecules. The protein was prepared using “Prepare protein”protocol
from DS to add hydrogen, repair missing atoms if any, and apply a CHARMm forcefield.
The molecular docking simulations were run with the simulated annealing option set to
True and the other options unchanged. To validate the docking software, we first docked the
bound inhibitor-epalrestat into the binding pocket of ALR-2 (PDB ID: 4JIR) and calculated
the RMSD between the ligand conformation of the docked and the x-ray crystal structure.
The RMSD obtained was <1 Å, as shown in Figure 3 indicating the high accuracy of the
CDOCKER software.
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Table 5. Toxicity evaluation of the best-filtered compounds.

ZINC ID ZINC000065259848 ZINC000065074786 ZINC000012447255 ZINC000245238479 ZINC000012483342 ZINC000253499410 ZINC000002895847 ZINC000002566593 Epalrestat

Rat Female FDA Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Single-Carcinogen Multi-Carcinogen Multi-Carcinogen Multi-Carcinogen

Rat Male FDA Multi-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Non-Carcinogen Multi-Carcinogen

TD50 Mouse (mg/kg body weight/day) 59.487 12.1147 101.749 13.831 53.7732 4.79071 107.426 107.426 82.6684

TD50 Rat (mg/kg body weight/day) 110.02 22.3253 11.4233 4.03207 5.3266 0.357734 95.4177 95.4177 30.0162

Ames Prediction Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen Non-Mutagen

DTP Prediction Non-Toxic Toxic Non-Toxic Toxic Toxic Toxic Non-Toxic Non-Toxic Toxic

Rat Oral LD50 (g/kg body weight) 0.55412 0.536551 5.11761 5.11263 0.19364 0.569967 1.06368 1.06368 2.71011

Rat inhalation LC50 (mg/m3/h) 317.172 739.959 6232.27 1761.33 519.752 245.134 2315.21 2315.21 5330.78

Skin Irritancy Mild None None None None Mild None None Mild

Ocular Irritancy Moderate Moderate Mild None Severe Severe Moderate Moderate Mild

Aerobic Biodegradability Non-Degradable Non-Degradable Non-Degradable - Non-Degradable Degradable Degradable Degradable Degradable

Fathead Minnow LC50 (g/L) 0.03 0.02 0.02 - 0.28 0 0.01 0.01 0.12

Daphnia EC50 (mg/L) 0.69 4.81 16.57 - 4.6 0.27 44.84 44.84 21.28
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On applying the CHARMm forcefield and selecting CFF as the ligand partial charge
method, 10 random conformations for each ligand were selected. The best conformation
having the highest negative CDOCKER score was further inspected for intra-molecular
interactions. Table 6 describes the CDOCKER energy of the docked ligand and close
intra-molecular interactions.

Table 6. Close intra-molecular interaction of the top pharmacophores and ALR-2.

Compound Intra-Molecular Interactions -CDOCKER Energy -CDOCKER Interaction Energy

Epalrestat
Hydrogen Bond: HOH728, HOH732, HOH766, Tyr48, Trp111.
Other: Cys298, Trp111, Trp219.
Hydrophobic: HOH732, Trp20, Phe122.

13.4173 25.039

ZINC000002895847
Hydrogen Bond: HOH728, HOH769, Tyr48, His110.
Other: Trp219.
Hydrophobic: Cys298, Trp20, Trp111, Phe122, Phe209.

32.4309 29.8047

ZINC000002566593
Hydrogen Bond: HOH732, HOH728, HOH766, HOH769, Tyr48, His110.
Other: Trp219.
Hydrophobic: Cys298, Trp20, Phe122.

30.5462 26.683

ZINC000012447255
Hydrogen Bond: HOH732, HOH728, HOH734, HOH732, Tyr48, Cys298.
Other: Trp219.
Hydrophobic: Trp20, Tyr48, Val47, Cys298, Trp79, His110, Trp111, Phe122, Tyr209.

26.5493 47.9781

ZINC000065074786
Hydrogen Bond: HOH732, HOH728, Tyr48, Cys298, his110, Gln183, Tyr48, Ser210.
Other: Trp20, Cys298, Trp111.
Hydrophobic: Trp20, Trp219, Phe122.

13.6588 32.9367

The top four identified natural compounds were found to have higher -CDOCKER
energy and -CDOCKER interaction energy than the epalrestat. Hydrogen bonding and
hydrophobic interactions, which are weak intermolecular interactions, are important in
maintaining energetically-favored ligands [33]. The compound ZINC000002895847 showed
the highest -CDOCKER energy of 32.4309 and was found to form hydrogen bonds with
the active site residue Tyr48, indicating the good binding affinity of the target-drug com-
plex [34]. The compound also formed more hydrophobic interactions, contributing in
ligand-receptor binding affinity and specificity [35]. The compound ZINC000002566593
secured the second highest -CDOCKER energy of 30.5462 and formed hydrogen and hy-
drophobic interactions with the residues in the binding pocket, including active site residues
Tyr48, Trp219, and Phe122. The binding pose of compound ZINC000012447255 exhibiting
-CDOCKER energy of 26.5493 was stabilized by hydrogen bonds and hydrophobic interac-
tions, as shown in Figure 5. When it comes to establishing the conformation of the ligand
that is most conducive to bioactivity, hydrophobic interactions play a crucial role. Because
of these interactions, the selected site on the substrate is made more sterically accessible
for drug metabolism [36]. The -CDOCKER energy of compound ZINC000065074786 was
found to be close to epalrestat, however, it formed more hydrogen bonds and hydrophobic
interactions with the binding site residues to aid with stability, affinity, and specificity.
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The stereo image of the docked complex containing the compound and receptor protein is presented
on the left side, whereas the 2D view of the interactions between compounds and 4JIR is presented
on the right side. Discovery Studio was used to construct the diagrams; hydrogen bonds are depicted
in the green dashed line, hydrophobic interactions in the pink dashed line, and sulfur interactions
in the yellow dashed line. The distance between them is displayed in angstroms. The amino acid
residues in a protein structure were each given a three-letter code, and the compound is displayed in
a ball-and-stick format. (A) epalrestat 3D view, (B) epalrestat 2D view, (C) ZINC000002895847 3D
view, (D) ZINC000002895847 2D view, (E) ZINC000002566593 3D view, (F) ZINC000002566593 2D
view, (G) ZINC000012447255 3D view, (H) ZINC000012447255 2D view, (I) ZINC000065074786 3D
view, (J) ZINC000065074786 2D view.
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4. Conclusions

The present study is an epalrestat-guided search for efficient ALR-2 inhibitors from
a natural compound database using in silico pharmacophore-based screening, ADMET
profiling, and molecular docking. These approaches were successfully used to determine
the optimal binding mode of novel molecules necessary for ALR-2 inhibitory effects. Over-
all, four compounds were identified as possible ALR-2 inhibitors with drug-like features
based on optimal binding modes, binding affinities, and critical interactions. In summary,
the results demonstrate compounds derived from NuBBEDB that preserve the pharma-
cophoric properties of epalrestat and are non-toxic with potential to inhibit the ALR-2
enzyme. In particular, ZINC000002895847, ZINC000002566593, ZINC000012447255, and
ZINC000065074786 showed excellent binding affinity and specificity for ALR-2 that can
be improved for the treatment of DPN. This study could pave the way for developing
selective and safer ALR-2 inhibitors with a superior therapeutic profile than the current
DPN treatments.
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