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Introduction

Blanket use of very strong pesticides is counterproductive

to pest control because it can cause resistance to develop

rapidly in the pest population (Georghiou 1986), render-

ing the pesticide useless. This applies in particular to the

use of transgenic crop varieties that have been genetically

engineered to produce proteins originating in the bacte-

rium Bacillus thuringiensis (Bt) (Schnepf et al. 1998).

These transgenic plants are highly toxic to insect pests,

and are believed to be relatively harmless to humans and

most nontarget species (Peairs 2007). The perceived bene-

fits of their use include reduced reliance on sprayed pesti-

cides (Ervin 2010) that run off into the environment and

pose direct hazards to farm workers (Cattaneo 2006). A

desire to preserve their usefulness for as long as possible

has led the United States Environmental Protection

Agency (USEPA) to mandate a ‘high-dose/refuge’ (HDR)

technique for the use of Bt crop varieties (EPA 1998;

FIFRA 1998; Gould 1998). ‘High-dose’ means the plant

is engineered to produce a dose of the toxin orders

of magnitude greater than what is required to kill all

nonresistant pests. The ‘refuges’ are stands of either con-

ventional nontoxic plants the farmer is required to grow

interspersed among the toxic plantings, or noncrop hosts

naturally occurring nearby. The role of the refuges is to

lower the selection pressure favoring alleles that confer

resistance to the pesticide (Andow 2008).

On the basis of mathematical analysis, simulations, and

actual experiments (Andow 2008; Tabashnik 2008; Shel-

ton et al. 2000), the HDR technique is believed to be

potentially effective in at least delaying resistance evolu-

tion if the dose is high enough to render any gene for

resistance functionally recessive (Liu and Tabashnik 1997;

Gould 1998). The possibility of controlling the population

indefinitely without resistance developing is a less settled

issue (Lenormand and Raymond 1998; Carrière and

Tabashnik 2001; Andow 2008). It is clear, in any case,

that the movement of pests is a key factor and a delicate

one: pest mobility can have multiple and competing

effects, so that refuge efficacy can be a nonmonotonic

function of the mobility or, equivalently, of the degree of

fine-graining of the refuge arrangement, as seen in Fig. 3b

of Sisterson et al. 2005. Coarse-graining on the one hand
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Abstract

We describe and analyze a ‘screened refuge’ technique for indefinitely sustain-

ing control of insect pests using transgenic pesticidal crops or an applied pesti-

cide, even when resistance is not recessive. The screen is a physical barrier that

restricts pest movement. In a deterministic discrete-time model of the use of

this technique, we obtain asymptotic analytical formulas for the two important

equilibria of the system in terms of the refuge size and the pest fitnesses, muta-

tion rates, and mobility out of and into the refuge. One of the equilibria is sta-

ble and is the point at which the pest population is controlled. The other is a

saddle whose stable manifold bounds the basin of attraction of the former: its

location provides a measure of the tolerance of the control mechanism to

perturbations in the resistant allele density.

Evolutionary Applications ISSN 1752-4571

ª 2010 Blackwell Publishing Ltd 4 (2011) 459–470 459



enhances the ability of the refuges to protect susceptible

pests in the cores of the refuges, but on the other hand

makes parts of the toxic crop more remote from those

sources of susceptible pests. While there appears to be

some consensus among modelers that a degree of coarse-

graining is beneficial in delaying control failure (Mallet

and Porter 1992; Shelton et al. 2000; Caprio 2001; Sister-

son et al. 2005), the idea of extreme fine-graining has not

been abandoned (Griekspoor 2009; and see also the dis-

cussion of Fig. 1B of the current paper).

Pest movement also plays a key role in the technique

that is the focus of this paper: we investigate what hap-

pens when pest movement between refuge and toxic crop

is deliberately restricted by a physical barrier. We will

refer to this idea as the ‘screened refuge’ technique, and

we show that with sufficient fine-graining to justify the

idealization of complete homogenization of the pest

population within the refuge and toxic crop patches

separately, the screened refuge technique can suppress the

development of resistance indefinitely, and do it even

when resistance is not highly recessive – the case where

the usual ‘open’ refuge technique may fail. The nonreces-

sive case will be of interest if very high concentrations of

insecticides in the crop were to be opposed by consumers

or governments, or if a resistant pest strain were to arise

with partial dominance for all technically achievable

pesticide concentrations. In fact, Tabashnik et al. 2009

cite evidence of nonrecessive resistance to Bt crop varie-

ties in two major lepidopteran pests.

It has long been recognized that resistance in a popula-

tion can be prevented indefinitely by the continual migra-

tion from a source where selection pressure for resistance

is absent (Haldane 1930; Comins 1977; Taylor and

Georghiou 1979; Lenormand and Raymond 1998;

Gomulkiewicz et al. 1999; Carrière and Tabashnik 2001;

Vacher et al. 2003; Carrière et al. 2005). Actively provid-

ing a stream of such individuals has been proposed

recently in the context of transgenic insecticidal crops by

Alphey et al. 2007. A screened refuge, as proposed here,

serves as a (passive) source of susceptible pests similar to

that considered in the works cited above, and we provide

what we believe are the first analytical results for the case

where both the source (refuge) and the crop are finite,

migration is bi-directional, and mutation and fitness costs

of resistance in the refuge are included. We obtain

asymptotic analytical formulas for the two important

equilibria in a maximally simplified model of such a sys-

tem. These formulas provide a quantitative relationship

between the numerous parameters and the equilibrium

pest densities that can be maintained, as well as a mea-

sure of the robustness of that equilibrium to perturba-

tions in the prevalence of resistance.

How refuges work, or fail to

To establish context and make our level of idealization

clear, we begin by illustrating quantitatively some basic

principles of refuge functionality under the assumption

that the adult pests are mobile enough prior to mating

to homogenize the population, except where restricted

by a physical barrier (the screen). In our models, we

assume that in a diploid pest there is a single genetic

locus for resistance to the toxin, with susceptible (S)

and resistant (R) alleles. Generations do not overlap,

and mating and egg deposition are random. In the very

simple model we use in this section, the life cycle con-

sists simply of reproduction and poisoning. The average

number of offspring per individual surviving to adult-

hood in the absence of poisoning is denoted by F (for

fecundity). Using NR and NS to denote the densities of

R and S alleles respectively, reproduction is represented

by the map

rep
NR

NS

� �� �
¼ FNR

FNS

� �
: ð1Þ

The genotype densities are obtained from the allele

densities using the Hardy–Weinberg formulas for random

mating (Hartl and Clark 2006):

NRR

NRS

NSS

2
4

3
5 ¼ typ

NR

NS

� �� �
�

N2
R

NRþNS
2NRNS

NRþNS

N2
S

NRþNS

2
664

3
775; ð2Þ

If q is the fraction of the total crop area allotted to

open refuge, and if we assume there is full mixing of the

adult pests between the open refuge and the toxic crop

during mating, then the net rates of poisoning survival

are (Carrière and Tabashnik 2001):

WRR

WRS

WSS

2
4

3
5 ¼ ð1� qÞ

W tox
RR

W tox
RS

W tox
SS

2
4

3
5þ q

W ref
RR

W ref
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1

2
4

3
5; ð3Þ

where ‘tox’ superscripts on the survival rates (W’s) denote

values in the toxic crop, and ‘ref’ superscripts those in

the refuge. In terms of these rates, the selection map is

simply

sel
NRR

NRS

NSS

2
4

3
5

0
@

1
A � WRRNRR

WRSNRS

WSSNSS

2
4

3
5: ð4Þ

We then revert to allele densities:
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NR
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� �
¼ all

NRR

NRS

NSS
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4
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5

0
@
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A � NRR þ 1

2 NRS

NSS þ 1
2 NRS

� �
; ð5Þ

The overall dynamical map for this simple model is thus

dyn
NR

NS

� �� �
� all � sel � typ � rep

NR

NS

� �� �
ð6Þ

This model is exactly equivalent to the one used in

Carrière and Tabashnik 2001 and Tabashnik et al. 2008.

The recessive case: adding an open refuge is successful

in controlling the pest

First of all, to be explicit about the hazard we are trying

to avoid, we illustrate the readily understood failure to

control the pest if a strong toxin is applied throughout

the entire habitat, i.e., there is no refuge at all. For con-

creteness, if we start with a population of mating adults

in which the R-allele fraction is 0.001 (Roush 1994,

Gould 1998), then in their offspring there will be about

one in 1 million with RR genotype. If poisoning of the

offspring is performed throughout the entire habitat at an

intensity great enough to kill all SS and RS individuals,

the initial result is a dramatic reduction of the population

to 1 millionth of its pre-poisoning size. But the survivors

are all RR and resistant to the toxin. Chance extinction of

the small population of highly fit survivors is possible at

this point (though not in the deterministic model, where

the population is treated as a continuum rather than as a

collection of discrete individuals). But if extinction is

avoided, the population rebounds, growing geometrically

at a rate FWRR�F that can be quite high for well-fed

insects (Fig. 1A).

In contrast, if a fraction of the habitat is maintained as

an ‘open’ refuge of nontoxic plants, the results can be

dramatically better from the poisoner’s point of view –

again, if resistance is recessive. Assuming for simplicity

that the survival fractions in the refuge are high and the

same for all three genotypes, then in the fully recessive

case, the survival fractions for RS and SS pests, WRS and

WSS, (see eqn 3) will be: (i) large enough that the RR

fraction of the total population is negligible even right

after initial poisoning (FWSS much greater than the

square of the initial R-allele fraction), (ii) small enough

that the net growth rates FWRS and FWSS are still <1 as

long as the refuge is not too large, and (iii) equal to each

other. Indeed WRS can even be a little smaller than WSS if

some small fitness cost of resistance in the refuge is

included (Carrière and Tabashnik 2001), as we have done

for Fig. 1. Then, the R-allele density decays geometrically

at a slightly faster rate than the S-allele density, as in

Fig. 1B, and (in the absence of immigration from else-

where) the pest population is driven to extinction, because

the R-allele fraction stays below its low initial value indef-

initely as the population is driven down. In this way,

the open-refuge technique can be highly effective when

the dose is high and the resistant allele is completely

recessive. Reports of extinction in the HDR modeling

literature exist – see Carrière et al. 2001– but are scarce.

Table 1. Parameters of our model and their values in the examples of Figs 1A–F and 5. Without loss of generality, all SS pests in the refuge are

assumed to survive the poisoning phase. (Any other desired value of ‘W ref
SS ’ could be absorbed into the fecundity F and a rescaling of the allele

densities.)

Parameter description

parameter

name 1a 1b 1c 1d 1e 1f 5

RR survival fraction on toxic plants W tox
RR 1 1 1 1 1 1 0.95

RS survival fraction on toxic plants W tox
RS 0 0 0.4 0.4 0.4 0.4 0.05

SS survival fraction on toxic plants W tox
SS 0 0 0.3 0.3 0.3 0.3 0

RR survival fraction on refuge plants W ref
RR – 0.95 – 0.95 – 0.95 0.95

RS survival fraction on refuge plants W ref
RS – 0.995 – 0.995 – 0.995 0.995

Pest fecundity F 2 2 2 2 2 2 3

Crop area A 1 1 1 1 1 1 1

Caged refuge area B 0 0 0 0 0 0.01 0.05

Effective aperture size crop into cage a – – – – – 0.001 equal to b

Effective aperture size out of cage into crop b – – – – – 0.001 varied

Open-refuge fraction in crop q 0 0.25 0 0.15 0 0 0

Mutation rate R to S lRS – – – – – 5 · 10)6 5 · 10)7

Mutation rate S to R lSR – – – – – 5 · 10)6 5 · 10)7

Density-dependent juvenile attrition survivors g(N) – – – – – 1)e)N 1)e)N

Delivery density – – – – – 0.001 – –

Delivery R fraction – – – – – 0.001 – –
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This is due, we believe, to (i) the complicating effects of

limited pest mobility as discussed in the Introduction (as

in Sisterson et al. 2004), and (ii) the fact that absolute

population densities are not always tracked in modeling

studies (as in Mallet and Porter 1992; Roush 1994). The

genius of the HDR technique, as idealized here, is that it

provides net toxicities for SS and RS pests that are not

too large, not too small, and approximately equal, for a

wide range of pest resistance to smaller toxin concentra-

tions, thereby obviating a calibration of toxin dose for

each specific resistance gene. But the technique does

hinge on the ability to render resistance nearly fully

recessive.

Resistance not fully recessive: open refuge fails, screened

refuge succeeds

If for any reason resistance cannot be made strongly

recessive, even if it is not so dominant that FWRS > 1, the

results are not so satisfactory. This case is the focus of

this paper. In the absence of any open refuge, and assum-

ing again that the R-allele is rare at the onset of poison-

ing, the R- and S-allele densities initially decline

geometrically at rates FWRS respectively, now different

from each other. With FWSS < FWRS, S catches up with

R as they both decrease, as illustrated in Fig. 1C. At that

point a significant fraction of the R allele in the popula-
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Figure 1 Illustration of basic ideas of refuge techniques. Parameter values are given in Table 1. (A) Applying very strong poison everywhere does

not work. (B) Adding an open refuge is highly effective when resistance is recessive. (C) The population evolves resistance when resistance is not

recessive and dose is not extremely high. (D) Adding open refuge is not very helpful in the case depicted in (C). (E) Active delivery at 0.1% of car-

rying capacity staves off resistance indefinitely for the parameters of (C). (F) A screened refuge occupying 1% of the land works successfully like

active delivery in the non-recessive case: model of the next section, parameters the same as in (c), except that mutation is added to show the

technique is not reliant on an absence of S to R mutation.
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tion is carried by highly resistant RR individuals, and the

R-fraction subsequently rises rapidly toward one and the

population density rises rapidly to carrying capacity.

Moreover, in this nonrecessive case, the addition of an

open refuge may not be very helpful, producing mere

modest delays in resistance development as shown in

Fig. 1D, or even actually accelerating resistance evolution

(Mohammed-Awel et al. 2007). The reason is that

although adding open refuge decreases the selective differ-

ential (Gould 1998) between RS and SS, hence delaying

the time when S density becomes less than R density, it

also increases the fitness of both RS and SS, so the popu-

lation does not decline so low before it rises again.

A potentially effective alternative to the refuge tech-

nique that should work in the nonrecessive case, and that

has been investigated previously, e.g. in Taylor and

Georghiou 1979 and Alphey et al. 2007, is the continual

active release of a supply of pests from a source where

there is no selection pressure favoring the resistant allele.

The effect of continual active release, shown in Fig. 1E, is

that even if the R- and S-allele density trajectories are ini-

tially on a collision course (as in Fig. 1C) leading toward

predominance of resistance, the collision is avoided

because the delivery of (mostly susceptible) pests causes

both curves to flatten out and remain well separated

indefinitely, and at low levels if the delivery amount is

small. This is the equilibrium described in Comins 1977

for the case of an infinite unpoisoned region.

A possible passive alternative to active release, that we

investigate here, is to use a screened refuge. The idea is to

emulate active release of mostly susceptible pests by shield-

ing a refuge population from decimation and R-selection

on the toxic crop, yet at the same time allowing sufficient

numbers of susceptible pests to move to suppress resis-

tance development in the toxic crop. Figure 1F shows an

example of a screened refuge working in this way in the

model that is analyzed in the remainder of this paper. The

screened refuge can be viewed as implementing the con-

clusions of Caprio 2001; Ives and Andow 2002; Vacher

et al. 2003; and Sisterson et al. 2005 on benefits of reduc-

ing pest mobility between refuge and toxic crop, while at

the same time avoiding the isolation of some toxic regions

found to be harmful when refuges are too far apart.

When the screening is extreme, meaning that the flow

of pests between the crop and the refuge is heavily

restricted, it may be more apt to describe the refuge as

enclosed in a ‘cage’ (Fig. 2). In the following two sections,

we obtain approximate analytical formulas for the equi-

libria in a maximally simplified model of the caged refuge

mechanism, gaining quantitative information about how

the many parameters of the problem determine the steady

state population levels and about the robustness to

perturbations of the steady state that corresponds to a

sustainably controlled population. Unlike in previous

studies of equilibria in related models we do not ignore

pest flow back to the immigrant source (the cage)(Taylor

and Georghiou 1979), nor fitness costs of resistance

(Comins 1977).

Model of a toxic crop with a refuge in a cage

We now present the full model that we analyze in the

sequel. As illustrated in Fig. 3, the same cycle of processes

occurs in the crop and the cage (though the selection

parameters are different). Interaction of crop and cage

populations occurs only in an exchange phase marked

Exc in the figure.

As in How refuges work, or fail to, allele densities are

denoted by NR and NS respectively. Reproduction is

represented by the map rep defined in the previous section

(eqn 1). Population sizes are limited by a density-depen-

dent process att, occurring at early juvenile stages (Vacher

Crop

Refuge

Cage

Figure 2 Pesticidal crop and a nontoxic refuge enclosed in a cage.

Pests can leave and enter the refuge only through a gap in the cage.

rep

mut

poi

Exc

att

rep

att

poi

mut
cage

crop

Figure 3 The model: a cycle of reproduction (rep), density-dependent

genotype-neutral attrition (att), genotype-dependent poisoning (poi),

mutation (mut), and exchange (Exc) between the crop (outer circle)

and the refuge in a cage (inner circle).
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et al. 2003), which is genotype-neutral, i.e., the densities

of all genotypes change by the same proportion and the

change depends only on the total number of individuals:

att
NR

NS

� �� �
¼ gðNR þ NSÞ

NR þ NS

NR

NS

� �
; ð7Þ

(and att([0,0]T) ¼ [0,0]T). The function g, which gives

the density of survivors in terms of the density prior to

attrition, can have rather general form (piecewise smooth

is sufficient), save for the restrictions that g(0) ¼ 0 and

g¢(0) ¼ 1, so that att
NR

NS

� �� �
� NR

NS

� �
in the low popu-

lation limit. This encompasses all the following models:

Ricker, g(N) ¼ N exp ()cN) (Ricker 1954); Beverton-

Holt, g(N) ¼ N/(1+cN) (Caswell 2001); Hassell, g(N) ¼
N/(1+cN)b (Hassell 1975), and logistic, g(N) ¼ (1)cN)N

(Hartl and Clark 2006). For the numerical illustrations in

this paper, we choose g(N) ¼ 1) exp ()N) (Mohammed-

Awel et al. 2007).

Genotype-specific density-independent attrition is rep-

resented by maps of the form allsselstyp as defined in

the previous section (eqns 2, 4 and 5) but the survival

fractions are different in the crop and the cage:

selcrop

NRR

NRS

NSS

2
64

3
75

0
B@

1
CA �

W
crop
RR NRR

W
crop
RS NRS

W
crop
SS NSS

2
64

3
75;

selcage

NRR

NRS

NSS

2
64

3
75

0
B@

1
CA �

W
cage
RR NRR

W
cage
RS NRS

NSS

2
64

3
75: ð8Þ

In Fig. 3, we use the shorthand poicrop and poicage for

the respective allsselstyp compositions:

poicrop;cage NR

NS

� �� �
� all � selcrop;cage � typ

NR

NS

� �� �
ð9Þ

We have chosen a life history in which density-depen-

dent attrition occurs before poisoning, as in Vacher

et al. 2003. It turns out that reversing the order of

density-dependent attrition (att) and poisoning (poi), as

in Alstad and Andow 1995; Ives et al. 1996, makes no dif-

ference to our asymptotic results. (The maps effectively

commute because in each habitat section one of them has

little effect: att in the crop, and poi in the cage.)

Next, we apply mutation using

mut
NR

NS

� �� �
� 1� lRS lSR

lRS 1� lSR

� �
NR

NS

� �
; ð10Þ

where lRS and lSR are the mutation rates from R to S

and from S to R, respectively.

Finally, we account for exchange of mating adults

between the crop and the cage. We assume that pest

exchange occurs through some kind of apertures, and

that the flux of alleles from one side to the other is pro-

portional to the allele density on the source side. We call

the constants of proportionality the effective outgoing

aperture sizes (although they include a factor intrinsic to

the pest, reflecting its mobility) and denote them by a

(crop to cage) and b (cage to crop). We imagine that

for an aperture like a simple hole in a net, the effective

aperture size might be the same in both directions, i.e.

a ¼ b, but we allow them to be different because the

greater generality does not make the calculations any

more difficult. We denote the sizes (areas) of crop and

the cage by A and B, respectively. An allele flux of

aNcrop from the crop into the cage decreases the allele

density in the crop by amount aNcrop/A and increases

the density in the cage by amount aNcrop/B. Thus, the

exchange map is

Exc

N
crop
R

N
crop
S

N
cage
R

N
cage
S

2
664

3
775

0
BB@

1
CCA�

1� a
A 0 b

A 0

0 1� a
A 0 b

A
a
B 0 1� b

B 0

0 a
B 0 1� b

B

2
664

3
775

N
crop
R

N
crop
S

N
cage
R

N
cage
S

2
664

3
775ð11Þ

The allele densities after one full generation are then

given by the following composition of the maps described

above:

Dyn

N
crop
R

N
crop
S

N
cage
R

N
cage
S

2
6664

3
7775

0
BBB@

1
CCCA

�Exc

mut�all�selcrop�typ�att�rep
N

crop
R

N
crop
S

� �� �

mut�all�selcage�typ�att�rep
N

cage
R

N
cage
S

" # !
2
66664

3
77775

0
BBBB@

1
CCCCAð12Þ

with the census taken just prior to mating (‘12 o’clock’ in

Fig. 3).

Results: formulas for the equilibria of the
dynamical map

Numerically, we have observed that for a wide range of

parameter values, the dynamical system Dyn has four

equilibria in the relevant region of the state space where

the allele densities are nonnegative. A 2D caricature of

the situation, with the cage variables ‘projected out’,

is given in Fig. 4. The true picture is in the 4-dimen-

sional state space f½Ncrop
R ;N

crop
S ;N

cage
R ;N

cage
S �g, but it is
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analogous in terms of the dynamical roles played by the

four equilibria. One of the equilibria is the extinction

state (no pests of any type anywhere), and this is unstable

for parameter values of interest. In the figure, the extinc-

tion state is marked by the d. Another equilibrium is a

stable one with a large, predominantly resistant, popula-

tion in both crop and refuge, a state which corresponds

to agricultural disaster. We call this the ‘failure’ state (j

in Fig. 4).

The remaining two equilibria are the focus of this

paper. One is a stable, low-population, predominantly

susceptible state that farmers would be happy for the

system to occupy, which we call the ‘control’ state (« in

Fig. 4). The other is also a low-population state whose

stable manifold bounds the basin of attraction (shaded

gray) of the control state and separates it from the basin

(unshaded) of the failure state. We call this last one the

‘separator’ state (t in Fig. 4). The R-allele fraction in the

crop at the separator equilibrium provides a measure of

the robustness to perturbations of the control state, i.e.

how small of an injection of R allele could knock the sys-

tem out of the basin of attraction of the control state.

It is not possible to obtain exact formulas for the

control state and the separator state in terms of the

parameters. However, we have found that asymptotic

approximations can be obtained by scaling the parameters

as follows:

l
RS
� l̂

RS
�2; l

SR
� l̂

SR
�2; a� âcrop�; b� âcage�; ð13Þ

W
cage
RS � 1� Ŵ

cage
RS �; W

cage
RR � 1� Ŵ

cage
RR �; ð14Þ

and by assuming that the equilibrium values of

ðNcrop
R ;N

crop
S ;N

cage
R ;N

cage
S Þ have asymptotic expansions as

� fi 0 of the form

N
crop
R � N̂

crop
R;1 �þ N̂

crop
R;2 �

2;N
crop
S � N̂

crop
S �;N

cage
R � N̂

cage
R �;

N
cage
S � N0 � N̂

cage
S �; ð15Þ

where N0 is a carrying capacity parameter that is

explained below. Our small parameters are the mutation

rates, the exchange rates between the cage and the toxic

crop, and the fitness costs of resistance in the refuge.

The smallness of the mutation rates is consistent with

the values of �10)6 that are commonly cited, e.g. in

Sisterson et al. 2004. Fitness costs in the refuge were

detected in more than half of the experiments surveyed

by Gassmann et al. 2009. Our assumption that these

costs are not large is made to render the mathematical

analysis tractable, but fairly small values such as

1�W ref
RS ¼ 0:05, 1�W ref

RR ¼ 0:10 have been considered

appropriate in other modeling studies (Tabashnik et al.

2008, Supplementary Information). For larger fitness

costs, the control and separator equilibria still exist, and

the caged refuge technique works even more robustly,

but we are not able to obtain compact and accurate

mathematical formulas for the equilibria using the meth-

ods of this paper. The case of complete absence of fit-

ness costs is discussed in Conclusions. We stress that

neither W tox
RS nor W tox

SS , the fitnesses of the heterozygotes

and the susceptible homozygotes in the crop, are

assumed very small: we require only that the growth

rates FW
crop
RS and FW

crop
SS be <1.

The parameter N0 is the carrying capacity (density)

for SS pests in a pure-refuge habitat and is determined

by the attrition function g used in the density-depen-

dent attrition map, att, and the fecundity parameter, F,

which is the number of offspring per individual that

survive to adulthood in the absence of poisoning and

density-dependent attrition. Specifically, N0 is the posi-

tive solution of the equation N0 ¼ g(FN0), meaning

that it is the (positive) equilibrium population density

that exists for a pure-S population in the absence of

poisoning. The function g enters our calculations at

leading order only through N0 and the derivative of g

at FN0, which we call r(F). (We require |Fr(F)| < 1.)

For example, if g(N) ¼ 1)exp()N), and F ¼ 3, then

numerically we can find that N0 ¼ 0.94047979..., and

r(F) ¼ 0.059520209....

We substitute the expressions (13–15) into the equa-

tion that defines equilibrium,

0
0

NR

SN

1

Figure 4 Schematic depiction of the equilibria of the model (12) and

the basins of attraction of the ‘control’ equilibrium («) and the ‘fail-

ure’ equilibrium (j). In this paper, analytical formulas are provided for

the control equilibrium and the ‘separator’ equilibrium (t). � refers to

the small parameter in our asymptotic analysis.

Ringland and George Screened refuge technique

ª 2010 Blackwell Publishing Ltd 4 (2011) 459–470 465



Dyn

N
crop
R

N
crop
S

N
cage
R

N
cage
S

2
664

3
775

0
BB@

1
CCA ¼

N
crop
R

N
crop
S

N
cage
R

N
cage
S

2
664

3
775; ð16Þ

and solve for the allele densities, retaining only terms of

leading order in �. We obtain the asymptotic approxima-

tions given in Table 2 for the control equilibrium and the

separator equilibrium in terms of the parameters. We

have made the formulas look as simple as possible by

expressing some of the equilibrium allele densities in

terms of others. The details of the calculations are omit-

ted because they are routine and rather lengthy. As a

check against calculational mistakes, the asymptotic accu-

racy of the approximations given in the tables was tested

numerically at some ‘generic’ locations in the parameter

space: the errors relative to the last retained term were all

observed to be O(�) as � fi 0. The asymptotic order of

each term in Table 2 can be seen by substituting the

scalings (13) and (14).

We can also obtain asymptotic expressions for the

eigenvalues and eigenvectors of the linearized dynamical

map at the control and separator equilibria. Table 3 gives

the asymptotic approximations for the control equilib-

rium. We see that it is asymptotically stable, because all

eigenvalues are <1 in absolute value as long as

FW
crop
SS < 1, FW

crop
RS < 1, W

cage
RS < 1, and |Fr(F)| < 1.

For the separator state, we can also obtain asymptotic for-

mulas for the eigendata, and two eigenvalue-eigenvector

pairs are shared with the control state, namely k3, v3 and

k4, v4. Although we can also write down the formulas for

the other two, the expressions are too complicated to be

easily interpreted.

Discussion

The existence of a stable control equilibrium is certainly

to be expected, for (i) a refuge in a cage that is com-

pletely sealed will sustain a predominantly susceptible

population in the cage at carrying capacity; (ii) a small

leakage out of the cage into the toxic crop can suppress

resistance development there by the mechanism illustrated

in Fig. 1E; and (iii) a small enough back-flow from the

crop into the cage plausibly will not destabilize the equi-

librium in the cage. Equally, the existence of the separator

equilibrium may be forced on topological grounds given

the presence of two locally attracting fixed points (control

and failure equilibria). Nevertheless, the asymptotic for-

mulas in Table 2 provide a way to understand what is the

dominant balance of processes that give rise to each of

the equilibria (as we spell out below), and provide quan-

titative approximations of the allele densities at which

those balances occur - all in terms of parameters that

may be estimated for applications of interest. Our formu-

las also provide some information about where the caged

refuge technique will break down.

The processes that balance to create the equilibria

We stress that the following discussion is interpretation

of the results in Table 2, not our derivation of them: it is

the results in Table 2 that justify the assertions in this

section.

Table 2. Asymptotic approximations of the ‘‘control’’ equilibrium and the ‘‘separator’’ equilibrium. NR and NS are the equilibrium allele densities

just prior to mating.

Allele density Control equilibrium («) Separator equilibrium (t)

Ncrop
R

b
A

1
1�FW crop

RS

Ncage
R«

1�FWcrop
RS

FWcrop
RR
�1

Ncrop
St

Ncrop
S

b
A

1
1�FW crop

SS

N0
b
A

FðWcrop
RR
�W crop

RS
Þ

ð1�FWcrop
RS
Þ2þð1�FWcrop

SS
ÞðFW crop

RR
�1ÞN0

Ncage
R

lSR

1�Wcage
RS

N0
lSR

1�Wcage
RS

N0 þ a
B

1
1�Wcage

RS

Ncrop
Rt

Ncage
S ð1� b

B
1

1�FrðFÞÞN0 � Ncage
R« ð1� b

B
1

1�FrðFÞÞN0 � Ncage
Rt

Table 3. Asymptotic formulas for the eigenvalues and eigenvectors

at the control equilibrium.

Asymptotic eigenvalue Asymptotic eigenvector

k1 � FWcrop
RS

~v1 �

1
1
0
0

2
664
3
775

k2 � FWcrop
SS

~v2 �

0
1
0
0

2
664
3
775

k3 �Wcage
RS

~v3 �

0
0
1
�1

2
664

3
775

k4�Fr(F) ~v4 �

0
0
0
1

2
664
3
775
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In the cage

The density of S allele in the cage, N
cage
S , at both equilibria

is essentially the carrying capacity N0, which is the leading

O(1) term in the expressions in row 4 of Table 2. This is a

balance between reproduction and the density-dependent

attrition that limits the population. The density of R-allele

in the cage, N
cage
R , is essentially determined, at the control

equilibrium, by a balance between mutation and selection

at the well-known equilibrium R-fraction lSR=ð1�W
cage
RS Þ

(see e.g. Hartl 1988; Gillespie 2004; or Rice 2004). Self-con-

sistency of our formulas therefore requires that there be

enough fitness cost for heterozygotes in the refuge that

1�W
cage
RS >> lSR. With lSR typically �10)6, this is not a

great imposition: W
cage
RS ¼ 0:999, or even as high as 0.9999,

would be satisfactory. At the separator equilibrium, we see

that balance involves a term (the one proportional to a)

that represents back-flow of R allele from the crop. For this

term to have a magnitude consistent with our assumptions,

it is necessary that 1�W
cage
RS >> a

A
b
B which can be accom-

plished for any nonzero fitness cost by making the effective

aperture sizes a, b sufficiently small. (See Effect of the

aperture size for the consequences of reducing the aperture

sizes.) The issue of fitness costs is discussed further in Con-

clusions.

In the crop

At the control equilibrium, the S-allele density in the crop

is a balance between immigration from the cage and

reproduction/poisoning in the crop itself: balance is

achieved when amount of S allele in the offspring that

survive poisoning plus the amount in immigrants from

the cage equals the amount in the parent generation:

N
crop
S« � FW

crop
SS þ b

A
N0 ¼ N

crop
S« : ð17Þ

Likewise, the R-allele density is a balance in which the

net decrease in density resulting from reproduction and

poisoning is restored by immigration from the cage:

N
crop
R« � FW

crop
RS þ

b

A
N

cage
R« ¼ N

crop
R« : ð18Þ

(Solving eqns (17) and (18) for N
crop
S« and N

crop
R« respec-

tively gives the expressions in column 2, rows 2 and 1, of

Table 2.)

At the separator equilibrium, the expression for the

S-allele density is more complicated for general values

of the fitnesses of RS and SS individuals in the crop, but

it is readily verified that when W
crop
RR � 1, and

FW
crop
RS << 1, the value is close to the value at the control

equilibrium (as exemplified in Fig. 5) and is, at least in

these circumstances, a balance between S-allele immigra-

tion and reproduction/poisoning.

The balance for N
crop
R at the separator equilibrium is

quite different from that at the control equilibrium. At

the separator, RR individuals play a role, and immigra-

tion from the cage does not. The balance is R allele in

surviving RR offspring + R allele in surviving RS off-

spring ¼ R allele in parents, or

Nr2 �FW
crop
RR þNrð1� rÞ �FW

crop
RS ¼Nr2þNrð1� rÞ; ð19Þ

where N is the total population density in the crop and r

is the R-allele fraction, N
crop
Rt =N . Equation (19) can be

rewritten (dividing through by r and using

Nð1� rÞ ¼ N
crop
St ) as

–4
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0
cageNS
cageNS

RN
cage

RN
cage

–5 –4 –3 –2 –1
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Figure 5 Dependence of equilibrium allele densities on the size of

the hole in the cage, a ¼ b: analytical approximations (thick dashed

curves), and numerical results for comparison (thin unbroken curves).

Parameter values are given in Table 1. The accuracy of the analytical

approximations is very good when the fraction of pests leaving the

cage, b/B, is not more than 5% or so. The analytical asymptotic for-

mulas are plotted only up to the aperture size at which the expression

for N cage
St first goes negative. The small arrows locate the saddle-node

bifurcation observed numerically.
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N
crop
Rt � ðFW

crop
RR � 1Þ ¼ N

crop
St � ð1� FW

crop
RS Þ ð20Þ

which gives the expression in column 3 row 1 of Table 2

when solved for N
crop
Rt .

Effect of the aperture size

The accuracy of the asymptotic formulas for the equilibria

is illustrated in Fig. 5, where the approximations are com-

pared with numerically obtained equilibrium values. As

would be expected, agreement is good in the left half of

the figure where the aperture is small. The aperture(s)

permitting pest flow between the cage and the crop

should be small because, as understood from ‘How

refuges work, or fail to’, it is the restriction of pest flow

that makes the refuge in a cage work. We see from the

formulas in Table 2 that as the cage-to-crop aperture size

b tends to zero, the control equilibrium population densi-

ties in the crop go to zero. It might seem desirable to

make the aperture extremely small, for we would want

the control equilibrium pest population – the population

we hope to maintain in the crop – to be as small as pos-

sible. However, we also see from the formulas that the

separator equilibrium goes to zero too as b fi 0, which

means that the width of the basin of attraction of the

control equilibrium shrinks to zero, i.e. the robustness of

the control equilibrium with respect to additions of resis-

tant allele is lost: for very small b, very small additions of

R allele can knock the system into the basin of the failure

state. Thus, there is a trade-off between how low the

equilibrium pest population is pushed and the robustness

of the protection against resistance evolution. Determin-

ing an actual optimal value of b will involve factors not

treated here, because the perturbations in N
crop
R that one

wants to protect against are most likely to arise from

demographic or environmental stochasticity or other

influences that are not included in our model.

At the other extreme of aperture size, numerically we

find that as the aperture size is increased, the control and

separator equilibria eventually collide and annihilate each

other in a saddle-node bifurcation (indicated by small

arrows in Fig. 5). For apertures this large and larger, con-

trol failure is inevitable, as the ‘failure’ equilibrium is the

only stable one and is likely the limit of all trajectories

except the extinction state. In the formulas for N
cage
S in

Table 2, we have included not just the leading O(1) term,

but also the O(�) term, which captures the effect of out-

flow from the refuge. From this, it can be seen that a

crude estimate for a maximum aperture size above which

the asymptotics for the equilibria cannot be relied upon,

because the leading order term does not dominate the

next one, and therefore where absence of the control and

separator equilibria is possible, is

b

B

� �
max

� 1� FrðFÞ: ð21Þ

A numerical sensitivity analysis around the case shown

in Fig. 4 and some other numerical spot-checks suggest

that this estimate correctly predicts that the maximum

aperture size relative to cage size for which the refuge

works as indented depends on only the pest fecundity F

and the derivative r(F) of the attrition map, among all

the parameters, and the estimate predicts rather well the

relative change of the bifurcation value caused by a given

small relative change in F, athough not the actual number

very accurately.

Making the caged refuge small

A trade-off also exists with respect to the size, B, of the

caged refuge. On the one hand, B should be small, if pos-

sible, because a cage may have high cost per unit size to

maintain, and any land allocated to the cage, which is

always heavily infested with the pest, will produce low-

quality crops or none at all (Pech et al. 2009). On the

other hand, to avoid the mutual annihilation of the con-

trol and separator equilibria as described in the previous

subsection, the aperture size, b, must be reduced in pro-

portion as B fi 0. Therefore, a compromise must be

struck between low population levels at the control equi-

librium and high robustness of that equilibrium, just as

in the previous subsection. Nevertheless, simulations to

be described elsewhere lead us to believe that caged ref-

uges very much smaller than the 20% of crop mandated

by the USEPA for open refuges can be effective.

Conclusions

Our asymptotic analysis reveals which processes balance

to give rise to two important equilibria of the pest popu-

lation in the presence of a heavily screened refuge (a

caged refuge). It also provides quantitative estimates of

where these equilibria are in terms of parameters that can

be estimated for applications of interest, as well as of the

size of perturbations that can be withstood when employ-

ing this technique of pest suppression.

We have described in the previous section how some

fitness cost for heterozygotes in the refuge is necessary for

the existence of the equilibria we have analyzed. Such a

cost has been observed for some pests, but may not exist

for all (Foster et al. 2000; Gassmann et al. 2009). If there

is absolutely no fitness cost for heterozygotes in the ref-

uge, then a true control equilibrium may not exist, but

the control state can still be expected to be metastable,

i.e., transient but long-lived. For example, turning fitness
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costs off completely in Fig. 1F, even for both hetero-

zygotes and resistant homozygotes (i.e., W
cage
RS ¼

W
cage
RR ¼ 1), does not change the picture discernibly over

the 40 generations shown; the resistant allele fraction rises

extremely slowly and explodes only after 2500 genera-

tions. On the other hand, higher costs than considered

here will only make the control of the population by the

caged refuge technique more robust, athough our formu-

las for the equilibria are not expected to be accurate in

this case. Fitness costs can be significantly beneficial in

the open-refuge context, at least in the case of fully reces-

sive resistance, as shown by Gassmann et al. 2009b. But

our results indicate that the caged refuge technique can

control the population in the case of nonrecessive resis-

tance where fitness costs of resistance cannot enable an

open refuge to perform its intended function, or are too

small do so.

The model we used is intended to be one of the simplest

possible that incorporates the essential processes, and for

that reason ignores, or represents only crudely, many

features that belong in a realistic model of an agricultural

pest. Demographic and environmental stochasticity,

explicit spatial structure besides the crop/refuge dichot-

omy, overlapping generations, host plant development,

pest development, and all other processes that occur on a

subgenerational timescale are omitted. We have therefore

also explored the use of the screened refuge technique in

an implementation of a detailed stochastic model of pink

bollworm (Pectinophora gossypiella, Noble 1969) on Bt

cotton formulated in Sisterson et al. 2004, which is in the

same class of models as those of Peck et al. 1999; Caprio

2001; and Storer et al. 2003. We have observed that the

screened refuge mechanism does suppress resistance in this

context also, and a detailed comparison with the current

model results will be presented elsewhere.

We are not equipped to assess possible practical obsta-

cles and burdens (Hargrove 1999) of implementing a

caged refuge for moth species like the major pests of corn

or cotton. But we have seen fruit crops grown in Taiwan

inside large netted enclosures for the purpose of keeping

insect pests off. Such technology could perhaps be used

for a refuge cage in some contexts. The potential for

reducing refuge size relative to that required for open ref-

uges might offset the burden of maintaining cages, and of

course open refuges may simply not be an option if resis-

tance is not strongly recessive.

We remark parenthetically that remoteness of a refuge

cannot necessarily substitute for a cage as a means of ref-

uge isolation. Spatial effects create an additional layer of

complexity whose consequences are not simple to predict.

But we can say that any spatial gradient provides a spec-

trum of conditions, and if any point on that spectrum

promotes resistance development, a resulting local devel-

opment of resistance could potentially serve as the

nucleus for its spread throughout the habitat.

Finally, we note that although we have described the

screened refuge technique in the context of insects on

genetically modified insecticidal crops, the formulation is

sufficiently abstract that it could be applied to a variety of

other situations where the development of resistance to

toxins in a sexually reproducing species is to be averted:

even to weed control with a herbicide if both pollen

and seeds are dispersed widely relative to refuge size and

spacing.
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