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ABSTRACT
Aims/Introduction: To elucidate whether axonal changes arise in the prediabetic state
and to find a biomarker for early detection of neurophysiological changes.
Materials and Methods: We enrolled asymptomatic diabetes patients, as well as pre-
diabetic and normoglycemic individuals to test sensory nerve excitability, and we analyzed
those findings and their correlation with clinical profiles.
Results: In nerve excitability tests, superexcitability in the recovery cycle showed increas-
ing changes in the normoglycemic, prediabetes and diabetes cohorts (-19.09 – 4.56% in
normoglycemia, -22.39 – 3.16% in prediabetes and -23.71 – 5.15% in diabetes,
P = 0.002). Relatively prolonged distal sensory latency was observed in the median nerve
(3.12 – 0.29 ms in normoglycemia, 3.23 – 0.38 ms in prediabetes and 3.45 – 0.43 ms in
diabetes, P = 0.019). Superexcitability was positively correlated with fasting plasma glucose
(r = 0.291, P = 0.009) and glycated hemoglobin (r = 0.331, P = 0.003) in all participants.
Conclusions: Sensory superexcitability and latencies are the most sensitive parameters
for detecting preclinical physiological dysfunction in prediabetes. In addition, changes in
favor of superexcitability were positively correlated with glycated hemoglobin for all partic-
ipants. These results suggest that early axonal changes start in the prediabetic stage, and
that the monitoring strategy for polyneuropathy should start as early as prediabetes.

INTRODUCTION
Diabetic neuropathies include distal symmetric polyneuropathy,
chronic idiopathic sensory axonal neuropathy and small fiber
neuropathy. The neurological complications of diabetes might
arise as early as the time of diagnosis. Of all individuals with
prediabetes, 11–25% have peripheral neuropathies1. The possi-
ble mechanisms of axonal dysfunction, including disruption of
Schwann cell metabolism, microvascular abnormalities and
endothelial dysfunction through the polyol, hexosamine/protein
kinase C, and advanced glycation end-product pathways, are
related to hyperglycemia, dyslipidemia and insulin resistance2–4.
Hyperglycemia also causes excessive glycolysis, which overloads
the mitochondria and causes excessive reactive oxygen species
generation. Hexosamine pathway activation and extracellular
advanced glycation end-product binding to receptors as a result
of hyperglycemia might increase oxidative stress and trigger an

inflammatory response. These phenomena of bioenergetic fail-
ure, osmotic and oxidative stress, and inflammation result in
axonal dysfunction.
The nerve injury and metabolic derangement that occur in

prediabetes patients might be reversible and transiently
improved in the first year with diet control and exercise5. Con-
sequently, early diagnosis of neurological dysfunction is impor-
tant for preventing neuropathic deterioration. Clinical
practitioners urgently require a sensitive tool to detect early
changes in nerves in diabetes and prediabetes patients. Many
studies focusing on neuropathy in diabetes patients through tra-
ditional nerve conduction studies (NCSs) have been published,
and the results show that NCSs are not a sensitive tool for dia-
betic polyneuropathies6–8. In patients with prediabetes or
impaired glucose tolerance, neuropathy predominantly involv-
ing small fibers was established to contribute to neuropathic
pain, and autonomic dysfunction was established9–12. Therefore,
traditional NCSs, which are mainly for large nerve fibers, areReceived 10 June 2019; revised 19 September 2019; accepted 25 September 2019
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not sensitive enough to detect early nerve injury13. This lack of
sensitivity limits the clinical neurological assessment of polyneu-
ropathy in prediabetes or early diabetes patients9.
In 1999, a nerve excitability test was developed to provide com-

plementary information to traditional neurophysiological stud-
ies14,15. This non-invasive test can provide clinical neurologists
with nodal and paranodal ion channel activity levels, membrane
potentials, and myelin properties in vivo14–16. Kiernan et al.16

established a protocol measuring the “sensory” axonal nerve
excitability, and confirmed its efficacy in studying the electro-
physiology and channel function of sensory axons. Clinical appli-
cation has been studied for different neurological diseases, such
as cervical radiculopathy18, cisplatin-induced neuropathy19–21,
uremic polyneuropathy22,23 and diabetic neuropathies24–26. In
previous nerve excitability tests among diabetes patients, the
excitability parameters of sensory nerves changed earlier than
those of motor nerves26 and were correlated with glycated hemo-
globin (HbA1c) in individuals with asymptomatic diabetes25,26.
Therefore, a nerve excitability test could be an early tool for
detecting neurophysiological changes in patients with hyper-
glycemia. The purpose of the present study was to use this tool to
detect whether sensory axonal fiber changes begin in prediabetes
and are associated with plasma glucose.

METHODS
Criteria for patient enrollment
A total of 40 patients (aged 42–80 years) at Wanfang Hospital
(Taipei, Taiwan) who had been diagnosed with prediabetes
were enrolled to undergo a nerve excitability test and an NCS.
Prediabetes is defined by the American Diabetes Association as
meeting one of the three following criteria: HbA1c of 5.7–6.4%,
fasting glucose of 100–125 mg/dL or a result of 140–199 mg/
dL on the 2-h oral glucose tolerance test27,28. A total of 20 age-
matched normoglycemic (NG) volunteers (aged 47–83 years)
and 20 patients with diabetes (aged 42–70 years) were also
enrolled. Diabetes was diagnosed according to the American
Diabetes Association criteria27,28, and the patients had received
medical treatment. We excluded individuals with carpal tunnel
syndrome, abnormal renal function (serum creatinine
>1.2 mg/dL) and polyneuropathies caused by other etiologies.
The protocol for this research project was approved by a

suitably constituted institutional ethics committee (TMU-Joint
Institutional Review Board, Approval No. N201510049), and it
conforms to the provisions of the Declaration of Helsinki.

Clinical evaluation
The enrolled patients underwent laboratory tests to determine
their fasting plasma glucose, HbA1c and lipid profiles (total
cholesterol, triglyceride and low-density lipoprotein cholesterol);
additionally, their body mass index was calculated.
For the study of asymptomatic diabetes and prediabetes, we

excluded patients with dysesthesia, hypoesthesia, numbness or
weakness in their limbs. A neurological examination was also
carried our. Furthermore, an NCS was performed on all

participants in a neurophysiological laboratory at Wanfang
Hospital, and the participants were required to have results
within the normal ranges to be included in the study.

Nerve excitability test
Nerve excitability studies were carried out on all participants by
stimulating the median nerve at the wrist according to
TRONDNF protocols, with the skin temperature on the wrist
maintained at ≥32.0°C15. An isolated linear bipolar constant-
current stimulator (DS5; Digitimer, Welwyn Garden City, UK)
provided the stimulus current. The changes in current required
to produce a target potential corresponding to 50% of the maxi-
mal compound muscle action potential or sensory nerve action
potential were tracked. Commercialized software (QTRAC ver-
sion 10/11/2012; Institute of Neurology, London, UK) controlled
the stimulation current and recorded the threshold changes15,17.
The TRONDNF protocol was established by Kiernan et al.15

for the nerve excitability test. Four different electrostimulation
tests were automatically carried out in the TRONDNF: (i) a test
to establish the stimulus–response curve; (ii) a test to determine
the strength–duration relationship, the rheobase and the
strength–duration time constant (SDTC); (iii) a test to determine
the threshold electrotonus (TE); that is, the potential change pro-
duced by 1-ms test pulses under 100-ms subthreshold condition-
ing, polarizing currents in both depolarizing (TEd) and
hyperpolarizing (TEh) directions; and (iv) the recovery cycle, the
threshold changes in response to a test stimulus pulse after a
supramaximal conditioning stimulus with interstimulus intervals
from 2 to 200 ms. The important parameters in the nerve
excitability test include the SDTC, TEd, TEh, superexcitability
and late subexcitability. SDTC is determined by nodal sodium
permeability. TEd and TEh are determined mainly by internodal
membrane properties and potential. Superexcitability is inhibited
by paranodal fast potassium channel (Kf) function, and late
subexcitability is determined by internodal slow potassium chan-
nel (Ks) function. Using these parameters, we can estimate the
nodal and internodal function of the diseased axons.

Statistical analysis
We used Statistical Package for the Social Sciences (SPSS) for
Windows version 21 (SPSS Inc., Chicago, IL, USA). Levene’s
test for equality of variances was carried out on all variables.
We compared the demographic profiles, nerve conduction
results and nerve excitability parameters in the three groups by
analysis of variance (ANOVA). We use Bonferroni’s method as a
post-hoc test to analyze the pairwise differences between
groups. Linear correlation was used to determine whether NCS
and/or nerve excitability parameters were correlated with clini-
cal profiles. We defined P-values ≤0.05 as significant.

RESULTS
Patient clinical profiles
The demographic and clinical features of the normoglycemic,
prediabetic and diabetic cohorts are shown in Table 1. The
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mean HbA1c levels were 5.30% in normoglycemia, 5.9% in pre-
diabetes and 6.7% in diabetes (P < 0.001; Table 1). The mean
fasting plasma glucose levels were 87.1 mg/dL in normo-
glycemia, 101.5 mg/dL in prediabetes and 128.75 mg/dL in dia-
betes (P < 0.001).
In addition to fasting plasma glucose, body mass index was

higher in prediabetes than in normoglycemia (25.45 – 4.05 vs
22.01 – 2.33, P = 0.003). The NG cohort was noted to have
higher total cholesterol than the prediabetes cohort
(209.06 – 35.16 mg/dL vs 176.49 – 38.43 mg/dL, P = 0.011) or
the diabetes cohort (175.21 – 33.93 mg/dL, P = 0.021). The
NG cohort had increased low-density lipoprotein cholesterol

compared with the prediabetes cohort (132 – 32.05 mg/dL vs
106.37 – 34.70 mg/dL, P = 0.024). The difference in triglyc-
erides among groups was not statistically significant (Table 1).

Nerve conduction studies
All participants underwent NCS, the results of which are shown
in Table 2. The results are within the normal range defined by
the NCS laboratory at Wanfang Hospital.

Nerve excitability test
Regarding the sensory axonal nerve excitability properties of
participants with prediabetes, the superexcitability increased

Table 1 | Demographic data and clinical profiles of the participants

Clinical profile Normoglycemia (n = 20)Mean (SD) Prediabetes (n = 40)Mean (SD) Diabetes (n = 20)Mean (SD)

Male/female (n) 10/ 10 15/ 25 13/ 7
Age (years) 62.35 (11.08) 60.20 (9.14) 57.55 (9.30)
HbA1c (%)† 5.3 (0.29) 5.9 (0.23) 6.7 (0.81)
Fasting plasma glucose (mg/dL)‡ 87.1 (5.96) 101.5 (13.71) 128.75 (31.76)
BMI (kg/m2)§ 22.01 (2.33) 25.45 (4.05) 23.44 (2.60)
Cholesterol (mg/dL)¶ 209.06 (35.16) 176.49 (38.23) 175.21 (33.93)
LDL (mg/dL)** 132 (32.05) 106.37 (34.70) 106.74 (25.96)
Triglycerides (mg/dL) 99.05 (40.85) 108.86 (49.17) 137.79 (64.05)

†One-way ANOVA showed P < 0.001, with Bonferroni’s post-hoc test showing P < 0.001 between each two of these three cohorts. ‡‡One-way ANOVA

showed P < 0.001, with Bonferroni’s post-hoc test showing P < 0.018 for normoglycemia versus prediabetes and P < 0.001 for diabetes versus predia-
betes and normoglycemia. §One-way ANOVA showed P = 0.003, with Bonferroni’s post-hoc test showing P = 0.004 for normoglycemia versus predia-
betes. –One-way ANOVA showed P = 0.007, with Bonferroni’s post-hoc test showing P = 0.011 for normoglycemia versus prediabetes and P = 0.021 for
normoglycemia versus diabetes. **One-way ANOVA showed P = 0.024, with Bonferroni’s post-hoc test showing P = 0.028 for normoglycemia versus pre-
diabetes and P = 0.070 for normoglycemia versus diabetes. BMI, body mass index; LDL, low-density lipoprotein; SD, standard deviation.

Table 2 | Comparison of sensory nerve neurophysiology studies in participants with normoglycemia, prediabetes and diabetes

NormoglycemiaMean (SD) PrediabetesMean (SD) Diabetes Mean (SD)

Nerve excitability tests
Latency (ms)† 3.12 (0.29) 3.23 (0.38) 3.45 (0.43)
SDTC 0.58 (0.13) 0.56 (0.13) 0.52 (0.09)
Superexcitability (%)‡ -19.09 (4.56) -22.39 (3.16) -23.71 (5.15)
Subexcitability (%) 11.12 (2.97) 11.26 (2.58) 10.30 (2.65)
RRP (ms) 3.34 (0.62) 3.18 (0.40) 3.15 (0.48)
Refractoriness (%) 20.26 (19.53) 16.32 (15.58) 10.49 (14.91)
TEh (90–100 ms) -149.23 (19.69) -149.27 (20.40) -152.66 (26.77)

Nerve conduction study§

Median distal latency (ms) 2.32 (0.30) 2.61 (0.35) 2.62 (0.27)
Median SNAP amplitude (µV) 40.83 (14.11) 33.23 (12.17) 35.57 (7.11)
Median NCV (m/s) 61.33 (8.31) 54.79 (7.45) 54.00 (5.42)
Sural SNAP amplitude (µV) 11.39 (4.94) 14.13 (7.18) 14.50 (5.91)
Sural NCV (m/s) 51.00 (5.46) 52.00 (8.00) 39.20 (17.28)

The skin temperature at the wrist was maintained at ≥32.0°C for all studies. †One-way ANOVA showed P < 0.019, with Bonferroni’s post-hoc test
showing P = 0.018 for normoglycemia versus diabetes. ‡One-way ANOVA showed P < 0.002, with Bonferroni’s post-hoc test showing P = 0.013 for
normoglycemia versus prediabetes and P = 0.002 for normoglycemia versus diabetes. §The normal ranges defined by the nerve conduction study
laboratory at Taipei Municipal Wanfang Hospital: median distal sensory latency <2.8 ms, median sensory nerve action potential (SNAP) amplitude
>10 lV, median sensory nerve conduction velocity (NCV) 48.7–65.5 m/s, sural SNAP amplitude >5 lV, sural NCV: 41.5–58.3 m/s. CMAP, compound
muscle action potential; RRP, relative refractory period; SDTC, strength-duration time constant; TEh, threshold electrotonus in hyperpolarization.
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significantly (-22.39 – 3.16% in prediabetes and -
19.09 – 4.56% in NG, P = 0.013; Figures 1d,2b; Table 2). The
participants with diabetes had greater superexcitability than the
NG participants (-23.71 – 5.15%, P = 0.002, Figures 1d,2b;
Table 2). The latencies in prediabetes and diabetes were mildly
prolonged, but the only significant difference was between dia-
betes and normoglycemia (Figure 2a). There was no difference
among the three cohorts in other parameters: SDTC (Figure 1b;
Table 2), subexcitability, refractoriness (%), relative refractory
period (Figure 1d; Table 2) and TE (Figure 1c; Table 2).

Correlations between axonal excitability parameters and
clinical profiles
The sensory superexcitability of all enrolled participants was
positively correlated with both fasting plasma glucose (correla-
tion coefficient 0.291, P = 0.009) and HbA1c levels (correlation
coefficient 0.331, P = 0.003; Figure 3). All measured parame-
ters, including other NCS and nerve excitability parameters,
were uncorrelated with plasma fasting glucose, HbA1c and lipid
profiles. The linear regression implied that plasma fasting glu-
cose and HbA1c were more important than other metabolic

factors including body mass index, bodyweight, total choles-
terol, low-density lipoprotein, and triglyceride level in determin-
ing sensory axonal function (superexcitability).

DISCUSSION
The present results showed that sensory superexcitability
increased in prediabetes and diabetes patients. Superexcitability
is determined by the membrane potential or the function of
the paranodal Kf channel. Two main factors increase superex-
citability: the hyperpolarization of membrane potential and a
decrease in Kf function16,17,29. Membrane hyperpolarization
might not be the cause in prediabetes, because no changes of
parameters, such as increased threshold current, reduced the
SDTC, increase in TE and reduced subexcitability, were
found30–32. Therefore, we assumed the change of superex-
citability was a result of Kf channel dysfunction. Calvo et al.33

documented that expression of fast potassium channels (in-
cluding Kv1.1 and Kv1.2) at juxtaparanodal region is markedly
reduced in the injured sensory axon animal model. In addi-
tion, axonal hyperexcitability and increasing spontaneous dis-
charge occurred. Zenker et al.34 found reduced presence of the

10

(a) (b)

(c) (d)

1

100

0

–50

0

–100

–200

0 100
Delay (ms)

200 10
Interstimulus interval (ms)

*
Superexcitability

Subexcitability

SDTC

100

1
Stimulus current (mA)

10

0

–0.8 –0.6 –0.4
Stimulus width (ms)

–0.2

1

Pe
ak

 re
sp

on
se

(m
V

)
Th

re
sh

ol
d 

re
du

ct
io

n
(%

)

Th
re

sh
ol

d 
ch

ar
ge

(m
A

.m
s)

Th
re

sh
ol

d 
ch

an
ge

(%
)

Figure 1 | (a) The peak response showed a similar threshold in all three groups. (b) There was no difference in the strength–duration time
constant (SDTC) between the three groups. (c) The threshold electrotonus did not show a fanning-out pattern in depolarizing or hyperpolarizing
conditions. (d) The recovery cycle showed increased superexcitability in the prediabetes and asymptomatic diabetes groups compared with the
normoglycemic group. However, there was no difference in subexcitability, refractoriness or relative refractory period among the three groups. Blue
line: normoglycemia; green line: prediabetes; red line: asymptomatic diabetes.
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Kv1.2 in juxtaparanodal regions of axons in both a type 2 dia-
betes animal model and in human peroneal nerve biopsy sam-
ples. These studies imply fast potassium channel dysfunction
plays an important role in sensory axonal hyperexcitability33–35.
Therefore, we surmised that the increased superexcitability in
prediabetes is related to the reduction in Kf function. In Fig-
ure 4, we showed the possible neurophysiological changes in
prediabetic axons. Hyperglycemia causes intracellular sorbitol
accumulation and affects mitochondrial function. These alter-
ations lead to increasing metabolic stress and energy failure2–4.
Consequently, the Na+/K+ pump will be hypoactive, reducing
both the sodium and potassium gradients across the axonal
membrane30. The reduced ion gradients will also decrease
paranodal Kf function36,37. The metabolic change is mild in
prediabetes patients; therefore, the membrane potential might
not be affected11. Other nerve excitability parameters are not
different from those in individuals with NG.

Misawa et al.38 reported that reduced activation of paran-
odal Kf conductance is related to increased superexcitability in
hyperglycemia. Kitano et al. also reported that reduced SDTC
in diabetes reduced nodal Na+ conductance39,40. Those discov-
eries suggest that the pathogenesis of diabetic neuropathy
starts from nodal and paranodal impairment. Consequently,
we hypothesized that changes in prediabetic nerve function
might also start in the paranodal area. Superexcitability is the
most sensitive parameter for paranodal ion conductance
changes; this finding is compatible with the present results for
increasing superexcitability, which is the earliest change in
prediabetes.
In the present study, sensory axonal superexcitability tended

to increase with normoglycemia, prediabetes and diabetes.
These changes were not affected by acute plasma glucose con-
centration, but were related to glycemic variability41. Our previ-
ous study also reported downward shifting of the sensory
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recovery cycle and “fanning out” of TE progress from asymp-
tomatic to symptomatic diabetes26. These findings suggest func-
tional changes precede structural changes in diabetes
polyneuropathy; they can also explain why the NCS is not a
sensitive tool for clinical detection or screening. The results of
the present study suggest that preventing the progression of
neuropathy should start at the beginning of glucose instability.
In the present study, none of the patients or healthy controls

had any symptoms or signs of neuropathy. Slight changes in
sensory nerve excitability were detected in patients with asymp-
tomatic prediabetes, indicating the start of axonal changes. As
observed in epidemiological and some skin biopsy studies,
injury to the peripheral nerves might start in the prediabetic
stage10,12,42. We suspect that the possible pathogenesis is the
same in prediabetes patients and early diabetes patients without
neuropathy. Animal model studies also support the view that
the pathophysiology of peripheral nerve dysfunction in patients

with prediabetes or metabolic syndrome is similar to that in
early diabetes patients without structural or pathological
changes43–45.
We found that sensory superexcitability was positively corre-

lated with fasting plasma glucose and HbA1c in all participants.
Similar correlations between nerve excitability parameters (su-
perexcitability and late subexcitability) and clinical profiles have
been discovered in diabetes patients26,41. However, aggressive
glycemic control is an effective approach to reduce the risk of
polyneuropathy only in type 1 diabetes patients11. A possible
explanation is that complicated metabolic and inflammatory
factors contribute to neuropathy in long-term type 2 diabetes.
In the present study, the correlation of HbA1c with sensory
hyperexcitability suggests that glucose control in prediabetes or
the early stage of diabetes might slow the deterioration of axo-
nal function. However, this hypothesis requires further empiri-
cal support.
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Figure 4 | ① Hyperglycemia, hyperlipidemia and advanced glycation end-products lead to sorbitol accumulation through the polyol pathway; ②
increase metabolic stress, and induce anaerobic metabolism and energy failure with decreased adenosine triphosphate (ATP) production; resulting
in ③ Na+/K+ pump dysfunction; which ④ reduces the transmembrane concentration gradients of both sodium and potassium; consequently,
there is ⑤ a decrease in potassium conductance by hypoactive Kf channels, resulting in increased superexcitability.
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In prediabetes, peripheral nerve dysfunction might be
reversed if environmental factors are corrected. Kitano et al.
reported that superexcitability shifted toward a normal range
after the start of insulin treatment for diabetes40. In a predia-
betic animal model, the administration of an aldolase reductase
inhibitor corrected the peripheral neurological dysfunction
induced by a high-fat diet45. In addition, lifestyle intervention,
including diet control and exercise in patients with impaired
glucose tolerance, results in restoration of cutaneous nerve end-
ings and improvement of neuropathic pain5. We believe that
the physiological changes might be reversed in the prediabetic
and early diabetic stages, which is the reason why we focus on
prediabetes rather than diabetes patients.
In conclusion, we believe that physiological changes in nerves

begin to arise in the prediabetic stage, and that the Na+/K+

pumps are hypoactive caused by metabolic changes after hyper-
glycemia. In prediabetes patients, sensory axons are more vul-
nerable than motor axons, and the nerve excitability parameter
that is most sensitive to hyperglycemia is superexcitability. Sen-
sory axonal superexcitability is the most sensitive parameter in
preclinical neurophysiological dysfunction in prediabetes. The
present results show that sensory axonal superexcitability has a
significantly positive correlation with fasting plasma glucose
and HbA1c. Sensory nerve excitability provides a non-invasive
tool for early detection to prevent the progression of diabetic
neuropathy.
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