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The immune system plays a vital role in health and disease, and is regulated through a
complex interactive network of many different immune cells and mediators. To understand
the complexity of the immune system, we propose to apply a multi-omics approach in
immunological research. This review provides a complete overview of available
methodological approaches for the different omics data layers relevant for
immunological research, including genetics, epigenetics, transcriptomics, proteomics,
metabolomics, and cellomics. Thereafter, we describe the various methods for data
analysis as well as how to integrate different layers of omics data. Finally, we discuss the
possible applications of multi-omics studies and opportunities they provide for
understanding the complex regulatory networks as well as immune variation in various
immune-related diseases.
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INTRODUCTION

Infections cause millions of deaths each year, and the current COVID-19 pandemic underlines the
devastating effects of these communicable diseases. At the same time, the incidence of immune-
related diseases such as atherosclerosis (1) and autoimmune diseases such as type 1 diabetes mellitus
(2) have been increasing. All these diseases are related to or mediated by the immune system. Thus,
the immune system plays a vital role in health and disease, and it is our defense mechanism against
harmful substances, infectious diseases and cancer. Within a properly functioning immune system,
immune responses should be kept in a certain range, as both hypo-activation and hyper-activation
lead to disorders of the immune system. Understanding how the immune system works and what
causes the immune system disorders may help us to efficiently fight against immune-
related diseases.

However, getting a comprehensive understanding of the immune system is a challenging task.
First of all, the immune response is mediated through a complex interactive network of many
different immune cells and molecules, such as cytokines, immunoglobulins, and metabolites. At the
same time, this network is highly variable depending on the exact threat of the wide variety of
pathogens and other substances it’s responding to. To make things even more complex, the immune
org June 2021 | Volume 12 | Article 6680451
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response to a certain stimulus or infection is highly variable
between individuals, leading to population heterogeneity. This
heterogeneity is exemplified by differences in severity of patients
suffering from the same infectious disease (3), variability in
vaccine efficacy (4), and variation in responses to the same
medical treatment (5). Many factors contribute to the immune
network and the inter-individual variation of immune responses,
highlighting both the promise and the challenge of multi-
omics studies.

Until now, omics data have been used in many immunological
studies to identify the determinants of immune variation and
molecular bases of the immune process in different population
groups. Properly designed omics studies should make use of
appropriate measurements as well as reasonable analytic
approaches, which depend on their specific research question.
Taking omics studies on COVID-19 as an example, a genome-
wide association study revealed eight genetic regions to be
associated with critical illness in COVID-19. By integrating
both genome and transcriptome data, the authors prioritized
one gene, IFNAR2, that might play a causal role in COVID-19 (6).
Another study, focusing on transcriptome data of immune cells
from the lung and blood, identified several pro-inflammatory
immune pathways related to the pathogenesis of COVID-19 (7).
A proteomics and metabolomics study investigated the
changes in COVID-19 patient sera, and identified molecular
changes implicating dysregulation in macrophage pathways,
complement activation, and platelet degranulation, as well as
suppression of metabolic pathways (8). A cellomics and single-
cell transcriptome study also revealed dysregulation of the
monocyte compartment as well as two neutrophils clusters
specific to severe COVID-19 patients (9). Moreover, a study
integrating single-cell transcriptome, cellomics, epigenome and
proteome comprehensively characterized complex dynamic
changes in immune cells. Their results disclose an elevation of
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IFN-act ivated megakaryocytes and erythroid cel ls ,
hypomethylations around immune signaling genes, and co-
expression modules associated with clinical outcome (10).
Additionally, a study on fecal fungal microbiota of COVID-19
patients showed enrichment of Candia albicans and a highly
heterogeneous mycobiome configuration during hospitalization
(11). From different angles, these studies make use of omics data
to provide insights in the molecular pathology of COVID-19,
which can eventually lead to improved therapeutic strategies.

In this review, we present an introduction to multi-omics
studies to investigate immune function and variation. The review
is split into three parts. In the first section, we describe in brief
about the different layers of omics data relevant for
immunological research, including genome, epigenome,
transcriptome, proteome, metabolome, digestive system
microbiota and cellomics (12) [also called cytomics (13)]
(Figure 1), and the commonly used methodological
approaches to measure these different types of omics data. We
also discuss important considerations and recommendations for
an appropriate study design. In the second section, we discuss
how to analyze and integrate multiple omics platforms, including
system genetic approaches to identify genetic factors, integration
among multiple genetic profiles, as well as the integration and
association with other omics data layers. We demonstrate
how recent studies applied a multi-omics approach to the
immune system researches, and we discuss the interpretation
of results from different approaches and their importance in
immunological studies. In the third section, we discuss the
immunological subjects that need specific attention and may
see progress in the next few years. As for detailed information on
computational algorithms and models in multi-omics
integration (14, 15), imputation on missing omics data (16),
and strengths and limitations of system approaches in infectious
diseases research (17), we refer readers to other recent reviews.
FIGURE 1 | Overview of omics data.
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MEASUREMENTS OF OMICS DATA

We can identify potential immunological mediators and study
immune phenotypes with a wide range of omics comprising of
various molecular and cellular phenotypes including genome,
epigenome, transcriptome, proteome, metabolome, digestive
system microbiota and cellular phenotypes such as cell
composition (Table 1). A single omics data layer characterizes
a specific biological process from one aspect, for example,
transcriptome, but this can only provide insights on genes at a
transcriptional level. To achieve a holistic picture of the immune
system, a systematic collection of multi-omics data is often
required. The tissue (or source) to be measured is another
important aspect to be considered. For example, the genome is
usually regarded as a stable feature for each individual and
collected from an easily accessible tissue, such as blood. Only
in some specific contexts, somatic mutations acquired after birth
have to be considered and measured in specific tissues (18).
However, many other types of omics, such as transcriptome,
proteome and metabolome, vary between cell types and tissues.
Therefore, it is important to consider the tissue in your
experimental design and aim to get as close to the relevant
tissue as possible.

Given the complexity of the immune system, there is no
golden standard for what to collect in multi-omics studies. The
necessary data depends on the research question and subjects.
Understanding the different layers of omics data is helpful for
setting up an appropriate study design. Therefore, in this part, we
introduce features and categories of different omics, and describe
important considerations when generating these data.
GENOME VARIATION MEASUREMENT

Genotyping detects diversity in the genome. It describes small
variations, such as single-nucleotide polymorphisms (SNPs),
insertion/deletions (InDels) as well as large-scale mutations
such as insertions, deletions and amplifications. Genetic
diversity can lead to variation in individual immune
function (19).
Frontiers in Immunology | www.frontiersin.org 3
To date, many techniques can be used for detecting
genotypes, including DNA sequencing, DNA microarrays (also
known as genotyping chips) and PCR-based methods. These
approaches can be categorized based on their measurement
scales (high-throughput vs. low-throughput methods) or based
on whether they include unknown variants (discovery vs.
screening methods). Classical sequencing-based approaches
detect genetic variants in a nearly unbiased manner on the
genome (whole-genome sequencing) or within the exome
regions (whole-exome sequencing), including known or novel
SNPs as well as structural mutation such as short insertions,
deletions, and copy number variations.

Considering the cost and effectiveness of genotyping scales
and cohort sizes, most of the population-based association
studies choose genotyping screening methods, such as DNA
microarrays. These methods measure thousands to millions of
known SNPs in well-studied organisms, such as humans and
mice. The targeted polymorphisms depend on the chip designs.
For example, Immunochip contains 196,524 polymorphisms
(718 InDels and 195,806 SNPs) on most reported loci involved
in autoimmune and inflammatory diseases (20), whereas other
custom genotyping chips contain loci designed for specific
research areas, such as Metabochip (21) or cardiovascular
disease chip (22). The number of variants that can be detected
using genotyping chips has increased over the years, but even the
high-density 5 million SNPs chip (Illumina OMNI5) covers only
a small fraction of the 3.3 billion bases in the human genome.

In order to improve the power in discovering genetic
associations on the regions poorly covered by DNA
microarrays, genotype imputation approaches are often used to
expand the coverage. For example, a commonly used genetic
imputation server (https://imputationserver.sph.umich.edu/
index.html#)! takes the ~60,000 public available human
haplotypes, covering ~40,000,000 SNPs, as a reference to
impute millions of missing SNPs based on the measured
genotypes and linkage disequilibrium (LD) structures (23).

Before association analysis, genotype data should pass a
standard quality control (QC) at both individual level and SNP
levels. Individuals with discordant sex information, outlying
missing genotype or heterozygosity rate should be excluded
TABLE 1 | Typical approaches in omics measurements.

sequencing-based microarray-based others

genetics whole-genome-seq, whole-exome-seq Illumina OMNI5, Immunochip etc. –

epigenetics ATAC-seq, whole-genome bisulfite-seq, RRBS-seq, DNase-
seq, FAIRE-seq, ChIP-seq, etc.

MethylationEPIC BeadChip, ChIP-chip, etc. –

3D
chromosome

Hi-C, etc. – –

gene
expression

RNA-seq, scRNA-seq, SLAM-seq Affymetrix Genome U133 array, Illumina Whole-Genome
Gene Expression BeadChips, etc.

–

protein level – – Immunoassay, MS -based
approaches

metabolites – – NMR, MS-based
approaches

microbiome 16s rRNA-seq, metagenomics, etc. – –

cellomics single cell sequencing approaches – FCM, CyTOF
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(24). Duplicates and relatives could be identified by calculating
identity by descent (IBD), and a multi-dimensional scaling plot
merging with reference data such as the 1000 Genomes project
(25) could help with the identification of individuals of divergent
ancestry. SNPs failed in genotyping and/or imputation and SNPs
with low frequency and/or that deviate from the Hardy-
Weinberg equilibrium are commonly removed before
association analysis, especially in array-based studies, because
those signals usually relate to bad genotyping quality. However,
some SNPs with low frequency may also contribute to rare
diseases or phenotypes. With the increase in genotyping
quality, more and more recent studies focus on the function of
rare alleles (minor allele frequency [MAF] < 0.01) (26–29).
EPIGENOME AND 3D CHROMOSOME
MEASUREMENT

Epigenetics describes the study of chromatin traits (either in
DNA or histones) that do not involve changes in the nucleotide
sequence. Epigenetics measurements are mainly characterized by
the changes in histone modification (methylation and
acetylation), DNA methylation, chromatin modification,
chromatin accessibility, and chromosome structure.

DNA methylation is the process of adding methyl groups to
DNA molecules, almost exclusively in CpG dinucleotides with
the cytosines on both strands being methylated. This process
usually acts in promoter regions to repress gene transcription,
and abnormal hypermethylation, which results in transcriptional
silencing, is often associated with immune diseases or used as a
biomarker (30). Genome-wide techniques, such as whole-
genome bisulfi te sequencing (WGBS) (31) , reduce
representation bisulfite sequencing (RRBS-seq) (32) and other
non-targeted DNA methylation profiles, provide an opportunity
to discover novel biomarkers. Other techniques, such as bisulfite-
amplicon sequencing (BSAS) (33) and methylation arrays (34),
detect the methylation status of CpG dinucleotides. Similar to
genotyping arrays, the targeted regions from methylation arrays
are based on the chip design. For the study of the human
immune system, some well-established arrays can provide
comprehensive coverage. For example, MethylationEPIC
BeadChip covers over 850,000 methylation sites, making it
ideal for an epigenome association study within big cohorts (35).

As the essential proteins that pack and order the DNA into
structural units, histones play a role in gene regulation (36).
Histone modification describes the post-translational
modifications of histones, including methylation, acetylation
and others. Histone methylation often occurs as arginine (R),
lysine (K), or histidine (H) residues of histone H3 or H4 being
monomethylated (me1), demethylated (me2), or trimethylated
(me3). Array-based and sequencing-based approaches, such as
ChIP-chip and ChIP-seq (37), are used to identify specific
histone modifications that bind to DNA regions or domains.

Chromatin modifications and accessibility is another
important aspect of epigenetic changes. One of the most
widely-used techniques to capture chromatin accessibility is
Frontiers in Immunology | www.frontiersin.org 4
called Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq). A standard “bulk” ATAC-seq
measurement detects genome-wide open chromatin within a
pooled sample or tissue, while in order to capture cellular
heterogeneity, single-cell ATAC-seq measures chromatin
accessibility in thousands of individual cells, which can
generate genome-wide profiles from 10k to 100k cells per
experiment (38). Alternative techniques are also used to
investigate chromatin phenomena, such as DNase-seq and
FAIRE-seq, which measure open chromatin in regulatory
regions, MNase, which identifies well-positioned nucleosomes,
and ChIP-seq, which is used to detect binding sites of specific
transcription factors (39).

Most epigenetic measurements also come with technical
errors and biases. Biological replicates and technical replicates
can help to characterize variability between samples and
sequencing runs. Putting replicates of different conditions in
the same batch is also important to avoid batch effects
confounding treatment effects. Large projects, such as the
Encyclopedia of DNA Elements (ENCODE), have provided
standard pipelines for processing many types of epigenetic
data, such as ChIP-seq and ATAC-seq. However, this is not
applicable in all cases. Applying appropriate QC strategies and
software that accounts for bias effects according to the
experiment design is essential to obtain robust results. To
increase the coverage of epigenetic measurements, several
methods, such as ChromImpute (40), Melissa (41), Avocado
(42), and SCALE (43), provide imputation approaches for
different epigenetic markers. However, the existing imputation
approaches have several limitations (16), and are not as widely
applied as genotype imputation methods.

3D chromosome structure describes how chromosomes are
folded, packaged, and organized into functional compartments,
and how different compartments are interconnected. Orthogonal
ligation-based approaches include DNA-FISH, which can help
with nuclear architecture visualization, and chromosome
conformation capture (3C) techniques. One of the 3C
techniques, Hi-C, is the most widely used approach to detect
interactions between different genome regions (in gigabase-
scales) (39, 44). Single-cell adaptation of Hi-C methods are
also used to investigate the interactions in individual cells (45).

Ligation-based approaches have the limitation of detecting
DNA fragments connected with multiple genomic regions. To
overcome this limitation, orthogonal ligation-free methods
including genome architecture mapping (GAM) (46), split pool
recognition of interactions by tag extension (SPRITE) (47) and
chromatin-interaction analysis via droplet-based and barcode-
linked sequencing (ChIA-Drop) (48) were developed.
TRANSCRIPTOME MEASUREMENT

The transcriptome comprises all RNA molecules, both coding
and non-coding transcripts, in a single or population of cells.
Traditional qPCR techniques can only quantify a limited number
of genes at the same time. The most commonly used high-
June 2021 | Volume 12 | Article 668045
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throughput techniques are RNA sequencing (RNA-seq) and
microarray, and they can detect a large number of genes.
Similar to genotyping methods, a sequencing-based approach
(RNA-seq) can quantify the entire transcriptome, while
microarray-based approaches (e.g., Affymetrix Genome U133
array and Illumina Whole-Genome Gene Expression
BeadChips) are designed to target most known genes. In
addition, a typical RNA-seq can detect alternative splicing and
rare isoforms, which microarray-based techniques cannot.

Certain coverage is required for sequencing data, which
depends on the aim of the study. For instance, a bulk RNA-seq
study for human differential expression profiling requires 10-25
million reads per sample, while alternative splicing or allele-
specific expression analysis need 50-100 million, and identifying
novel transcripts requires >100 million reads per sample.

However, a “bulk” like measurement of transcriptome cannot
deal with the cell heterogeneity and can be influenced by cell
composition changes. Single-cell RNA sequencing (scRNA-seq)
was designed to uncover the transcriptome diversity in
heterogeneous samples, characterizing the transcriptome in cell
resolution. There are several approaches of scRNA-seq, among
them are plate-based (Smart-seq2) (49) and droplet-based (10x
Genomics) the most commonly used ones. Usually, as few as
10,000 to 50,000 reads per cell are enough to detect cell types, and
500,000 reads can cover most of the genes (50).

In order to increase exonic coverage and accuracy of gene
quantification, polyA selection library preparation is commonly
applied in scRNA-seq approaches such as 10x scRNA-seq (51).
This will, however, miss the important immune repertoire
profiling, such as B-cell and T-cell receptors, which is mainly
distinguished by their 5’ mRNA sequences. Thus, sequencing
facilities, such as 10x genomics, provide full length paired B-cell
and T-cell repertoire sequencing, simultaneously, when
examining cellular gene expression level. Combined with
transcription measurement, this information can improve our
understanding of clonal expansion and better characterize
immune cell heterogeneity and functions (52).

SLAM-seq detects the newly synthesized RNAs using a
metabolic RNA labeling approach. Compared to the other
scRNA-seq techniques , this method can track the
transcriptome dynamics (53). For example, scSLAM-seq was
applied to characterize the onset of infection with lytic
cytomegalovirus in single mouse fibroblasts (54).

The transcriptome reflects the dynamic changes in biological
processes, which is much more unstable. So, an appropriate
sampling strategy on transcriptome data is crucial. In addition to
the quality control, normalization is usually performed within a
sample and between samples. When considering comparison
analysis, it is also necessary to have biological replicates and
check for batch effects using clustering-based approaches. There
are many computational tools handling batch effects. Of note,
integration approaches (55), as included in Seurat (56) and
Harmony (57) packages, are commonly used in scRNA-seq
analysis which detect the consistent cell type signals from
different batches or measurements. However, when the batch
difference is confounded with other group information, it will be
Frontiers in Immunology | www.frontiersin.org 5
tough to filter out the batch effects. In addition to batches, it is
also important to consider other potential confounders in
experiment design. For example, transcriptional differences
were observed between males and females in COVID-19
patients (58), thus a gender-balanced design in a case-control
study will lead to an unbiased conclusion for COVID-19.
Moreover, when considering sampling tissues for immune
responses, circulating leukocytes are often measured for
systemic inflammatory responses, while inflamed tissues are
measured for local inflammatory responses. In order to expand
the capacity, deconvolution approaches have been applied to
bulk RNA-seq data to characterize cell type compositions (59,
60), while expression recovery methods have been applied to
single-cell RNA-seq data to reduce the dropout noise (61, 62).
Like imputation approaches in genome and epigenome studies,
one should be aware and careful with the potential false signals in
these recovery or deconvolution approaches.
PROTEOME AND METABOLOME
MEASUREMENT

Proteins are the major transcriptional products and functional
units in the immune system. Immune molecules like
immunoglobulins and cytokines are usually detected and/or
quantified by immunoassays such as immunofluorescent
staining, enzyme-linked immunosorbent assay (ELISA),
enzyme multiplied immunoassay technique (EMIT), or mass
spectrometry (MS)-based approaches.

In addition to independent measurement, proteins can be also
measured together with RNA transcripts. CITE-seq provides an
opportunity of identifying surface proteins along with RNA-seq.
This approach is often used for cell labeling in scRNA-seq (63).
Cells in different research groups (e.g., under different
treatments, from different tissues) could be labeled with
different antibodies as hashtags, then sequenced together as
one pool. This process has two advantages: decreasing cost and
excluding potential batch effects. In addition, as we also know
that some immune cell types have specific cell markers, this
approach can also be used to identify cell types. For example, the
detection of CD3e, CD4 and CD8a proteins on the cell surface
could help to distinguish CD4 T cells from CD8 T cells (64).
Moreover, there is a new technique called INs-seq, which can
measure intracellular protein activity along with scRNA-seq.
This new technique shows a large potential of applications in
immune-related studies (65).

The study of metabolic processes that regulate immune cell
responses, which is referred to as immunometabolism, has
become an exciting area in translational research, and is paving
the way for novel therapies in immune-related diseases. The
intermediate or end products of cellular metabolism are
metabolites, which include, but are not limited to, lipids, fatty
acids, amino acids, bile acids, and cholesterols. Considering the
regulatory effects of metabolites on the immune response (12, 66,
67), the metabolome has become an important subject to study
in immunological research.
June 2021 | Volume 12 | Article 668045
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Approaches to study the metabolome can be classified into
targeted and non-targeted techniques. Nuclear magnetic
resonance (NMR) spectroscopy is one of the most commonly
used techniques, detecting specific nuclei in the target molecule
(68). Compared to NMR, mass spectrometry (MS)-based
approaches are more high-throughput and quantify
metabolites in a non-targeted way, which detect mass-to-
charge ratio (69). However, MS-based approaches have a
limitation in annotating metabolites, which is the major
drawback of this method in contrast to NMR. Metabolites data
could be acquired from different sources of samples. Among
them, circulating metabolites are the most commonly measured.
There are also many studies about fecal and urine metabolites.

Similar to transcriptome analysis, a proper normalization
(usually a log transformation) is required in both the proteome
and metabolome data process. Secondly, biological replicates and
batch effects have to be taken into consideration as well. In
addition to linear regression, more advanced computational
tools, such as ROIMCR (70), can also be used to reduce the
batch effects and to identify metabolites that associate with
immune responses. In terms of sampling tissues, in addition to
blood cells and inflamed tissues, proteome and metabolome can
also be measured in urine, which is thought to be a rich source
but underestimated in recent studies (71–73). In addition, fecal
metabolites are usually studied together with microbiota, which
affects immune homeostasis and susceptibility of the host to
immune-mediated diseases. Of note, there is a recent study
reporting a reference map for serum metabolites (74), which
can serve as a guide to control for irrelevant confounders in
serum metabolite studies.
DIGESTIVE SYSTEM MICROBIOTA
MEASUREMENT

Microbiota refer to all micro-organisms in a certain
environment, for example the human digestive system. It has
been reported to vary among individuals, to influence host
immune functionality and to be involved in immune-mediated
disease pathology (75–77). The commonly used approaches to
study microbiota include 16s rRNA sequencing and
metagenomics sequencing. After excluding host (human)
reads, microbiota reads are aligned to the known microbiome
genomes to identify the taxonomies and abundance. While there
are also other omics approaches including metatranscriptomics,
metaproteomics, and metabolomics, which target transcripts,
proteins, or metabolites from microbiota (78).

Of note, studies on human microbiota usually have relatively
low concordance compared to other omics data studies. A recent
study has reported a number of host variables that could
confound human gut microbiota researches. To be exact, body
mass index (BMI), sex, age, geographical location, alcohol
consumption, bowel movement quality (BMQ), and diet
should be balanced in cases and controls when comparing gut
microbiota compositions (79). In the context of sample
collection, most of the microbiota samples are acquired from
Frontiers in Immunology | www.frontiersin.org 6
the stool, while urine and exhaled gas could be another
important resource for microbiome detection (80, 81).
CELLOMICS MEASUREMENTS

Cellomics measurements often reveal the systemic responses at
the level of cells and tissues, typically including cell composition,
cellular localization and trafficking analyses. Cell composition is
measured as cell type abundance or proportion, which is
commonly quantified by flow and mass cytometry (82) (FCM
and CyTOF) or single-cell sequencing techniques. With the help
of cell surface markers or cellular-specific expression markers,
both techniques can characterize hundreds of circulating cell
subpopulations covering major immune cells involved in innate
and adaptive immune responses (i.e., neutrophils, monocytes,
lymphocytes, and their subtypes). Additionally, high-content
screening (HCS) is commonly used to track cellular changes,
including their localization, trafficking and morphologic
phenotypes (83, 84).
SYSTEMS ANALYSIS ON OMICS DATA

After data collection and pre-processing with appropriate
strategies, the next big challenge lies in linking different omics
datasets and clinical phenotypes. For a certain trait or disease, a
systems model can be built to specify the role and effect of
different data layers. In this model, the qualitative or quantitative
characteristics are linked by their relationships, which need to be
estimated via comparison, association and other systems
approaches. These links can simply be a correlation, or a
regulatory or causal effect. In this section, we introduce general
system approaches among different omics data and provide
representative examples of how they can be applied in
immunological studies.
GENOME-WIDE ASSOCIATION ANALYSIS
AND QUANTITATIVE TRAIT
LOCUS MAPPING

Genome-wide association studies (GWAS) aim to scan the whole
genome to find genetic determinants of certain traits. When
considering a binary trait (e.g., case-control), we compare allele
frequency in two groups of individuals, for example one disease
group and one healthy group. A chi-squared test is often applied
to test for statistical significance. It is usually considered that
there are ~1,000,000 independent loci in the human genome, so a
p-value less than the Bonferroni corrected threshold of 0.05/
1,000,000 (5 × 10-8) is regarded to be genome-wide
significant (85).

To date, GWAS have identified ~5000 genetic risk loci of
immune-related diseases in ~400 studies (86). Those findings
improved our understanding of genetic factors influencing
June 2021 | Volume 12 | Article 668045
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immune-mediated diseases, further pointing to the genetic basis
of pathology as well as treatment targets.

Generally, GWAS identify pathogenetic genetic factors
contributing to phenotypes (diseases), though those variants
will not cause disease directly but affect intermediate
molecules. Quantitative trait locus (QTL) analysis is a
statistical method to discover the genetic basis of the
intermediated phenotypes, such as gene expression (eQTL)
(87), splicing (sQTL) (88), metabolites (mQTL) (29),
methylation (meQTL) (89, 90), and immune traits (91, 92).

After data normalization, a linear regression between each
genetic variant and each quantitative trait is applied. Covariates
are crucial aspects of the regression model of QTL analysis. Based
on the type of omics, different covariates should be included in
the model to correct the detected phenotypes. In general, basic
host features such as age and sex are considered, and a
population structure has to be additionally taken into account,
especially in large cohorts with samples from admixed ancestry
(93, 94).

eQTLs are the associations between SNPs and expression of
genes, which provide insights of the function of genetic variants.
eQTLs can explain 10% - 50% heritability of a phenotype/disease
(95), which means that gene expression variation is one of the
major consequences of genetic variants. It is very useful for
prioritizing pathogenic genes when there is an association
between a gene expression and a pathogenic genetic variant.
Based on the position, eQTLs are classified into cis-eQTL (eQTL
within 1Mb of the gene) and trans-eQTL (eQTL located outside
1Mb of the gene). Among them, trans-eQTLs are more tissue-
specific than cis-eQTLs (88). Of note, tissue-specific eQTLs
provide a way for prioritizing pathogenic tissues (96).

QTL analysis on epigenome identifies the associations
between genetic variants and epigenetic modification. Most
genome-wide significant disease-associated loci (~93%) are
located in non-coding regions (97), particularly, regulatory
elements identified by ENCODE (98) and Roadmap projects
(99). These observations highlight the importance of epigenome
in the genetic regulation of diseases and immune functionality.
Similar to eQTL analysis, this analysis could help us find the
potential epigenetic mechanism responsible for the association
between genetic variants and immune traits/diseases. For
example, a study investigated genetic variants that affect the
activity of cis-regulatory domains (aCRD-QTLs) or correlation
structure within cis-regulatory domains (sCRD-QTLs) in 317
lymphoblastoid and 78 fibroblast cell lines, and their
consequence on gene expression (100). At the same time,
genetic variants can also affect methylation (meQTL) by
influencing the binding of DNA methyltransferase (DNA
MTase). Large meQTL studies in blood samples showed
significant enrichment in autoimmune diseases such as
ulcerative colitis and Crohn’s disease (101).

pQTL mirrors the associations between genetic variants and
protein level. About 40% of cis-protein quantitative trait loci
(pQTLs) are also eQTLs, as expected, indicating a sequential
genetic regulation between gene expression level and protein
levels. By applying pQTL analysis, we could identify the potential
Frontiers in Immunology | www.frontiersin.org 7
mechanism, at the protein expression level, behind the
association from genetic variants to immune-related
phenotypes. Same as with cis-eQTLs, cis-pQTLs are also
located around transcription start sites (TSS). Notably, pQTL
showed a significant enrichment on missense, 3UTR and splice
region (102). pQTLs could also help with prioritizing causal
proteins/genes of immune traits/diseases. For example, a pQTL
of serum IL18R1 and IL1RL1 also associates with atopic
dermatitis. This association between genetic locus and protein
level indicates a possible involvement of IL18R1 and IL1RL1 in
atopic dermatitis pathology (102).

Metabolites that mediate the association between genetic
variants to immune functionality and immune diseases could
be discovered in an mQTL analysis. More than 140 genomic loci
are associated with circulating metabolite features explaining a
median 6.9% heritability (103). Overlaps between mQTLs and
immune traits QTLs suggest the role of metabolic processes in
the genetic regulation of immune functionality. For instance, a
mQTL study indicates that mQTL loci ARHGEF3 (rs1354034)
and LRRC8A (rs13297295) also affect platelet function and
neutrophil function, respectively (104).

Immune phenotypes such as circulating immune cell
proportion and cytokine production capacity in response to
stimulations are crucial parameters when characterizing
immune activities. Understanding the genetic determinants of
immune phenotypes can provide insights into immune function
and immune-mediated diseases. A human functional genomics
project has identified >20 genetic factors determining immune
cell proportions and cytokine production upon stimulations,
which provided a link between genetic control and inter-
individual variation (92, 105).
INTEGRATION OF MULTIPLE GENETIC
ASSOCIATION PROFILES

In the context of immunological research, multiple diseases, and
molecular and cellular phenotypes can be regulated by the same
genetic factors, indicating an internal association between them.
Integration with multiple genetic profiles can provide insights
and build connections between associated phenotypes. Ideally,
such genetic profiles can be directly built from GWAS and QTL
analysis of different layers from the same individuals. Otherwise,
they can be also collected from different population-based
cohorts. A number of computational approaches have been
developed to discover the link. In particular, approaches like
colocalization (106), genetic correlation (107) and Mendelian
randomization (MR) (108) take genetic variants as the
instrumental variables to infer the association or causality
when multiple traits are associated with the same locus.

Colocalization analysis evaluates the association from each of
the single locus, and it helps to identify the phenotypes that share
the same genetic regulation. Examples of colocalization analysis
include a study integrating genetics, epigenetics and
transcription to identify colocalization of molecular traits from
CD14+ monocytes, CD16+ neutrophils and naïve CD4+ T cells
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(109). Results from this analysis illustrate molecular mechanism
at autoimmune diseases-associated variants, including an
alternative splicing signal around SP140 in T cells which might
be involved in Crohn’s disease pathology.

Genetic correlation considers the full summary statistics to
describe to which extent the genetic background is shared
between two phenotypes. An example from a LD regression-
based genetic correlation approach showed a shared genetic basis
of autoimmune diseases such as Celiac disease and type 1
diabetes (107). This indicates a similar pathological mechanism
between these two diseases.

MR is a statistical method working on the step from
association to causality. If one trait (exposure) is causal to
another trait (outcome), then the genetic factors contributing
to the exposure should also contribute to the outcome. This
would be reflected in the correlation between effect sizes of
the same genetic variant on exposure and outcome. There are
many examples of immune-related studies that applied MR,
which led to the identification of causal relationships between
IL-6 signaling and rheumatoid arthritis (110), IL-18 and
inflammatory bowel disease (111) and between eosinophilic
indices and asthma (26).
COMPARISON AND ASSOCIATION OF
EPIGENOME AND 3D
CHROMOSOME STRUCTURES

Systems analysis of epigenetic changes can investigate their
influence on and changes induced by immune functionality
or variation as well as disease susceptibility and development
(112, 113). As an example, the impact of cytokines was studied
on the epigenome of insulin releasing cells (b cells) from type 1
diabetes pancreases. By measuring ATAC-seq, Chip-seq and
RNA-seq, the authors identified proinflammatory cytokines
induced neo/primed epigenetic events in human b cells (114).
Moreover, in immune systems, the effects of epigenetic changes
lead to long-term alterations in the metabolic and transcriptional
pathways, and further induce immune memory (115) or
immunological diseases (116). Thus, epigenomics is another
vital area for better understanding of the personalized
immune system.

While genetics is stable, the epigenome is subject to dynamic
changes, which can be induced or affected by host and
environmental factors, such as smoking, drug usage, diet,
aging, inflammation, disease, and exposure to pets.
Considering that epigenetic changes affect gene transcription
levels, the epigenome is a pivotal part to study when trying to
understand immunological networks.

In a case-control study, differential accessible regions (DARs)
could be identified in an ATAC-seq data, as well as differential
methylation positions/regions (DMP/DMRs) in bisulfite
sequencing and methylation array. Instead of comparison
analysis, association analysis is applied to continuous
phenotypes to get associated regions. Upon the position of
acquired regions, we could further map them to the
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corresponding genes. More specifically, by checking which
gene TSS regions are overlapped with the peaks/regions, the
peaks/regions could be matched to genes, and then for pathway
analysis to get more biological meanings. For example, in a
multi-omics study on mixed-phenotype acute leukemia,
researchers associated scATAC-seq with transcription
responses from scRNA-seq and antibody captured from CITE-
seq. Despite widespread epigenetic heterogeneity of chromatin
accessibility within patients, they reported common malignant
signatures across patients, and thus revealed both distinct and
shared molecular mechanisms of mixed-phenotype acute
leukemia (117).

Another application of epigenetic analysis is to annotate the
function of the identified regions, based on the signals from
epigenetic markers. A tool (118) used a multivariate hidden
Markov model applied to annotate regulatory elements (e.g.,
Transcription starting sites, enhancers, promoters) with histone
markers (e.g. H3K4me1, H3K4me3, H3K27me3, H3K9me3,
H3K36me3) binds to the chromosomes. Applying this method,
an example learnt the chromatin states in mice and humans, and
reported the up-regulation of immune regulatory regions in
Alzheimer’s disease (119).

The analyses on 3D chromosomes are generally similar. In a
case-control study with Hi-C data, we could get the
compartment switches in a comparative analysis. We could
further predict the interactions between those segments (120).
Referring public epigenetic databases or genome annotations, we
could check the overlap between switched compartments or
interactions and known epigenetic markers or elements. Based
on this information, we could again associate the changes with
other immune profiles or annotate the involved regulatory
elements. For example, in a study of lineage commitment of
early T cells with Hi-C data, authors found wide compartment
re-organizations across chromosomes from a transition between
T cell double-negative-2 stage to double-negative-3 stage, and
later double-negative-4 stage to double-positive stage. They
annotated the changes with domain scores, and more
interestingly, they found the changes in the domain scores
between the two transitions are positively correlated, which
suggests the re-organization at the former transition is actually
reinforced at the later transition (121). Another example includes
a study on activated T cells, that identified activation-sensitive
interactions related to autoimmune diseases captured by Hi-C
data (122).

To capture the changes that occur in cellular activation and
differentiation, time-series study is another hot topic in
associating epigenome and 3D chromosome structures to
immune responses. For example, a recent study elucidates
the chromosome conformational changes in B lymphocytes
as they differentiate and expand from a naive, quiescent state
into antibody secreting plasma cells (123). The authors reveal
that the changes to 3D chromatin structure occur in two discrete
windows, associated with prolonged time in the G1 phase of the
cell cycle. Their results also suggest chromosome reconfiguration
is linked to a gene expression program that controls
the differentiation process required for the generation
of immunity.
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COMPARISON AND ASSOCIATION OF
TRANSCRIPTOME AND PROTEOME

As the downstream products of genetic and epigenetic
regulation, transcriptome and proteome changes directly reflect
the influence of genetic and epigenetic variants. Comparison and
association studies of transcriptome and proteome have allowed
researchers to estimate functional units and validate hypotheses
in immune regulation.

As for a case-control study, the first and direct analysis is
identifying differentially expressed genes/proteins (DEGs/DEPs),
followed by pathway analysis. If the corresponding phenotypes
are continuous, then associated genes/proteins will be identified
before pathway analysis. Examples include many transcriptome/
proteome studies upon the severe infectious disease COVID-19.
Transcriptome measurement across samples from healthy,
moderate patients and severe patients suggests an overall acute
inflammatory response in COVID-19 patients, whereas
transcriptional responses of high cytotoxic effector T cells are
associated with moderate patients, and deranged interferon
responses are associated with severe patients (124). Moreover,
a urine proteome study identified 1986 urine proteins showing
significant level changes in COVID-19 patients than in healthy
controls (125).

Different from bulk RNA-seq, the adding information in
scRNA-seq: cell composition, provides more analysis
potentials. In a case-control study, in addition to DEGs and
enriched pathways identification within each cell cluster/type,
cell proportion could be compared between groups while novel
cell subpopulation could also be identified in particular cases. For
example, a scRNA-seq on two COVID-19 cohorts reported
identical dysfunctional neutrophil clusters in severe patients’
blood (9). When considering the TCR/BCR analysis, it would
be interesting to explore the clonotype expansion and diversity
under different conditions (126, 127), immune development
stages (52), or antigen specificity (128). Usually, a clonal
expansion means an adaptive immune response targeting
certain stimulation, since a certain receptor is the mediator of
specific antigen recognition.

Since transcriptome/proteome data is rapidly responding to
environmental changes, with the transcriptome/proteome
analysis in a time-series study, we could associate the dynamics
with infection or stimulation to comprehensively understand the
host immune responses. A nice example is demonstrated in a
study of influenza vaccination efficiency, where authors
measured the hemagglutination-inhibition (HAI) antibody
titers and transcriptional responses at baseline and multiple
time points post-vaccination. By comparing the profiles
between day 28 and day 180, the authors describe individual
categories as temporary and persistent responders and illustrate
the underneath molecular mechanism (129). Many approaches
have been developed for time-series studies, such as regression-
based method like maSigPro (130) and a fusion method like O2-
PLS (131). Of note, the dynamic study can also be achieved by
applying a trajectory analysis such as pseudotime analysis (132,
133) and RNA velocity analysis (134) in scRNA-seq analyses. In
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a recent study on COVID-19, researchers longitudinally
measured samples at several time-point after symptoms, and
applied pseudo-time trajectory inference on scRNA-seq data of
epithelial cells from the upper respiratory tract. Based on the
trajectory, they predicted a new, alternative differentiation
pathway that is dependent on the interferon response and
marked by interferon-stimulated genes, such as ISG15, IFIT1,
and CXCL10 (135).

Co-expression analysis among transcriptome or proteome
provided information about gene co-regulation and
interactions. These co-expression relationships are inferred by
different association methods, such as a weighted gene co-
expression network analysis (WGCNA) (136) applied on
transcriptome to identify consistent expression patterns among
genes. The identified associations among gene expression could
be applied to predict gene co-regulatory networks, further to
prioritize genes involved in the same pathways (137). At protein
level, parts of these co-expression relationships could further be
explained by protein-protein interactions, which are also
collected by several protein-protein interaction databases,
including the innateDB (138) who particularly focus on
immune interactions. In application, similar to gene co-
expression networks, protein-protein interaction relationships
could help with functional/pathway enrichment analysis (139).

In the recent single-cell experiments, the co-expression
relationships are further applied to predict the cell-cell
interactions. By detecting the correlation between known
ligand and receptor genes among different cell sub clusters, we
could infer the potential communications between cell
populations (140). This analysis fits well with immune network
analysis. For example, by detecting ligand and receptor genes
signals, a recent study identified cross-talks between CD8+ T
cells and epithelial cells altered in the colon of ulcerative colitis
patients compared to healthy controls (141). Additional
methods, such as NicheNet (142), also take knowledge of gene
regulatory networks or protein-protein interaction networks
from public databases and literatures, then build a model to
further predict the activated targets of the cell-cell interactions by
correlating the ligands expression level with its potential
downstream gene or protein level interactions. In an example
study of cell-cell interaction underlying the tissue-specific
imprinting of macrophages, the authors deciphered the
interaction signals driving monocyte recruitment, engraftment,
and acquisition of the Kupffer cells associated transcription
factors, and they identified the contributions of different cells
to Kupffer cell niche (143).
COMPARISON AND ASSOCIATION ON
METABOLOME/MICROBIOME

Metabolome or microbiome are additional factors that reflect, or
affect, a person’s state of health (144, 145). Similar to
transcriptome or proteome, comparison and association
analysis could be applied on metabolome and microbiome
data. However, metabolome can be hardly linked to genes,
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which leads to different strategies of interpretation. Taking
KEGG (146) and HMDB (147) as references, an online tool
MetaboAnalyst performed metabolic pathway enrichment and
network analysis on the identified metabolites (148). An example
serum study on COVID-19 detected accumulation of 11 steroid
hormones and suppression of amino acid metabolism in
patients (8)

As for the gut microbiome, a diversity analysis could be
applied to taxonomy data. There are different strategies
available for functional profiling on the gut microbiome data.
F o r e x amp l e , HUMAnN ta k e s me t a g enom i c o r
metatranscriptomic sequencing data as input to identify gene
families and abundances (149). Gene families could be further
matched to broader functional categories, such as MetaCyc
metabolic pathways and GO categories for functional
interpretation. For example, a study associated gut microbiome
features to cytokine production capacity, and found microbial
metabolic pathways: palmitoleic acid metabolism and
tryptophan degradation to tryptophol showed associations with
TNFa and IFNg production (150).

As in transcriptome and proteome analyses, time-series
studies could provide valuable information in metabolome and
microbiome data. For example, in a study of metabolic functions
of gut microbes from patients with Inflammatory Bowel
Diseases, fecal samples were collected at baseline and 2, 6, and
14/30 weeks after induction of therapy to collect metabolic and
microbiota profiles. The observed association in dynamics of
metabolites and diversity shifts of microbiota reveals the
heterogeneity of the disease, and helps the authors to build a
silico model that might be used to identify patients likely to
achieve clinical remission from the therapy (151).
INTEGRATION OF EPIGENOME,
TRANSCRIPTOME, PROTEOME,
METABOLOME, MICROBIOTA
AND CELLOMICS

Besides associations between omics data and genetics, a simple
association analysis between two different non-genetic omics
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data could be applied to the data measured in the same cohort
with a large sample size to find the co-regulations behind
(Table 2). For instance, eQTMs (associations between
methylation and gene expression) provide a resource to
integrate methylation and gene expression. Highly methylation
can block the binding of transcription factors on promoters and
enhancers. In line with expectation, most eQTMs showed
negative correlations between methylation and gene
expression, and negatively correlated eQTMs are enriched in
active TSS regions (152). For another example, a study carefully
characterizes the changes in the gut microbiota of patients
suffering inflammatory bowel diseases and the interplay
between microbiome composition and gut metabolites (153).

In the situation of a more complex multi-omics integration,
more advanced technique like building multivariable regression
model could take features from different omics to evaluate the
accumulative effects/prediction power on a certain phenotype.
An example study integrates genomic, metagenomic,
metabolomic, immune cell composition, hormone levels and
platelet activation profiles with cytokine response profiles in a
population-based cohort. Results from multivariable linear
regression and machine learning approaches such as elastic net
show the accumulative contribution and predict power of genetic
and non-genetic factors on cytokine response (154).

On the other hand, if the sample size is not allowed for
association analysis, it might be applicable to check the
intersections between the findings from different omics. For
example, we could easily compare the regions identified in
ATAC-seq, methylation array and Hi-C data. In addition, by
matching a DAR to genes, and intersecting with DEGs, we could
further check whether an epigenetic change has the potential in
regulating gene expression.
DISCUSSION AND PERSPECTIVES

In this review, we have discussed the multi-omics application for
immunological studies, from measurements and analysis to
comparison or association of several typical layers (Figure 2).
For system studies – in particular newly discovered infectious
diseases or rare diseases with fewer prior knowledge – the choice
TABLE 2 | System analysis between omics.

binary traits epigenetics gene expresion protein level metabolites microbiome cellomics

genetics GWAS meQTL,
CRDQTLs

eQTL, sQTL pQTL mQTL mbQTL cell
proportion
QTLs

epigenetics DMRs/DARs/Compartment Switches/
Gained or lost Interactions

position-based
overlap

gene-based overlap/
association

gene-based overlap/
association

association association association

gene
expresion

DEGs – co-expression gene-based overlap/
association

association association association

protein
level

DEPs – – coexpression/
interaction

– association association

metabolites different abundance – – – association association association
microbiome different composition – – – – association –

cellomics Different cell composition, etc. – – – – – association
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of data layers to collect and the selection of measuring
approaches, target or non-target technique, bulk or single-cell
level, can be as important as the analysis models and algorithms.
Here, we discuss a few points that need specific attention in study
design and interpretation, and subjects may see progress in the
next few years.

There are some commonly used strategies of interpreting
genetic associations. As the starting point of the central dogma of
molecular biology (Figure 2), genetics has so far received a lot of
attention and was associated with many types of data or
phenotypes. In the interpretation of genome-wide associated
loci, genes around them have also been regarded as the
necessary and most essential compartments. The strategy to
properly link loci with affected genes so far has been addressed
on the position and associations between gene expression and
genetic variants (i.e., eQTLs). In addition, functional annotation
on identified loci, such as whether the variants are located on the
regulatory elements or affected protein structure, may provide
additional clues for loci interpretation in particular cases.
Nevertheless, there are existing debates upon several aspects,
for example, whether the host genome could influence the gut
microbiome. It will never be nitpicking to be very careful with
interpreting your microbiome QTLs.

Epigenetic could be used as a window to study environmental
influence. In contrast to genetics, epigenetics often links the
external factors to immune phenotypes. This is particularly true
when considering the external effects as a risk to immune
diseases, for example, smoking to asthma, because epigenetic
modifications, such as methylation, are usually related to
environmental exposures. Considering the various kinds of
epigenetic changes, multiple types of epigenetic data are
commonly used in one study and they often validate and
complement each other. For example, an active TSS region
could be identified by low methylation as well as high DNA
accessibility (155), and the enhancer involved in a neo chromatin
Frontiers in Immunology | www.frontiersin.org 11
interaction identified in Hi-C data could be characterized as a
neo opening region in ATAC data (156). Considering the
functional relationships, epigenetic data is commonly
integrated with gene expression measurements. As the direct
consequence of epigenetic modification, alteration in
corresponding gene expression could be the best validation of
the importance of your epigenetic studies.

scRNA-seq is usually applied together with Cellomics
measurements. A cell composition discovered in scRNA-seq
data could be validated with FCM-based approaches. FACS is
also commonly used as a pre-filtering step to help with
concentrating target cell types for scRNA-seq analysis.
Especially, for the rare cell types (e.g., T regs in PBMCs), a
pre-sorting process is necessary for concentrating on cells
of interest.

Proteome, metabolome showing downstream immune
functions require more attentions. As the downstream products
of gene expression, protein or metabolites level measurements are
not as popular as transcriptome measurements in current studies.
This might because gene expression analysis takes advantage of
the efficiency of next-generation sequencing and well-established
microarray chips. Thus, there appears to be much room for
further studies on proteome and metabolome in immune studies.

Proper measurement techniques and sampling tissues are
crucial in an omics study. When considering the purpose of
measurements, it is often appropriate to apply high-throughput
and/or non-target approaches at the discovery stage, while single
and/or target approaches are more commonly used for validation.
Besides, except genome, all the other omics have tissue specificity.
Data from the same tissue are more commonly associated. For
example, associations between omics from blood samples could
be easily interpreted, but it would be tricky and needs more
biological basis to associate blood features with gut features.

A straight-forward joint visualization of multi-omics data is
another challenge to better present and understand the
FIGURE 2 | Central dogma and regulations of different omics layers.
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interconnections across molecular layers as well as to fully
utilizing the increasingly available omics data. Integrated tools
or platforms that combined a comprehensive analysis workflow
and interactive visualizations were often more preferable to
researchers. Some examples are: PaintOmics3 (157) and
Metascape (158), which provide powerful online frameworks
for the multi-omics pathway analysis and visualization; Seurat
(56), which focuses on analysis and visualization of single-cell
omics data and supports easy connections to other popular
analysis tools; and Omics Playground (159), who provides a
user-friendly and interactive self-service bioinformatics platform
for analysis, visualization and interpretation of transcriptomics
and proteomics data. Moreover, trials of combing data sharing
and interactive visualization along with research publication
have also been made to improve the data dissemination. For
example, by accessing to Immgen (160), FastGenomics (161) or
DeCovid (58), researchers can explore and visualize their
interested immune signatures on the COVID-19 datasets,
which significantly increases impact of the studies.

To fully elucidate the biological processes involved in the
immune system, several aspects remain unknown in omics
studies. Firstly, due to sample accessibility, fewer studies have
been performed on tissues other than blood. Taking meQTLs as
an example, several big studies have been carried out blood
samples (101, 162, 163). However, there are very limited sample
size and/or studies about meQTLs in other tissues (164).
Secondly, considering the high dynamics, rapid response and
spatial specificity of the immune system, temporal and spatial
studies can provide more insights into the dynamic process and
spatial heterogeneity in immune activities and/or immune-
related diseases etiology. For example, the process that
immune cells are activated by interacting physically and
chemically with synapses is highly dynamic and depends on
the spatial position of immune cells, neurons and glial cells.
Despite its importance in immune functionality and immune-
mediated diseases, our current knowledge is not sufficiently
advanced, which calls for more comprehensive studies (165–
167). Thirdly, as for population-based studies, there are much
more of them in healthy individuals of European ancestry, while
the studies in under-represented populations as well as in
patients appeal for greater attention.
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Considering the complexity of our immune system and
patient heterogeneity, in terms of severity or treatment
responses, for many immune-related diseases, the generation of
personalized medicine is one of the most significant goals we can
achieve through multi-omics studies (168). Personalized
medicine stratifies a heterogeneous group of patients based on
certain characteristics and provides treatment based on this
stratification. In the case of infectious diseases, one of the
personalized medicine trials is now being conducted for the
treatment of sepsis using immunomodulatory interventions after
stratification based on biomarkers identifying immunosuppression
or hyper inflammation (169). In the field of tuberculosis, advances
are being made too, as a clinical trial is now ongoing where
tuberculous meningitis patients are being stratified based on
genotype prior to treatment (170).

In conclusion, we systematically review measurements and
analyses can be applied in immunological studies, which provide
insights for personalized medicine. Through the development of
high throughput techniques, e.g. single-cell RNA sequencing and
mass cytometry, we now possess the tools to unravel the many
complexities of the immune system in health and immune-
related diseases, including infectious diseases, allergies and
auto-immune diseases. With unbiased measurements and
effective integration, multi-omics studies can help us
understand the immune system and could lead to the
development of personalized medicine.
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114. Ramos-Rodrıǵuez M, Raurell-Vila H, Colli ML, Alvelos MI, Subirana-Granés
M, Juan-Mateu J, et al. The Impact of Proinflammatory Cytokines on the b-
Cell Regulatory Landscape Provides Insights Into the Genetics of Type 1
Diabetes. Nat Genet (2019) 51(11):1588–95. doi: 10.1101/560193

115. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G, Stunnenberg HG, et al.
Trained Immunity: A Program of Innate Immune Memory in Health and
Disease. Science (2016) 352(6284):aaf1098. doi: 10.1126/science.aaf1098
Frontiers in Immunology | www.frontiersin.org 15
116. Mazzone R, Zwergel C, Artico M, Taurone S, Ralli M, Greco A, et al. The
Emerging Role of Epigenetics in Human Autoimmune Disorders. Clin
Epigenet (2019) 11(1):1–15. doi: 10.1186/s13148-019-0632-2

117. Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR,
et al. Single-Cell Multiomic Analysis Identifies Regulatory Programs in
Mixed-Phenotype Acute Leukemia. Nat Biotechnol (2019) 37(12):1458–65.
doi: 10.1038/s41587-019-0332-7

118. Ernst J, Kellis M. ChromHMM: Automating Chromatin-State Discovery and
Characterization. Nat Methods (2012) 9(3):215–6. doi: 10.1038/nmeth.1906

119. Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai L-H, et al.
Conserved Epigenomic Signals in Mice and Humans Reveal Immune Basis of
Alzheimer’s Disease. Nature (2015) 518(7539):365–9. doi: 10.1038/
nature14252

120. Cairns J, Freire-Pritchett P, Wingett SW, Várnai C, Dimond A, Plagnol V,
et al. Chicago: Robust Detection of DNA Looping Interactions in Capture
Hi-C Data. Genome Biol (2016) 17(1):1–17. doi: 10.1186/s13059-016-0992-2

121. Hu G, Cui K, Fang D, Hirose S, Wang X, Wangsa D, et al. Transformation of
Accessible Chromatin and 3D Nucleome Underlies Lineage Commitment of
Early T Cells . Immunity (2018) 48(2):227–42. doi : 10.1016/
j.immuni.2018.01.013
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