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Abstract It remains a great challenge to achieve sufficient cancer classification accuracy with the

entire set of genes, due to the high dimensions, small sample size, and big noise of gene expression

data. We thus proposed a hybrid gene selection method, Information Gain-Support Vector Machine

(IG-SVM) in this study. IG was initially employed to filter irrelevant and redundant genes. Then,

further removal of redundant genes was performed using SVM to eliminate the noise in the datasets

more effectively. Finally, the informative genes selected by IG-SVM served as the input for the

LIBSVM classifier. Compared to other related algorithms, IG-SVM showed the highest classifica-

tion accuracy and superior performance as evaluated using five cancer gene expression datasets

based on a few selected genes. As an example, IG-SVM achieved a classification accuracy of

90.32% for colon cancer, which is difficult to be accurately classified, only based on three genes

including CSRP1, MYL9, and GUCA2B.
Introduction

The incidence and mortality of cancer have been increasing in
recent years, posing a serious threat to human health. Uncon-
trolled proliferation and metastasis of cancer cells pose chal-
lenges in identification of cancer types. Moreover, most
patients are diagnosed with cancer only when it is at an

advanced stage [1], further increasing the difficulty in cancer
treatment. DNA microarray technology is able to simultane-
ously evaluate the expression levels of numerous genes [2],

enabling the identification of cancer types at the molecular
level. However, the massive amount of data generated and
unavoidable errors occurring during experimental processes

pose great challenges to the analysis of gene expression data.
Gene expression data are featured with high dimensions,

small sample size, and big noise, whereas only a few genes
among the genes examined could play an important role in

cancer prediction [3]. Therefore, various methods had been
developed to select as few informative genes as possible, while
nces and
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maintaining high classification accuracy. Generally, gene selec-
tion approaches are divided into two categories: filter and
wrapper [4]. Filter methods use feature-ranking techniques as

the basis for gene selection. The top-ranked genes are chosen
as informative genes. Common ranking methods include infor-
mation gain (IG) [5], t-statistic [5], reliefF [6], and signal-to-

noise ratio [7]. For instance, IG, also known as the Kull-
back–Leibler divergence, can analyze the correlation between
attributes and classes. The wrapper methods identify a power-

ful gene subset according to the evaluation of a classifier, such
as genetic algorithm [8], decision tree [9], and support vector
machine (SVM) [10]. Filter methods generally run faster; how-
ever, they are unable to analyze the relationships among genes.

Conversely, wrapper methods have better performance; how-
ever, they require great computational expenses [11]. There-
fore, numerous hybrid methods have been proposed to

achieve optimal performance [12–16].
SVM is a machine-learning algorithm based on the princi-

ple of structural risk minimization [17]. It shows superior clas-

sification performance with better global minimization and
generalization ability than traditional classifiers [18]. There-
fore, SVM-based methods have been commonly developed

for the selection and classification of genes. For instance, Li
et al. [19] used a weighted doubly regularized SVM to adap-
tively identify informative genes. Chan et al. [20] developed a
firefly-optimized penalized SVM with SCADL2 penalty func-

tion, SVM-SCADL2-FFA, to optimize tuning parameters for
the efficient identification of informative genes and pathways.
Apart from the extended versions, there are also many inte-

grated methods involving the traditional implementation of
SVM [21,22]. Briefly, SVMs can be used to solve various prob-
lems with outstanding performance in the real world.

In this study, considering the huge computational cost of
SVM to handle numerous genes, we employed a hybrid method
combining IG with SVM for selecting informative genes. IG

was initially used to select genes in order to reduce the original
data dimension, and further filtration of redundant genes was
performed next using SVM. The obtained informative genes
were finally evaluated by the LIBSVM classifier.

Method

IG

The importance of genes in a specific category can be evaluated
using differences between entropy and conditional entropy,
i.e., IG [5,23]. IG g(Y, X) indicates the reduction of uncertainty
[24] as define below

gðY;XÞ ¼ HðYÞ �HðYjXÞ ð1Þ
where H(Y) denotes the entropy of dataset Y, which quantifies
the uncertainty involved in predicting the value of a random
variable, whereas H(Y|X) denotes the conditional entropy,

which represents the uncertainty based on the known variable
X. p denotes probability distribution. H(Y) and H(Y|X) are
defined as follows:

HðYÞ ¼ �
X

pðyÞ log pðyÞ ð2Þ

HðYjXÞ ¼
X
x2X

pðxÞHðYjX ¼ xÞ ð3Þ
The order of every single gene is arranged in line with the
IG value, and high-ranked genes are selected as input features.

SVM

The characteristics of gene expression data, such as small sam-
ple size and high dimensions, are well-suited for SVM. Partic-

ularly, only a few support vectors in the training set are applied
for constructing the decision function that leaves the largest
separate margin. By doing this, SVM obtains the optimal

hyperplane, which would result in the maximal generalization
ability [25].

Given training set

T ¼ fðxi; yiÞji ¼ 1; 2; � � � ;mg; xi 2 Rn; yi 2 f�1; 1g ð4Þ
where yi is the label class, m is the number of examples. The
main purpose of SVM is to establish the optimal hyperplane:

DðxÞ ¼ x � xþ b ð5Þ
where x denotes the weight vector, and b denotes the bias
value. When addressing nonlinear problems, SVM adopts

the kernel function to map data into high-dimensional space.
C denotes the penalty factor, and n denotes the relaxation fac-
tor. To maximize the separating margin, and minimize the

training error, the objective function can be expressed as:

min J ¼ 1

2
kxk2 þ C

Xm
i¼1

ni

s:t: yiðx � xþ bÞ P 1� ni
ni P 0; i ¼ 1; 2; . . . ;m

ð6Þ

The optimal solution (x*, b*) about (x, b) can be achieved
using the Lagrange duality theorem and quadratic program-
ming, thereby decision function can be calculated. ai is the

Lagrange multiplier:

fðxÞ ¼ sgn
Xm
i¼1

aiyiKðxi � xÞ þ b�
 !

s:t: 0 6 ai 6 C

ð7Þ

Particularly, the kernel function K(xi, x) plays an important
role in addressing nonlinear problems. The commonlyused

functions include the linear kernel function, polynomial func-
tion, radial basis function (RBF) [26], and sigmoid kernel func-
tion. Of them, the linear kernel function is a special case of

RBF. Compared with the polynomial kernel function, RBF
has fewer parameters to be determined and was adopted in
the current study:

Kðxi; xÞ ¼ expð�ckxi � xk2Þ ð8Þ
Proposed approach

In this study, IG was applied to make a preliminary gene selec-
tion. We used the InfoGainAttributeEval and Ranker evalua-
tion tools of WEKA to complete this process.

InfoGainAttributeEval evaluates genes relevant to clinical out-
comes according to IG, and Ranker ranks individual genes on
the basis of evaluation outcomes.

Considering the efficiency of filters, this study also used
three other filter methods including gain ratio, reliefF, and
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correlation. Based on IG, the gain ratio algorithm is, frequently
used in decision tree C4.5. ReliefF is a feature-weighting algo-
rithm, which assigns different weights to features based on cor-

relation. The correlation between every single gene and the
class is usually measured using the Pearson correlation coeffi-
cient, with a higher value indicating a more important gene.

In order to choose genes with high classification value, we
combined the high efficiency of filters and the excellent perfor-
mance of wrappers. In addition to the application of IG, a fur-

ther feature selection algorithm, SVM, was also employed.
Meanwhile, gain ratio, reliefF, and correlation attribute evalu-
ation combined with SVM were implemented, respectively, to
select genes as well. The ultimately obtained informative genes

served as the input data for the LIBSVM classifier to assess
classification accuracy. Because of the small sample size of
gene expression data, 10-fold cross-validation was utilized

for the evaluation of the selected genes. Figure 1 illustrates
the schematic diagram of the proposed method.

With two stages included in the process of selecting optimal

gene, the hybrid method fully utilizes different algorithms to
obtain fewer informative genes and achieve better classification
accuracy.
Microarray gene expression data

Filter gene selection methods

IG Gain ratio ReliefF 

SVM attribute evaluation

LIBSVM classifier

Correlation

Figure 1 Workflow of proposed approach

Table 1 Details of gene expression datasets examined

Dataset No. of classes No. of genes No. of samples Negat

Lung cancer 2 7129 96 86 pri

DLBCL 2 4026 47 24 GC

Colon cancer 2 2000 62 40 tum

Prostate cancer 2 12,600 102 52 pro

Leukemia 2 7129 72 25 AM

Note: DLBCL, diffuse large B-cell lymphoma; GCB, germinal center B-lik

acute lymphoblastic leukemia.
Results and discussion

Experimental datasets

Five benchmark microarray datasets of two classes were eval-
uated in this study. Among the five datasets, three were

obtained from normal or cancerous tissues, which include lung
cancer, colon cancer, and prostate cancer. The dataset for the
diffuse large B-cell lymphoma (DLBCL) was obtained from
two different DLBCL subgroups, i.e., germinal center B-cell

like subgroup and activated B-cell like subgroup. Similarly,
the dataset for leukemia was obtained from acute myeloid leu-
kemia (AML) and acute lymphoblastic leukemia (ALL) cases.

All these datasets were downloaded from http://datam.i2r.a-
star.edu.sg/datasets/krbd/. The detailed description is pro-
vided in Table 1.

Performance of genes selected by filter methods

First, the raw gene expression data in the five microarray data-

sets were normalized to zero mean and unit variance to
account for the expression differences among genes. We then
applied the filter methods, namely IG, gain ratio, reliefF,
and correlation, for gene selection. The required number of

genes selected cannot be determined using a common stan-
dard, but several hundred of genes are demonstrated to be suf-
ficient to achieve high accuracy [18]. Therefore, different

numbers of genes are selected for different filters with the num-
ber of genes ranging from 1 to 200. The LIBSVM classifier was
used to evaluate the performance of the different numbers of

selected genes.
As shown in Figure 2, patterns for accuracies achieved with

the numbers of selected genes appear to be different among the

five different datasets tested. The highest accuracy for the five
datasets differed. However, the overall trend was similar, indicat-
ing that the highest classification accuracy was commonly
achieved using less than 50 genes. For instance, 3 genes were suf-

ficient to reach a classification accuracy of 100% for lung cancer
dataset, whereas the 100% of classification accuracy was
achieved for the DLBCL dataset using 30 genes. The accuracies

were maintained at a high level even when the gene number
increased. For colon cancer, high performance was realized with
no more than 10 genes, although a transient reduction in accu-

racy was found when the gene number was approximately 20.
Significant increases in the highest accuracy are not

found with more than 50 genes selected, suggesting that
considerable noise was present in the cancer datasets.

Furthermore, slight and frequent fluctuations in accuracies
ive samples Positive samples

mary lung adenocarcinoma samples 10 non-neoplastic lung samples

B subgroup cases 23 ABC subgroup cases

or biopsy samples 22 normal biopsy samples

state tumor samples 50 non-tumor prostate samples

L bone marrow samples 47 ALL bone marrow samples

e; ABC, activated B-cell like; AML, acute myelocytic leukemia. ALL,

http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/


A Lung cancer B DLBCL

C Colon cancer D  Prostate cancer

E Leukemia 

Figure 2 Cancer classification performance using different filters

Classification accuracies plotted according to the number of genes selected using different filters, including information gain, gain ratio,

reliefF, and correlation, are shown for lung cancer (A), DLBCL (B), colon cancer (C), prostate cancer (D), and leukemia (E), respectively.

DLBCL, diffuse large B-cell lymphoma.
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were observed, owing to the presence of remaining redundant
genes, and thus, further gene selection was required to obtain
fewer significant genes.

Performance of informative genes selected by hybrid methods

We next employed the wrapper method SVM to obtain infor-

mative genes. In addition, a 10-fold cross-validation of the
LIBSVM classifier was adopted to evaluate the classification
ability of the selected informative genes.

Considering that a small number of genes are sufficient to
achieve high accuracy, 150 genes selected by the four types
of filters were used as the input data for SVM. Since the top-

ranked genes were more closely related to cancer classification,
finally, the top 3 genes were selected for further cancer classi-
fication, using as few genes as possible.

Table 2 shows the classification accuracy of the four hybrid

methods, i.e., IG-SVM, gain ratio (GR)-SVM, reliefF-SVM,
and correlation (Cor)-SVM. High accuracies were achieved
using 3 genes only. The proposed method, IG-SVM, consis-

tently performed better than the other hybrid methods. For
instance, a classification accuracy of 100% was achieved for
lung cancer and DLBCL using IG-SVM. Furthermore, both

IG-SVM and Cor-SVM achieved 100% accuracy for the
DLBCL dataset. Unlike that for lung cancer and DLBCL,
the classification accuracy for colon cancer was relatively
low, which was 90.32% for IG-SVM. Nonetheless the classifi-

cation accuracy achieved in this study for colon cancer was still
higher than that reported in another study (83.87%), which
used the same number of selected genes by singular value

decomposition and IG [18]. Since default settings were used
for various tools, the possibility to achieve high accuracy with
altered settings and selections can’t be ruled out.

Mao et al. [27] analyzed the same prostate cancer dataset
and reported a mean classification accuracy of 95.10% by
adopting randomization test (RT) as a gene selection method,

which is lower than the accuracy achieved using IG-SVM in
this study (96.08%). Using the aforementioned method, they
obtained classification accuracies of 97.06% and 91.18% for
the training and test sets for prostate cancer, respectively. As

for the same leukemia dataset, the accuracies of 97.37% and
94.12% were reported for the training and test sets, respec-
tively, using RT [27], which were below the accuracy we

obtained for the entire dataset (98.61%).

Disease association of selected informative genes

The important attributes derived from the microarray datasets
are largely determined by the gene selection methods. In this
Table 2 Cancer classification accuracies (%) obtained based on the to

Dataset IG-SVM GR-SV

Lung cancer 100 98.96

DLBCL 100 97.87

Colon cancer 90.32 85.48

Prostate cancer 96.08 93.14

Leukemia 98.61 94.44

Note: Numbers in bold represent the highest accuracies achieved for the

lymphoma; IG, information gain; GR, gain ratio; Cor, correlation; SVM,
study, the three datasets obtained from cancerous tissues with
normal tissues as controls were further analyzed, including
lung cancer, colon cancer, and prostate cancer datasets. The

informative genes selected by the proposed IG-SVM method
and their detailed description are listed in Table 3.

In the lung cancer dataset, the top 3 genes selected are

PIK3R1, INPP5K, and LMO2. LMO2, which encodes a
LIM domain transcription regulator, is a proto-oncogene,
and increased LMO expression has been reported in human

lung tumors [28]. Similarly, PIK3R1, which encodes regulatory
subunit 1 of phosphoinositide 3-kinase (PI3K) complex, has
also been suggested as a lung cancer oncogene [29]. In a recent
study, Deng and colleagues analyzed genomic variation in lung

adenocarcinoma patients and found several PI3K family com-
ponents including PIK3R1 among the highly recurrent
mutated genes, suggesting a critical role of PI3K signaling in

the lung adenocarcinoma [30]. Notably, INPP5K, which
encodes inositol polyphosphate-5-phosphatase K (also known
as skeletal muscle and kidney enriched inositol phosphatase),

was also selected in our study. INPP5K can hydrolyze PI
(3,4,5)P3 generated by PI3 kinase to negatively regulate
PI3K signaling [31]. Recent studies also identified INPP5K

mutations in individuals exhibiting congenital muscular dys-
trophy [32,33] or congenital cataract [34]. Although involve-
ment of INPP5K in cancer progression has not been
reported, INPP5K is located in a commonly deleted chromoso-

mal region at 17p13.3 in various tumors [35]. In addition, a
strong and significant reduction in INPP5K expression had
been reported in a rat primary cell culture for endometrial car-

cinoma compared to the non-malignant endometrium [35].
These findings suggest that INPP5K could be a new tumor
suppressor gene, which warrants further investigation.

CSRP1,MYL9, and GUCA2B were selected from the colon
cancer dataset. CSRP1 encodes a member of the cysteine-rich
protein (CSRP) family, which may serve as an important bio-

marker of malignancy. CSRP1 is inactivated in hepatocellular
carcinoma [36], whereas MYL9, which encodes myosin light
chain 9, shows prognostic significance in esophageal squamous
cell carcinoma [37]. The third gene GUCA2B encodes guany-

late cyclase activator 2B (also known as uroguanylin). Binding
of uroguanylin to the receptor guanylate cyclase 2C may regu-
late salt and water homeostasis in the intestine and kidney [38].

It was observed that GUCA2B was significantly down-
regulated in inflamed colonic mucosa of patients with inflam-
matory bowel disease (IBD) [39]. However, there is no direct

evidence showing that these genes are associated with colon
cancer. Therefore, their roles in colon cancer should be further
investigated.

The three genes selected from the prostate dataset include

HPN, SLC25A6, and MAF. HPN, which encodes the cell sur-
p 3 genes selected using hybrid methods

M ReliefF-SVM Cor-SVM

98.96 98.96

95.74 100

87.10 87.10

91.18 93.14

97.22 97.22

hybrid gene selection methods tested. DLBCL, diffuse large B-cell

support vector machine.



Table 3 Informative genes selected using IG-SVM

Dataset Selected genes Probe set IG value Annotated gene Annotation

Lung cancer F2968 M61906_at 0.377 PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1

F4530 U45973_at 0.322 INPP5K Inositol polyphosphate-5-phosphatase K

F5983 X61118_rna1_at 0.292 LMO2 LIM domain only 2

Colon cancer F765 M76378_at 0.356 CSRP1 Cysteine and glycine rich protein 1

F1423 – 0.315 MYL9 Myosin light chain 9

F377 – 0.229 GUCA2B Guanylate cyclase activator 2B

Prostate cancer F6185 37639_at 0.675 HPN Hepsin

F7067 40436_g_at 0.366 SLC25A6 Solute carrier family 25 member 6

F10234 41504_s_at 0.238 MAF MAF bZIP transcription factor

Note: IG value of each gene in a dataset was calculated as described in the Methods section. All genes are ranked according to the IG values and the

three selected informative genes are obtained using SVM.
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face serine protease hepsin, is one of the most consistently
overexpressed genes for prostate cancer, and hepsin protein

expression is associated with the growth and progression of
cancers, particularly prostate cancer [40]. In addition, some
polymorphisms in the HPN gene might also be associated with

the risk of developing prostate cancer [41]. The protein
encoded by SLC25A6 is a member of the mitochondrial
ADP/ATP carrier subfamily of solute carrier protein genes.

SLC25 family proteins play a role in cancer due to their deci-
sive effect in the programmed cell death [42]. However,
whether SLC25A6 is related to prostate cancer still needs to
be explored. The third gene MAF encodes a transcription fac-

tor. Defects in MAF can cause juvenile-onset pulverulent cat-
aract as well as congenital cerulean cataract [43]. MAF is
also a mediator of breast cancer bone metastasis [44]. Given

the ubiquitous MAF expression in kidney, further studies are
needed to investigate the relationship between MAF and pros-
tate cancer. In short, there are several lines of evidence sup-

porting that these genes may play important roles in cancer
regulatory network, although their involvement in specific can-
cer types should be further examined.

Conclusion

In this study, we proposed a hybrid method, IG-SVM to select

informative genes for cancer classification. IG is a filter
method that can efficiently eliminate numerous irrelevant fea-
tures in high-dimensional gene expression data. The wrapper

SVM method was used to further eliminate redundant genes
based on 150 genes selected by filters. We finally obtained 3
informative genes, which served as the input for the LIBSVM
classifier. By employing the tools for five gene expression data-

sets, we demonstrated better performance of the IG-SVM
approach for cancer classification.

In summary, our study confirms that a few informative

genes are sufficient to accomplish the accurate classification
of tumor samples. Some of these selected informative genes
have been shown to be associated with various cancers,

whereas more evidence is needed for other genes selected,
which may provide clues to functional studies and potential
biomarker discovery. Given the small size of the datasets

tested, the method proposed in this study need to be further
validated in larger datasets.
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