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Abstract: Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs),
such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked
Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD),
Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene
therapy to become standard therapy for a number of diseases. However, the journey to achieve such
a successful therapy is not easy, and several challenges have to be overcome. In this review, we will
address several different challenges in the development of gene therapy for immune deficiencies
using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will
discuss product development (targeting of the therapeutic cells and choice of a suitable vector and
delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the
final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols
and regulatory hurdles).

Keywords: gene therapy; immunodeficiency; HSC; vector design; animal model; efficacy; safety;
scaling up; regulations; GMP complaint

1. Introduction

Over the past 5 years, the gene therapy product market has substantially expanded. Several
products have been approved by the FDA (U.S. Food and Drug Administration Agency) and the
EMA (European Medicines Agency) and have been granted market authorization. Among them,
in 2016, the EMA approved the first ex-vivo gene therapy product using autologous hematopoietic
stem cells, Strimvelis (GlaxoSmithKline), for the treatment of Adenosine deaminase (ADA) deficiency.
Moreover, over 3000 clinical trials have been reported worldwide [1], with the majority addressing
human cancer (CAR-T cells) and inherited monogenic diseases like primary immunodeficiencies [2].
Clinical trials with both self-inactivating (SIN) gamma-retroviruses and SIN-lentiviruses (10% of clinical
trials) are currently ongoing for various primary immunodeficiencies like ADA Severe Combined
Immunodeficiency (SCID) [3–5], X-linked SCID [6–9], Artemis SCID [10–12], Wiskott–Aldrich Syndrome
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(WAS) [13–15] or X-linked chronic granulomatous disease (CGD) [16,17] (Table 1). Severe combined
immunodeficiencies (SCIDs) are a group of rare inherited disorders in which both the humoral
and cell-mediated immunities fail to function. SCIDs are characterized by the absence of T and
often B and/or NK cells, and represent a real pediatric emergency. Indeed, if not properly treated,
SCIDs lead to infants’ failure to thrive associated with severe and recurrent infections and other
metabolic abnormalities that are invariably fatal. Mutations in a number of genes can cause SCID:
The IL2R-gamma gene mutations cause X-linked SCID; mutations in Adenosine Deaminase ADA-SCID
and mutations in either of the Recombinase Activating Genes RAG-SCID. Other immune disorders
include Wiskott Aldrich syndrome that also affects platelets and granulomatous disease, which affects
mature granulocyte function with severe and recurrent infections and other metabolic abnormalities
that are invariably fatal. Gene therapy provides a life-long cure and has the potential to become
a standard clinical procedure for immunodeficiencies and some other diseases when proven safe.
However, the journey to accomplish clinical trials has been extensive and laborious.

The bases of gene therapy were established following the scientific advances during the 1960s and
early 1970s. Friedmann suggested good exogenous DNA could be used to replace the defective DNA in
patients with genetic defects who suffer from its associated rare diseases [18]. Since then, massive efforts
from basic science, translational, and clinical research have been made, reaching the first in vivo animal
model evidence in 1989 that the procedure could work for primary immunodeficiencies [19]. In parallel,
better understanding and characterization of the targeted diseases and improvement of laboratory
methods allowed a rapid advance of gene therapy development with remarkable results for several
immunodeficiencies. Although allogeneic hematopoietic stem cell (HSC) transplantation remains the
prevailing therapeutic treatment for immunodeficiencies, the outcome differs depending on the source
of the donor HSC (Human leukocyte antigen (HLA)–matched related donor or HLA-mismatched
donor), the disease genotype, the use of conditioning, the age and the health status of the patient at the
time of the treatment [20–26]. Despite all improvements, Graft-versus-Host disease (GvHD) remains
a significant complication associated with allogeneic HSC transplantation. Therefore, particularly
patients without HLA-matched donors and those with serious comorbidities would benefit from
autologous gene therapy [27].
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Table 1. Summary of finished and ongoing clinical trials for primary immunodeficiencies.

Disease Gene Vector Clinical Study Phase Participants Location Study Type Status Outcome/References

ADA-SCID ADA

RV

NCT01279720 Phase 1/2 8 EU interventional completed

Positive benefit-risk
profile [28–36]

NCT00018018 Phase 1 8 USA interventional completed

NCT00794508 Phase 2 10 USA interventional completed

NCT00599781 Phase 1/2 8 EU interventional completed

Strimvelis (RV)

NCT00598481 Phase 2 18 EU interventional completed
Immune

reconstitution [33,37]
NCT03232203 10 EU observational recruiting

NCT03478670 50 EU observational enrolling

SIN LV

NCT01852071 Phase 1/2 20 USA interventional completed

Immune
reconstitution, well
tolerated [36,38,39]

NCT02999984 Phase 1/2 10 USA interventional completed

NCT01380990 Phase 1/2 36 EU interventional completed

NCT04140539 Phase 2/3 3 USA interventional recruiting

NCT03645460 n.a. 10 China interventional recruiting

NCT04049084 70 USA/EU observational enrolling

Artemis-SCID DCLRE1C SIN LV NCT03538899 Phase 1/2 15 USA interventional recruiting Immune
reconstitution [40]

Chronic
granulomatous

disease

Gp91
phox

RV

NCT00927134 Phase 1/2 2 EU interventional completed Sustained
engraftment,
insertional

mutagenesis, [41,42]

NCT00564759 Phase 1/2 2 EU interventional unknown

SIN NCT01906541 Phase 1/2 5 EU interventional unknown

NCT00778882 Phase 1/2 2 Korea interventional active

SIN LV

NCT01855685 Phase 1/2 3 EU interventional active

[16]
NCT02757911 Phase 1/2 3 EU interventional active

NCT02234934 Phase 1/2 10 USA interventional active

NCT03645486 n.a. 10 China Interventional active
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Table 1. Cont.

Disease Gene Vector Clinical Study Phase Participants Location Study Type Status Outcome/References

Leukocyte
Adhesion

Deficiency-I
CD18

RV NCT00023010 Phase 1 2 USA observational completed

SIN LV
NCT03812263 Phase 1/2 9 USA interventional recruiting

NCT03825783 Phase 1 2 EU interventional recruiting

Wiskott–Aldrich
Syndrome WAS SIN LV

NCT01347242 Phase 1/2 6 EU interventional completed

Successful
engraftment, immune

reconstitution, no
adverse reactions

[15,43,44]

NCT01347346 Phase 1/2 5 EU interventional completed

NCT02333760 Phase 1/2 10 EU interventional active

NCT03837483 Phase 2 6 EU interventional active

NCT01410825 Phase 1/2 5 USA interventional active

NCT01515462 Phase 1/2 8 EU interventional active

X
linked-SCID

IL2RG

RV

NCT00028236 Phase 1 3 USA interventional completed
Sustained immune

correction, risk acute
leukemia [6,45–48]

SIN NCT01175239 n.a. 1 EU interventional unknown

NCT01410019 Phase 1/2 5 EU interventional unknown

SIN NCT01129544 Phase 1/2 8 USA interventional active

SIN LV

NCT03315078 Phase 1/2 13 USA interventional recruiting

Multilineage
engraftment, immune

reconstitution [49]

NCT03311503 Phase 1/2 10 USA interventional recruiting

NCT01512888 Phase 1/2 28 USA interventional recruiting

NCT01306019 Phase 1/2 30 USA interventional recruiting

NCT03601286 Phase 1 5 EU interventional recruiting

NCT04286815 n.a. 10 China interventional recruiting

NCT03217617 Phase 1/2 10 China interventional recruiting

Adenosine Deaminase (ADA); Severe Combined Immunodeficiency (SCID); Retroviral Vector (RV); Lentiviral Vector (LV); Self-Inactivating (SIN); Not Applicable (n.a.).
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Developing successful gene therapy is not easy and several challenges need to be overcome along
the journey, starting with the selection of the most suitable target cells and how to isolate them. Next,
a suitable clinically applicable vector with the promoter and transgene of interest needs to be designed.
Once the vector and the delivery methods have been developed, efficacy is tested both in vitro and
in vivo, confirming sufficient transgene transduction, therapeutic expression of the transgene, and
immune reconstitution. Furthermore, extensive toxicology and safety studies are essential to minimize
potential insertional mutagenesis and clonal outgrowth due to the semirandom integration of the
vector into the DNA; potentially causing leukemias or lymphomas.

The FDA [50] and EMA [51] have published guidelines that define scientific principles and provide
guidance for the pre-clinical development and evaluation of gene therapy products, focusing on the
quality, efficacy, and safety requirements. Extensive pre-clinical data strengthen the proof-of-concept of
the potential of the developed gene therapy product, paving the way for the approval of clinical trials.
However, the final release steps towards the clinic and patient treatment are lengthy due to the need
for adequate scaling-up of the vector production and gene therapy product manufacturing, as well as
handling mandatory regulations. From start to finish, all steps and challenges of the gene therapy
development procedure (illustrated in Figure 1) will be discussed using our own experience in the
development of gene therapy for Recombinase-activating gene 1 (RAG1) SCID as an example [52–54].
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Figure 1. Overview of the pre-clinical assessments of gene therapy treatment: From disease modeling
to clinical application (Bone Marrow (BM); mobilized Peripheral Blood (mPB); Hematopoietic Stem
Cell (HSC); Lentiviral Vector (LV); Severe Combined Immunodeficiency (SCID)).

2. Product Development

Gene therapy can be broadly divided into two groups: In vivo and ex-vivo gene therapy depending
on the target disease and the delivery method. In in vivo gene therapy, the transgene is administered
intravenously into the patient, either by a viral or non-viral vector, and reaches the target cells inside
the body. In contrast, ex-vivo gene therapy is performed outside the body. The cells of interest are
isolated, modified with the therapeutic transgene, and corrected cells are transplanted back into the
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patient. In this last approach, the gene therapy product, i.e., the medicine, consists of the combination
of the targeted cells and the therapeutic vector target cells of interest.

2.1. Target Cells of Interest

An essential feature of gene therapy is the persistent long-term correction of the disease, lasting
for life with a unique one-time treatment, offering a cure for the disease. Moreover, primary
immunodeficiencies can affect one or multiple cell lineages. In RAG1 deficient patients, both B and T
cells are affected. To achieve the desired correction, a proper understanding of stem cell biology became
critical as stem cells have the unique capacity of both self-renewal as well as pluripotency. Regarding
immunodeficiencies, hematopoietic stem cells (HSC) are the relevant target cells that differentiate to
produce all mature blood cell types for life.

Murine HSCs were first described by Becker et al. (1963) [55], describing the clonal origin of a
population of hematopoietic cells. At the beginning of the 1990s, Jordan and Lemischka [56], proposed
a model where single stem cell clones are sufficient to maintain lifetime hematopoiesis in an animal
model and suggested that the hallmark of the long-term reconstitution system may arise from mono-
or oligoclonality. Suitable markers to characterize stem cell subpopulations were identified, allowing
the purification of the murine cells of interest [57,58]. The most widely-known murine HSC population
is the LSK population, standing for lack of lineage markers (B220, Mac-1, Gr-1, CD3, CD4, CD8, and
Ter119), and the presence of Sca1 and c-Kit. LSK comprises a heterogeneous population with different
subpopulations distinguished as long-term (Thy1lo Lin− Sca1+ cKit+ CD38+ CD34−/lo Slam+) and
short-term (Thy1lo Lin− Sca1+ cKit+ CD38+ CD34+ Slam−) populations [59,60]. Mouse bone marrow
(BM) HSCs can be isolated and purified by immunomagnetic beads for lineage depletion, from which
a lineage negative bulk population including progenitors and long-term stem cells are collected, or by
cell sorting from which a purer HSC population can be isolated. Isolated murine HSCs can then be ex
vivo cultured and transduced with the therapeutic vector, followed by in vitro or in vivo testing.

In parallel, human HSCs were also identified. Weissman and co-workers (1992) [61] isolated a
candidate population in human fetal BM (Thy1+ Lin− CD34+) that was enriched for the clonogenic
activity that established long-term and multilineage capacity. CD34 is the main marker to define
human HSCs, consisting of a bulk of populations that represents around 1% of total BM cells.
HSCs have been further phenotypically redefined as CD34+CD38− cells [62] and further divided into
subpopulations based on the expression of CD90/Thy1 and CD45RA [63] and CD49f. Therefore, the first
full phenotypic definition of human HSCs proposed by the laboratory of John Dick (2011) [64] was
CD34+CD38−CD45RA−CD90+CD49f+, where single defined HSCs were highly efficient in generating
long-term multilineage grafts in NOD scid gamma (NSG) mouse models. Recently, new HSC markers
have been identified like EPCR/CD201, which is also fairly reliable to detect HSCs in culture [65].

In the clinical setting, the CD34+ bulk fraction, also known as hematopoietic stem and progenitor
cells (HSPC), with a mix of progenitor and long-term populations (similarly to LSK in the murine
setting) is used for transplantation or gene therapy manipulation. The main advantage of using the
total CD34+ population is the easy accessibility of these cells [66,67]. HSPCs can be harvested from
the bone marrow by direct puncture or nowadays, preferably by leukapheresis. HSPCs are mobilized
with two mobilizing agents (G-CSF and Plerixafor) from the bone marrow to the peripheral blood that
is then collected, containing an enriched portion of HSCs [68]. HSC mobilization is a less invasive
method that is routinely performed, allowing to harvest a high amount of HSPCs, also suitable for
babies who are the target population of gene therapy for immunodeficiencies. Moreover, human
HSPCs can easily be collected with immunomagnetic beads for CD34 enrichment, also available under
Good Manufacturing Practice (GMP) compliance. Finally, HSPCs can efficiently be re-administered
by infusion, where HSCs will naturally home to the bone marrow. However, there are two main
challenges: Obtain a sufficient number of cells for ex vivo manipulation and successive transplantation,
and achieve appropriate gene correction for cell therapy (discussed below). With regards to the need
for sufficient therapeutic cells, it should be noted that HSPCs are delicate cells, and, therefore, cell loss
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needs to be considered during the processing of the cells (enrichment, culture, transduction, freezing,
and thawing) [66]. Nowadays, achieving a therapeutic number of CD34+ cells is accessible thanks to
the improved protocols for the collection (re-collection if needed) and isolation of HSPCs. Another way
to overcome this challenge is by achieving ex vivo expansion of HSCs. Enormous efforts, as reviewed
by Tajer et al. (2019) [69] and others [70–73], have been put into improving HSC culture protocols to
successfully maintain and even expand the cells of interest ex vivo, and, therefore, help to overcome
the shortage of primary material.

The gene therapy field is continuously evolving, offering an alternative approach by further
narrowing the isolation of HSPCs to a purer CD34+CD38− population with a clinically relevant method.
A GMP compliant platform based on immunomagnetic-based cell sorting has been developed to purify
large cell numbers of CD34+CD38− cells, quickly and with high recovery [74]. This CD34+CD38−

population is more enriched with long-term HSCs, decreasing the amount of cells needed to be
transduced ex vivo and transplanted back into the patient; reducing the amount of therapeutic virus
needed [75]. However, myeloid reconstitution after purified CD34+CD38− transplantation was delayed,
as the first wave of immune reconstitution is known to be accomplished by progenitor cells present
in the bulk CD34+ cells [76]. Therefore, even though a more extensive purification can improve
transduction efficiency and reduce the usage of the therapeutic virus (potentially reducing therapy
cost), the presence of a mixed HSPC population, including progenitor cells, is actually an advantage
for a satisfactory post-gene therapy recovery.

2.2. Vector Design: Balancing Insertion Site and Therapeutic Expression

An optimal vector for gene therapy should carry a high DNA load capacity, enable high
transduction efficiency, possess favorable cell tropism for the target cell type of interest, induce
low genotoxicity and cytotoxicity, and evoke no or a limited immune response. To achieve these
characteristics in the wide number of potential diseases targeted with gene therapy, a variety of
vectors have been developed and optimized that can be divided into two main vector categories;
non-integrative and integrative vectors. The non-integrative vectors have a safer profile, including
both viral vectors such as adenoviral or adeno-associated viral vectors and non-viral vectors, which
offer extra advantages on the low induced immunogenicity and the ease to produce [77]. However,
as the transgene of interest will not be integrated into the DNA host cell, transgene expression might
not always be stable; the expression will be retained for a prolonged period in post-mitotic tissues but
diluted progressively in proliferating cells. Therefore, the application of non-integrative vectors in the
hematopoietic system is limited. On the other hand, integrative vectors (mainly retroviral and lentiviral
vectors) have been used in approximately 1

4 of the total gene therapy clinical trials [78]. Retroviruses
can enter the host cell and reverse transcribe their RNA genome into DNA that subsequently integrates
into the cell DNA. As the transgene of interest stably integrates into the host DNA, a long-lasting
therapeutic effect is achieved, allowing the transmission of the therapeutic material to all progeny of
the transduced cells (i.e., all blood lineages developed from transduced HSCs). The use of integrating
vectors in gene therapy for immunodeficiencies has a long history by now, with over 2 decades of
experience since the first clinical trials started for X-linked SCID [6]. The firsts attempts of gene therapy
for ADA and X-linked SCID were accomplished with a retroviral vector derived from Murine Leukemia
Virus (MLV_gamma-retrovirus). Although successful correction of the disease was observed in most of
the patients and no problems were observed in the ADA trial, safety issues resulted from the X-linked
trials as leukemia cases appeared in patients treated with the gene therapy product. These leukemias
were caused by insertion mutagenesis of the therapeutic vector. Even though retroviral integration
across the DNA was thought to be random, it became apparent that there was some preference near
transcriptional active sites such as oncogenes [79–81]. These adverse events revealed a need to develop a
new generation of safer vectors with a decreased risk of insertional mutagenesis. Self-inactivating (SIN)
vectors lacking potent enhancers in the LTRs were developed, for both gamma-retroviral and lentiviral
vectors, however, SIN-γRV reached low transduction efficiency and expression [82]. The interest in



Pharmaceutics 2020, 12, 549 8 of 31

lentiviral vectors increased thanks to their capacity to also transduce non-dividing cells and therefore
allowing an increased transduction efficiency of HSCs [83]. Lentiviral vectors used in gene therapy are
HIV derived and modified to guarantee vector safety.

Naldini and colleagues (1998) [84] developed the well-known 3rd generation lentiviral vector
(LV) system resulting in the generation of replication-deficient LV to prevent repackaging. SIN-LV
are generated based on a 4 plasmid system in which all non-essential viral genes have been removed,
and the essential viral genes have been separated into several plasmids. The system consists of a group
of separate plasmids: Two packaging plasmids (gag/pol and rev), a plasmid encoding for the envelope
(env plasmid), and a minimal transfer plasmid with the LTRs, packaging signals, internal promoter,
and the therapeutic transgene. Additionally, 3′LTRs regions were modified, resulting in the deletion of
the viral promoter and enhancer activity in 3′LTR [85], and rendering the virus SIN after integration.
In addition, insulators can be added into the transfer plasmid blocking the interaction between the
integrating vector and the cell’s genome. Additional improvements have been implemented on the
LVs aiming to enhance transgene expression and stability, thereby also increasing safety as fewer
integrations are needed to achieve the therapeutic effect; fewer integrations reduce the risk as insertion
mutagenesis increases with the total amount of integrations. Polyadenylation signals help to improve
the correct transcript termination, improving the 3′ processing [86]. Additionally, the woodchuck
hepatitis virus post-transcriptional regulatory element (WPRE) positioned behind the transgene
increases RNA stability and subsequent viral titer and transgene expression [87]. Codon optimization
can be an extra modification that leads to further improvement of the titer and expression by depleting
secondary RNA structures and improving codon usage. Finally, as the SIN lentiviral transfer vector is
devoid of LTR activity, an internal promoter needs to be included. To reduce the risk of integration in
non-target tissue, the choice of tissue-specific promoters is advisable when possible. Thanks to all the
advances made in vector design, SIN lentiviral vectors are the safest to date with a highly reduced
genotoxicity compared to γ-retroviral vectors [85,88,89].

In parallel to the SIN lentiviral vector development, new vectors for immunodeficiencies not
yet-treated, have started to be developed, such as for RAG1-SCID. As RAG1-SCID is a primary
immunodeficiency, SIN lentiviral vectors were chosen for their ability to transduce HSCs and safety
profile. RAG1 gene therapy development started to be developed after γRV safety issues were
raised while SIN LV was continuously being improved. Therefore, a SIN LV with the native RAG1
transgene was developed, and its efficacy was evaluated. Both the in vitro (virus production and
transduction) and in vivo therapeutic effect were assessed. Unfortunately, RAG1 expression was
insufficient, and, therefore, a codon-optimized version of RAG1 was used (c.o.RAG1). Transduction
efficiency, transgene expression, and in vivo efficacy were improved, as shown by Pike-Overzet et al.
(2011) [52]. Gene therapy to treat RAG1-SCID seemed to be possible with SIN LV; however, the vector
used for proof-of-concept studies was still inappropriate. Accordingly, the vector was updated into
clinically applicable vectors in which different promoters were tested to achieve optimal transgene
expression. Efficacy of these clinically applicable LVs was re-assessed in vitro and in vivo, revealing
SIN LV MND-c.o.RAG1 as the most promising vector to correct RAG1 deficiency [54].

3. Proof-Of-Concept

Well-conducted clinical trials are essential to establish the benefit/risk profile. To ensure the
collection of reliable data in this rapidly expanding field, the FDA and EMA have published guidelines
for the development of these complex therapies. The guidelines are multidisciplinary, addressing
development, manufacturing, and quality control during non-clinical and clinical development.
The main objective is to provide guidance in the structure and the required data to start a clinical trial
application, focusing on efficacy (in vitro and in vivo) and safety.
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3.1. Ex Vivo Manipulation: Transduction Efficiency

One of the most important release criteria for a gene therapy product is to determine transduction
efficiency by means of the vector copy number (VCN), which is a measure for the number of transgene
copies integrated into the DNA per target cell. The threshold selected for these values in the therapeutic
product corresponds to the lowest transduction efficiency required to ensure enough modified cells
and a therapeutic effect. The ability to achieve efficient gene delivery has often been described as ‘the
Achilles heel of gene therapy’ [90]. Despite the accomplishment of remarkable improvements and the
development of new methods (like transduction enhancers), it is still a bottleneck to translate from
pre-clinical murine models to primary human cells and finally to scale up to clinical use. To achieve a
reliable VCN in the potential gene therapy product, different developmental steps need to be carefully
considered: The method to determine transgene transduction, suitable lentiviral titration in therapeutic
cells, and proper adjustment of the viral dose to achieve reliable and sufficient therapeutic effect.

Polymerase Chain Reaction (PCR) has been widely used to determine VCN and transgene
expression in the gene therapy field for immunodeficiencies. In short, transduced cells are kept in
culture for several days to avoid the detection of free plasmids and ensure the readout of stable vector
integration. DNA from cultured cells is isolated to determine VCN by PCR. Sastry et al. (2002) [91]
developed and established Real Time-PCR as the method for detecting LV sequences relative to a
housekeeping gene. Therefore, the number of vectors inserted in the DNA was quantified, allowing
the detection of multiple vector copies per cell (which was not possible with previous techniques
like p24-ELISA [92]). No free plasmids were detected 4 days post-transduction by this method,
indicating that detection of stable integration in the cell can be measured from that day. Across the
literature, analysis of VCN is performed at different timepoints post-transduction form 7 days [12,93,94],
9 days [52,54], and up to 14 days [9,95,96]. It is important to note that; VCN values may differ when
analyzed on different days, and while the differences can be subtle, it can hamper the comparison
between trials. Importantly, this PCR-based method was originally generated in a way that could
be used for a variety of LV vectors independently of the transgene, allowing to establish a standard
method to detect VCN. However, there is no complete consensus between gene therapy studies on
the vector region targeted for the PCR, the housekeeping gene, or the standard, leading to potential
misinterpretations of the VCN across different laboratories and studies. Recently, the use of the
Droplet Digital PCR system (ddPCR) instead of the RT-PCR has added an extra confounder to VCN
determination. In principle, ddPCR offers a more accurate and reproducible detection of VCN, with
minimum variability for low VCN values. Even though ddPCR is also based on the detection of a
vector sequence relative to a housekeeping gene, the detection approach is different in that the VCN is
calculated based on a mathematical model by Poison statistics [97–99].

Importantly, a precise estimation of average VCN in the targeted cell is key in defining the
therapeutic product. As multi-center clinical trials are getting more attention, there is a need for more
standardized protocols to define VCN’s in gene therapy products (such as the standard cell culture
protocols, vector region, and housekeeping gene used) and to obtain more reliable and comparable
VCN values. This is of high importance in multi-center studies where there might be a need to agree
on a release VCN value across countries and different regulatory agencies. Furthermore, it would be
interesting to introduce new techniques for further characterization of the therapeutic gene product
such as the abundant heterogeneity regarding stem cell subpopulations and the actual percentage of
transduced cells (by flow cytometry or colony-forming assays); these are key features for the success of
the gene therapy outcome that is currently being assessed differently in different trials [9,12,37,54,96].

A crucial aspect for ex vivo transduction of stem cells with a lentiviral virus is the accurate
determination of the viral titer of the produced viral supernatant; notably the functional titer, i.e.,
the lentivirus’ ability to transduce a particular cell type or cell line under specific conditions. Indeed,
gene therapy is based on the most suitable amount of virus added to the target cells to obtain sufficient
(but not too high) and reliable vector integration into the genome. Therefore, an accurate viral
titer assessment on proper, informative cells is needed. Generally, the functional titer for different
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therapeutic purposes has been determined in various cell lines like HEK293T cells [91,92,95,100], Hela
cells [91], HT1080 cells [101], or HT-29 cells [96]. An essential aspect to consider is that different cell
lines have different permissiveness to lentiviral transduction, and, therefore, the assessed viral titer can
vary depending on the cell line used; one same viral batch may have different viral titers depending
on the transduced cell line. Moreover, primary cells, i.e., HSCs, are known to be more challenging to
transduce. Therefore, the titer determined with a cell line may not be suitable for primary cells, getting
unexpected efficiencies in the primary cells. As changes in target cell type and transduction conditions
can have a dramatic effect on transduction efficiency, titration of the virus on primary cells, mainly
murine HSPCs and human HSPCs from different sources (cord blood, bone marrow, and/or mobilized
peripheral blood) is highly advisable. Thereby, having a specific titer in primary cells will help to
achieve more reliable VCN in pre-clinical studies and in the gene therapy products across patients.
Not only target cells but also transduction culture conditions should be taken into consideration, giving
a more accurate read out for transduction efficiency.

As mentioned above, human primary cells (such as HSCs) can be more challenging to properly
transduce and to achieve sufficient therapeutic efficiency. Together with the costly production of
a clinical therapeutic lentiviral batch, transduction enhancers (TEs) are valuable compounds in the
past years to boost VCN in primary HCSs using less virus if possible. Successful use of TEs will
allow treating more patients with one viral batch, which will help to implement gene therapy as a
standard protocol. In the past, to get a sufficient proportion of gene-corrected cells in the therapeutic
product, high vector doses (2 transduction hits) and prolonged ex vivo culture (3 days in total) were
needed [12,96]. Various TE compounds can be added to the culture media to increase lentiviral
transduction efficiency, VCN, and transgene expression; they include Cyclosporin and Rapamycin [95],
Prostaglandin E2 [93], Staurosporine [94], or LentiBOOSTTM [96,102]. Combinatorial TE application
has also been tested, yielding even more potent effects [94–96]. Higher transduction due to TEs was
achieved in all HSPCs subpopulation, including the long-term repopulating HSCs, without changing
viability, integration sites pattern, global gene expression profiles, in vivo toxicity, or differentiation
capacity in vitro (colony-forming assay) and in vivo (NSG mouse model). TEs have been tested in both
murine and human cells, as well as healthy and patient donor cells, and are already manufactured
in a GMP-compliant manner, facilitating their implementation in clinical protocols. In addition, TEs
compounds may allow getting reliable effects to achieve the correct VCN in the gene therapy product
across patients and diseases. With this approach, the use of LVs can be maximized, requiring less
virus per product and enabling the use of one batch for multiple patients. For example, Schott et
al. (2019) [96] showed the combinatorial use of protamine sulfate and LentiBOOSTTM that allows to
adjust their clinical protocol by reducing the amount of virus needed and shortening the culturing
time (from 2 hits strategy to 1 hit), preserving at least similar transduction. Accordingly, gene therapy
for Artemis-SCID, for which preclinical studies described a 2 hits approach [12], may benefit from a
similar strategy to enable adaptation to a more efficient protocol. Overall, this strategy makes gene
therapy more accessible due to reduced production costs.

3.2. Call for Suitable Models to Test the Efficacy of Gene Therapy

The British statistician George Box stated: “Essentially all models are wrong, but some models are
useful”, which can also be generally applied to scientific research models. The therapeutic effect in the
gene therapy field has been demonstrated in relevant in vivo studies using a broad range of animal
models from mouse to Rhesus Macaques, including dogs and pigs. However, some of these models
are still far from humans, which can limit the translatability of the discoveries in non-human animals
to clinical applications [103], potentially leading to failure in phase I/II clinical trials. As animal models
are essential in the pre-clinical assessment, it is important to choose the most suitable disease-specific
model and understand its limitations.
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3.2.1. Animal Models

Large animals such as dogs, pigs, and non-human primates, have been used in gene therapy [104]
for several neuromuscular disorders such as myopathies, Duchene dystrophy, or Huntington [105–108],
lysosome storage disorders [109,110], eye diseases [111,112], or cystic fibrosis [113]. These large
models have been used to assess efficacy, dosage, route of administration, and safety. Although
large animal models for immunodeficiency have been described [114–116], immunodeficient mice
are still the most used preclinical models to study gene therapy for immunodeficiencies like SCID.
Due to the broad range of available immunocompromised mouse models, including the “humanized”
mouse model, human patient cells can be xenografted and directly tested in vivo. Moreover, different
genetic mouse models have been developed to mimic the different forms of SCID described in
humans, such as ADA-SCID [19,117,118], X-linked (IL2rg)-SCID [9,119], Artemis-SCID [10–12] or
RAG1/2-SCID [120,121]. Importantly, these mice present a similar immunodeficient phenotype as
found in humans, such as the Rag1-deficient mouse model, which present a full block at the early
stages of T (DN2) and B (pre-B) cell development allowing close monitoring of the effects of the gene
therapy in their development. Additionally, RAG1 and RAG2 hypomorphic SCID models are also
available [122–125], allowing to study gene therapy in a wider range of immunodeficiencies with
one same strategy. For example, analyzing whether the same vector can be used to correct both
full RAG1-SCID and hypomorphic RAG1-SCID. Unfortunately, other SCID mouse models, such as
X-linked (IL7r)-SCID does not reproduce the human setting as the mouse model has an extra B cell
block that is not observed in humans [126]. With the development of new editing tools (zinc-finger
nucleases, TALENs, CRISPR-Cas9), transgenic mice can be generated to reproduce SCID phenotypes
that do not have an established animal model yet.

Even though we can find useful mouse models to study the efficacy of the developed gene therapy
for immunodeficiencies, the gap between the mouse and the human physiological and pathological
mechanisms is still substantial. The most recent achievement to overcome this gap is the development
of “humanized mouse models”; immunodeficient mice such as nude or NSG mice carrying functioning
human genes, human cells, or human tissues/organs. Importantly, these immunodeficient mice allow
engraftment of functional human immune cells [127,128], enabling refined modeling of many areas
of human biology and disease, especially immunology. This model allows sustained engraftment
of human CD34+ stem cells isolated from cord blood, bone marrow, or mobilized peripheral blood
in adult mice, developing high levels of functional lymphoid (T and B cells) and myeloid cells [129].
Humanized mice are becoming an established model to study different human diseases such as
infectious diseases, cancer, autoimmunity, and testing human-specific drugs [130,131]. In the field
of primary immunodeficiencies, this xenograft mouse model has allowed to provide previously
unattainable insight into human T-cell development and contributes to functionally identify the arrest
in thymic development caused by the three major types of SCID, as this data was largely missing due
to the non-availability of thymic biopsies [132]. Although the humanized mouse model is suitable to
recapitulate most of the human SCID phenotypes, murine enzymes can complement and overcome
human deficiency in SCIDs that result from lacking certain metabolic enzymes. Indeed, human T, B,
and NK developed from ADA-SCID CD34+ patient cells (T-B-NK- diagnosed patient) transplanted into
NSG mice [132], in which the secreted murine ADA complemented the human deficiency, comparable
to ADA enzyme replacement therapy.

Accordingly, humanized mice are an appropriate tool to study the therapeutically modified stem
cells from SCID patients directly. This model has a big impact on assessing gene therapy potential
in pre-clinical studies. It allows us to directly assess gene therapy efficacy and safety in developing
functional immune cells. An increasing number of pre-clinical immunodeficiency studies include a
proof-of-concept in patient cells transduced with the therapeutic vector and transplanted into NSG
mice, to get extra therapeutic evidence closer to the human setting, hoping for a successful subsequent
clinical trial. In our example, transplantation of hypomorphic RAG1-SCID patient stem cells into
NSG mouse showed that functional human T cells developed after ex vivo gene therapy with our
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MND-c.o.RAG1 SIN LV, restoring human T cell receptor rearrangements. Such data provides additional
robust evidence for starting a phase I/II clinical trial for gene therapy as an alternative curative treatment
for RAG1-SCID patients [54].

3.2.2. In Vitro Models

While the humanized mouse model is the best model available for pre-clinical immunodeficiency
studies and irreplaceable in the foreseeable future, there is an increased pressure to reduce the number
of animals used in experiments in many countries (3 R’s concept [133]). To reduce the number
of experimental animals, the development of useful in vitro models is crucial. Available in vitro
systems to study gene therapy in immunodeficiencies are mainly focused on T cell development.
Fetal Thymus Organ Culture (FTOC) is a powerful 3D system where stroma interactions are maintained
to sustain human T cell development; however, progenitor seeding efficiency and cell yield is limited,
and the procedure is highly technically challenging [134]. A promising 2-D in vitro system has been
developed by Zuñiga-Pflucker and colleagues where B, T and NK cell development can be studied:
The OP9 co-culture system [135]. While B and NK cells develop on OP9 stromal cells, T cells need the
expression of Delta-Ligand 1 and therefore develop only in the optimized OP9-DL1 system (in which
B cell development is hampered) [136]. Several efforts to improve T-cell development in vitro have
been performed, allowing to define an optimal medium and cytokine cocktail for optimized T cell
development through all the differentiation stages up to complete single positive CD4 and CD8 T
cells [137]. The OP9-DL1 system is an efficient tool for pre-clinical validation for gene therapy in
cells from γc deficient patient for the correction of T cell development, as was described by Six et al.
(2011) [137]. However, it can mainly be applied for T-B+NK+ SCID phenotypes. The in vitro study of
more complex SCID phenotypes remains challenging. Moreover, the OP9-DL1 system cannot mediate
all aspects of selection because proper positive selection of mature CD4 T cells is absent due to the lack
of proper MHC class II expression [138]. Furthermore, this assay is very sensitive to subtle differences
in cytokines and labile contents of culture media, making it a delicate assay [132,137]. However, these
last hurdles have been overcome by the generation of an artificial thymic organoid system based
on a stroma cell line expressing DL1 that efficiently initiates and sustains normal stages of T cell
development from human stem cells, enhancing the positive selection thanks to the 3D structure and
the new stroma cell line used [139].

Overall, with these in vitro assays, we still lack crucial information for gene therapy such as
homing, long-term stability, biodistribution, or toxicology of the therapy, that can only be assessed in
an animal model. Nevertheless, an interesting in vitro platform in development that may overcome
the last issues is the body/human-on-a-chip. It is a flexible system that integrates human cell culture
with microfluidics in vitro, integrating multiple tissues or organ system surrogates, providing a unique
platform for measuring drug response or toxicity. Although still not completed, this system has a
promising potential for rare disease research and orphan drug development and could be a good
alternative to animal experiments [140,141].A more complex system that better recapitulates the
intricacies of human T cell development is provided by artificial human thymic organoids that can be
derived from iPSCS [142]. Such a system can also support the later stages of human T cell differentiation.

3.3. Safety and Toxicology Assessment for Gene Therapy

Not only in vitro and in vivo proof-of-concept, but also toxicology studies are requested before
starting any gene therapy clinical trial. Accordingly, the EMA requires a risk assessment before the use
of any gene therapy medicinal product for which toxicology, biodistribution, and integration studies
have primary priority. Genotoxicity assays are not generally required but valuable and often included
in pre-clinical work [143,144].

Toxicology and biodistribution are assessed by in vivo studies with the appropriate animal model
(discussed above). To reduce the number of animals, all efficacy, pathology, and biodistribution studies
can be combined in one same experiment. To assess the toxicology of the therapy, a full necropsy
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of the animals is performed after long-term reconstitution (over 16 weeks after transplantation) to
assess potential long-term effects of the therapy. Organs are collected and subjected to macroscopic
and microscopic examination to verify that organs look normal, healthy, and without harmful effects
due to gene therapy. To assess toxicology in our RAG1 pre-clinical study, 28 organs were collected
(form 14 mice in total, including controls) and analyzed blindly by a European board-certified
pathologist. The selection of organs to be examined for gross pathology and histopathology analyses
followed the applicable European and international guidelines (EMEA 1995, WHO 2005) [145].
For gross pathology, the external surface of the body, orifices, and the thoracic and abdominal cavities
were examined. For histopathological examination, tissues were fixed in paraffin and analyzed
by immunohistochemistry.

In parallel, pieces of the same organs were snap frozen to isolate DNA and determine the VCN in
each organ. Vector biodistribution can then be assessed after long-term gene therapy; for HSC gene
therapy the vector is expected to be present in all immune cells raised from HSC, but not detected in
non-immune organs. In these cases, VCN is detected in immune organs like thymus, bone marrow,
spleen, lymph nodes, and peripheral blood, but only present in low levels in other organs. However,
some positivity may be observed in the intestine or lungs, as these organs have immune cells present.
In addition, it is important not to detect VCN in the reproductive organs to avoid transmission to
potential offspring. For RAG1, VCN in 16 organs was determined (for 8 gene therapy mice) after
mice were perfused with PBS to decrease blood contamination and avoid false positives. Interestingly,
if toxicology and biodistribution assays are done in parallel, the data generated can be supportive in
explaining unexpected findings. For example, an infection in the lungs and stomach was detected in
one of the mice during the necropsy. In parallel, a high VCN was detected in both organs of this mouse,
which, thanks to the pathology observations, we could explain by the high abundance of recruited T
cells in these organs. Therefore, the potential risks of unintended biodistribution of the vector were
very low.

Another minimal requirement by the EMA before the use of gene therapy medicinal products is
to perform integration studies. Integration studies examine the insertion sites in which the therapeutic
DNA has landed. This assay became important because of the first-generation clinical trial for X-linked
SCID. Some of the patients, unfortunately, developed T-lymphocyte acute lymphoblastic leukemia
due to retroviral insertions near proto-oncogenes. Since then, continuous progress to develop a robust
technique to detect integration patterns have been made. Schmidt et al. (2001) [146] described the first
version of a technique (LM-PCR), allowing the characterization of multiple rare integrations in complex
DNA samples. This technique was further improved to LAM-PCR [147] and nrLAM-PCR [148]
allowing quantitative and qualitative measurement of clonal kinetics for pre-clinical studies and patient
follow up; making it a robust method to understand vector integration pattern of new vectors and
potential therapies as well as to detect possible malignancies derived from retroviral insertion.

Finally, although not mandatory, a genotoxicity study is advisable, which can be determined
in vivo or in vitro. The in vivo assay is based on oncogenesis onset and follow up on a tumor
prone Cdkn2−/− mouse model. The readout for genotoxicity potential is the degree of tumor onset
acceleration upon transplanting gene-corrected cells. Cesana et al. (2014) [149] showed that this
sensitive method allows the detection of mild existing genotoxicity of SIN lentiviruses, and that
insulators used in some vectors slightly reduce tumor growth. However, animal experiments with
a tumor end-point as described are not required, as a powerful in vitro assay can be used to detect
genotoxicity. In Vitro Immortalization (IVIM) assay [89,150] is based on the findings suggesting that
insertional mutagenesis induce competitive growth advantages in vivo [151]. In short, primary bone
marrow cells are transduced at high multiplicity of infection with the vector of interest and upon
culturing and replating the selective outgrowth advantage of transformed cells is established, reflecting
the transforming potential of insertional mutagenesis. The IVIM assay is convenient and shows good
sensitivity, without requiring inducing leukemias or tumor growth in an animal model. Currently,
an advanced version of the IVIM screening system is developed: “Surrogate Assay for Genotoxicity
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Assessment” (SAGA). This system integrates a molecular read-out, which enhances reproducibility,
sensitivity, and reduces assay duration, paving the way for a better pre-clinical risk assessment of gene
therapy vectors [152]. However, a common limitation between both in vivo and in vitro assays is the
use of murine cells, from which the relevance in human cells can be questioned. Although the IVIM
assay is useful to assess the risk of insertional mutagenesis, the cells are cultured in a myeloid-inducing
differentiation medium favoring the readout of selective myeloid mutants (Evi1 and Prdm16) over
potentially more relevant B or T cell mutants in the case of SCID therapy [89,153]. Moreover, it is a
short-term assay (2 weeks in culture), which is not suitable as a readout for delayed onset genotoxicity
that also occurs. Notably, although not required, the assay has been used across multiple pre-clinical
studies of different gene therapy development for immunodeficiencies to assess the transforming
potential of the newly developed lentiviral vectors such as X-linked SCID [9], Artemis SCID [12] or
RAG1 SCID [54].

In the field, the genome editing approach has become an interesting potential alternative tool for
gene addition therapy to reduce the risk of random integration and especially for the correction of
tightly regulated genes expressed in specific times during development. Plenty of genome editing
platforms have been developed (Zinc-finger nucleases, TALENS, Cas9 nucleases) to enable target gene
correction under the physiological environment [154]. First attempts targeting the IL2RG gene to
correct X-linked-SCID have been successful in pre-clinical studies [155,156]. However, the efficiency of
gene correction highly depends on gene accessibility in HSCs, which can lead to insufficient therapeutic
effect. Although genome editing represents a promising approach, translation into the clinic is in its
infancy compared to gene addition therapies, which are still evolving as well.

4. Pharmaceutical and Clinical Development Phases: From Mouse to Human Treatment

After successful pre-clinical development, the next step in product development is the translation
to a gene therapy medicinal product suitable for clinical use. Intensive labor to make the product
suitable for the clinic includes scaling up, development of good manufacturing practice (GMP)
compliant manufacturing, and complying with other directives and regulations.

4.1. Scaling Up: GMP Protocols and Manufacturing

The manufacturing of both the lentiviral starting material and the gene therapy medicinal product
(CD34+ cells transduced with the therapeutic transgene) need to be scaled up and translated to a GMP
compliant manufacturing process. The first step is to find a manufacturer for the lentiviral vector
with appropriate manufacturing facilities and a GMP license; this can be an academic center or a
commercial partner. When manufacturing is outsourced, good technology transfer from the research
group to the manufacturer is crucial. Lentiviral production of our GMP RAG1 lentiviral clinical batch
was outsourced to Batavia Biosciences B.V. Although this company has extensive expertise in virus
production for clinical use, it was the first time they produced a lentiviral vector-based product upon
adaptation from the research into a large scale GMP protocol. In our example, we will manufacture
the gene therapy medicinal product (i.e., gene-modified CD34+ cells) in-house, within the academic
environment of the Leiden University Medical Center (LUMC) thanks to the availability of proper
GMP compliant cleanroom facilities with suitable equipment. To fulfill the gap between research and
GMP production, collaboration with knowledgeable departments and qualified personnel has been
essential. Furthermore, personnel were encouraged to get familiarized with the relevant regulation
and a GMP working environment.

A common hurdle when stepping into GMP manufacturing (viral vector starting material or
gene therapy medicinal product) is that all raw materials and disposables should be available in
appropriate quality and equipment must be qualified according to GMP guidelines. A GMP compliant
quality system should be in place ensuring amongst other the qualification of starting raw materials
and suppliers, traceability and the qualification and validation of analytical assays and equipment.
Since cell-based medicinal products cannot be sterilized after manufacturing, it is crucial to ensure an
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aseptic manufacturing process. This can be done by working in qualified cleanrooms (class A in B),
making use of closed systems, and applying appropriate measures to avoid cross-contamination [157].
To comply with GMP guidelines is not easy, and research-based protocols may need to be adapted to
the new requirements, encountering different challenges that will be discussed below.

4.1.1. GMP Compliant Virus Manufacturing

GMP RAG1 lentiviral vector manufacturing was outsourced and protocols were adapted upon
technology transfer from the research laboratory to the Contract Manufacturing Organization. Research
protocols needed to be adjusted to produce large volumes, where viral production and concentration
systems can differ, moving towards more sophisticated methods to ensure a high-quality product.
As the gene therapy field is rapidly reaching several clinical trials, the production of highly concentrated
and purified large scale virus batches is in demand. To achieve such manufacturing, the use of a stable
lentiviral producing cell line would be ideal as cell lines are easy to scale up and adapt to serum-free
medium and culture in suspension. Nevertheless, suitable GMP lentiviral producing stable cell lines
are not yet available [158–161]. Therefore, the transient transfection protocol on adherent cells is
used. However, it can be challenging to achieve large numbers during the upstream processing (virus
production) and to reach high concentration and purity during the downstream processing [162].

The upstream process is costly as high-quality raw materials are expensive and need to be largely
used. Adherent cells used for lentiviral production (HEK293T cells), as well as raw materials and
plasmids, should ideally be the same as used in pre-clinical studies but at a higher quality grade in most
cases. The main problem with adherent cells in the scaling-up is the huge surface area and the laborious
manipulation needed. From a simple culture flask, large scale protocols are adjusted to multi-layer
flasks, allowing a higher surface to culture cells in the same space. However, the increase in LV
production remains modest as cell density is still “low”. Improvements to allow gene therapy to become
a standard therapy and overcome the lack of scalability have been made taking different approaches.
Systems that increase cell density by extending the surface to adhere have been developed, such as
hollow fiber bioreactors [163] or fixed-bed bioreactors [164]. In addition, the field is moving towards
adapting adherent cells to suspension cultures, achieving greater cell density and easier scaling-up.

After overcoming the challenge to produce large volumes of lentiviral supernatant, downstream
processing of the sample is crucial to achieve high purity while maintaining high viral titers.
Different methods are available with diverse relevant parameters concerning scalability, prices,
capacity and throughput, removal of contaminants, maintenance of functional virus, and product
losses. The most suitable procedure should be selected to concentrate and remove impurities, i.e.,
anion exchange chromatography [165,166], size exclusion chromatography [167], affinity absorption
chromatography [166], or tangential flow filtration [168]; although a streamlined combination of many
techniques is likely to be chosen.

Knowledge transfer when manufacturing is outsourced, and scalability issues are major challenging
stages of the lentivirus production stages. The last bottleneck is the extensive LV quality control that
needs to be performed on each produced batch. LV production and manufacturing are performed
under EU guidelines, which requires rigorous safety controls of the LV starting material. Release tests
to assess microbial contamination and purity (free of endotoxin, bacteria, yeast, mycoplasma, toxic
agents and residual host cell protein and DNA), safety (Replication competent lentivirus negative and
residual plasmid negative) and potency (viral titer and transgene identity assessed) of the LV starting
material are recommended for routine batch analysis. Extensive characterization of purified LV GMP
grade batches is needed to reduce potentially harmful effects of the therapy in the following steps.

4.1.2. GMP Gene Therapy Product Manufacturing

Protocols to successfully isolate and transduce human CD34+ cells with the produced GMP grade
LV needs to be adjusted to be able to manufacture a suitable medicinal product for clinical use under
GMP compliance. CD34+ isolation is adjusted to use a close system purification instrument, such as
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CliniMACS from Milteny Biotec, which is currently a good selection system design for processing
a large number of cells [169]. An updated semi-automated system, Prodigy, is also available and
can successfully enrich and transduce CD34+ cells with minimal user manipulation [170]. With this
GMP compliant equipment and obtaining a comparable yield, purity, and transduction efficiency as
current protocols, this semi-automated cell isolation, and transduction equipment has the potential
to improve the availability and standardization of HSC gene therapy. Further adaptations in the
transduction protocol of the CD34+ cells are needed, both due to the high number of cells that have
to be transduced and to the transduction method itself. Spin-oculation is often used in the research
setting [52,54] to increase transduction efficiency. However, it was decided that this approach was not
suitable to be performed in the cleanroom, due to the high number of cells. The process would be
too laborious, which would have a negative impact on the cells and in addition, would enhance the
contamination risk as a result of an extensive open production step. Subsequently, this change in the
protocol promotes the use of alternative high-quality grade available transduction enhancer methods
such as TEs compounds discussed above.

When facilities, personnel, documentation, raw materials, and equipment are ready, validation
runs have to be performed, which will show whether the gene therapy medicinal products can be
generated successfully, reliably, and aseptically. In the process and release test, such as determining cell
numbers, viability, transduction efficiency, and product sterility, should be ready at this point too. It is
also very important that the development of analytical assays start early in product development. If the
medicinal product is given as a fresh product to the patients, then this constitutes the final product.
If the product is cryopreserved, thawing protocols need to be evaluated, as well as post thawing
viability of the product. Stability testing of the fresh or frozen product, as well as the lentiviral starting
material, is also required and have to be considered during the development process and optimally is
combined with the validation runs. Once protocols have been adjusted for clinical use and validation
runs have been fully accomplished, one can proceed with the final clinical applicable protocol.

4.2. Regulatory Hurdles

Developers of gene therapy products not only face challenges in the scientific and technological
fields but also experience additional hurdles in the regulatory trajectory, even though the regulatory
environment for ATMPs (Advanced Therapy Medicinal Products) has been globally coevolving with
the increasing interest in marketing authorization over the past decade [171,172].

The regulatory requirements may be complex and vary across continents and countries, but their
aim is always the same: To ensure the safety and well-being of human beings [173]. The three major
regulatory authorities in the European Union (EU), the United States (USA), and Japan have been
making great efforts to develop and implement tools that facilitate ATMP development and enable
products to reach the patients as early as possible. They have been making important steps to define
appropriate regulatory standards; however, due to the novelty of this field and the complexity of
such products, regulators face scientific issues never discussed before. As a result of this, regulatory
requirements for approval for market authorization are not standardized or harmonized yet [172,174].

In the EU, the legal framework for ATMPs is laid down in the European Regulation (EC)
No. 1394/2007, known as the ATMP regulation, amending Directive 2001/83/ EC and Regulation (EC)
No. 726/2004. This regulation is in place since 2009. It defines ATMPs and ensures that such products
are subject to appropriate regulatory evaluation before their clinical and commercial use, according
to the regulatory framework for human medicinal products [175]. Numerous other directives apply
to clinical gene therapy. An overview of the European legislation, legal guidelines, and guidance on
various relevant subjects with regards to ATMPs can be found at the website of the EMA [176].

Before an ATMP can be granted with market authorization and be available for patients, clinical
trials have to be performed to demonstrate safety and efficacy. To conduct clinical trials, sponsors
should follow specific requirements to obtain national authorizations from the regulatory body of the
individual EU member states [173]. The review process to assess the benefit-to-risk ratio for patients is
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currently regulated by Directive 2001/20/EC. This lengthy process, currently 90 days, has been widely
criticized by the scientific community. Due to their call for reform, the EC will replace this directive
with the new ‘Regulation 536/2014 on clinical trials on medical products for human use’. It is expected
to come into effect in 2020 [177,178]. According to this new EU regulation, clinical gene therapy is still
considered as a special case, and the review period for gene therapy products can be extended by an
additional 50 days [177].

During the process of obtaining regulatory authorization, the sponsor must submit a clinical trial
application (CTA), also known as a standard research file, to the national competent authority and an
independent ethics committee. The research file includes several essential documents: Clinical trial
application form, trial protocol/amendment(s), written informed consent form(s), subject recruitment
procedures (e.g., advertisements), written information for subjects, Investigator’s Brochure (IB),
Investigational Medicinal Product Dossier (IMPD), summary of scientific advice, available safety
information, information about payments and compensation available to subjects, the investigator’s
current curriculum vitae and/or other documentation evidencing qualifications, and any other
documents that the regulatory body may need for the review.

Besides, in EU countries, separate legislation has been implemented to assess the environmental
risks of genetically modified organisms (GMOs) within clinical gene therapy trials. Thus, in addition to
approval by an independent ethics committee and the competent authority, GMO license must also be
obtained before trials can commence. The additional GMO legislation is based on two environmental
EU directives, the 2009 EU directive entitled ‘Contained use 2009/41/EC’ and the 2001 EU directive
entitled ‘Deliberate release in the environment 2001/18/EC’. Unfortunately, there are several issues
related to the environmental risk assessment process. First, these directives failed to keep up with the
scientific progress and gene therapy vector development of the past 25 years and still apply to the
current clinical gene therapy trials of which the environmental risks can be considered negligible [177].
Second, this process does not only require longer review timelines but are also poorly harmonized
within the EU. While in the Netherlands, the deliberate release framework always applies, resulting in a
lengthy procedure, in the UK, the length of the procedure depends on the biological characteristics and
environmental risk assessment of the GMO. To reduce the review timeline, integration of environmental
risk assessment in the EU clinical trial legislation framework was put into the consideration of the EU
Parliament’s and European Committee. Furthermore, it was suggested that only one organization
should be considered responsible and accountable for the review of clinical gene therapy trials similar
to the USA. Such improvements would result in a more efficient and transparent review process and
reduce the time needed for the product to reach the patients [177]. Overall, harmonization of GMO
authorizations across the European would clearly facilitate clinical trials with GMOs.

If a trial has a multinational design involving more EU Member States, there is a possibility to
make use of the voluntary harmonized procedure (VHP). In 2009, VHP was introduced by the Clinical
Trials Facilitation Group as a pilot of Regulation 536/2014. The objectives of the VHP are to establish
harmonized assessments and decisions on clinical trials in the EU and identify possible serious issues
before the official submission [179]. The possibility of obtaining centralized approval for participating
member states could facilitate the approval procedure for the study in a timely fashion. The VHP takes
place prior to the official national submissions of the research file. Documents like the protocol, the IB,
and IMPD are assessed jointly by one participating member state and the other concerned member
states of a VHP. Although this procedure is an efficient tool to achieve harmonized and quick approvals
of clinical trials in many EU Member States in one procedure, it currently has no formal status. It is an
informal procedure that does not lead to an official decision. The submitting party can, therefore, not
derive any rights from the procedure, and sometimes regulatory approval by national agencies can be
delayed due to conflicts in the VHP rules with national requirements. However, as there also are clear
benefits to having a VHP approval, sponsors should certainly consider pursuing this route.

It should be noted that a large team effort is indispensable to compile a research file
that can be granted regulatory approval. Continuous collaboration of preclinical developers,
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clinicians, pharmaceutical, legal and health technology assessment experts, project managers, patient
organizations, and regulatory experts is required [173,180]. Although universities are a major player in
the field of ATMP development, unfortunately, researchers face significant hurdles partly due to lack of
regulatory expertise and related financial support [180,181]. Thus, next to working with the necessary
specialists, early engagement with the national competent authorities and/or EMA is encouraged to
succeed in development. University researchers are advised to discuss scientific questions via scientific
advice at the national regulators, as this is often easier, cheaper, and can be relatively informal or via
the EMA’s Innovation Task Force. This way, regulators could provide scientific advice to ensure the
development plans are acceptable and in line with regulatory expectations. Furthermore, with their
contribution, the potential for lengthy and costly delays can be reduced [173,182].

The application is approved, and the trial can commence, but that does not mean the work is done.
During and after the trial, sponsors must follow relevant regulatory regulations and frequently submit
different information to the regulatory authorities (e.g., amendments, SAEs, SUSARs, SADEs and line
listings, progress reports, DSU report, a summary on trial results).

When the whole development trajectory is performed successfully, one can apply for market
authorization (MA). For ATMPs a centralized marketing authorization is mandatory, which leads to a
single marketing authorization that is valid in all EU countries. The EMA, together with its Committee
for Advanced Therapies (CAT), Committee for Human Medicinal Products (CHMP), and the network of
national agencies, are responsible for the scientific evaluation of the MA applications [183]. CAT offers
an ATMP classification and high-level expertise to assess the quality, safety, and efficacy of ATMPs.
It reviews whether the clinical development and product manufacturing processes comply with the
particular standards and requirements and ensure that the data presented are complete, accurate, and
satisfactory [175]. To facilitate the authorization process, EMA provides early access tools and support.
The priority medicines (PRIME) scheme is the main tool. PRIME was introduced in 2016 to enhance
support for products targeting an unmet medical need and to speed up evaluation, thus, the medicines
can reach patients earlier [171]. It is interesting to note that over one-third of the medicines in the
PRIME scheme are ATMPs and all of these are gene therapies. In the United States and Japan such
support schemes are also actively contributing to the progression of cell and gene therapies [175].
The EU has also released guidelines supporting a risk-based approach to cover quality, safety, efficacy,
manufacturing, and biological aspects. The risk-based approach is a strategy to determine the level of
data required and to support justification for any deviations made from directives [173].

Unfortunately, ATMPs are often seen as products with a low commercial value and/or a high
commercial risk due to the complex manufacturing processes, orphan indications, and tailored
production [180]. Currently, all three regulatory authorities show a willingness to accept uncertainty
and safety risks with the emphasis of paying accurate attention to post-marketing surveillance and
risk-minimization measures [174,180]. As of May 2019, 14 ATMPs have been granted a MA for the
European Economic Area, however, 4 of them already have been withdrawn from the market for
a variety of reasons [180]. An alternative route to increase access of drugs to patients in Europe is
through the hospital exemption, which allows the use of ATMPs under the supervision of a medical
practitioner, on a non-routine basis, and in restricted circumstances, in a single member state.

In summary, the development, regulation, and clinical use of most ATMPs are constantly
co-evolving, and this path should be further followed. Although the use of gene therapy products
and lentiviral vectors, in particular, is still relatively new for developers and regulators, the regulatory
authorities can provide guidance and useful information on quality, safety, and efficacy during product
development. In the coming years, the number of authorized gene therapy medicinal products is
expected to increase significantly. When more information on such products is available, regulations
and guidance are expected to increase and be harmonized, thereby supporting the delivery of more
promising new gene therapy medicinal products in the EU and global markets [173].
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5. Conclusions

Ex-vivo gene therapy using HSCs has extensively progressed over the last three decades, allowing
to establish a relevant workflow of the essential steps to develop gene therapy from the pre-clinical
stage to clinical trials [184,185]. Obtaining robust pre-clinical data to initiate a successful clinical trial is
laborious, time-consuming, and with the risk of becoming a vicious cycle. Every time an improvement
in the vector design needs to be implemented or protocols (isolation or transduction) are adapted,
in vitro and in vivo efficacy should be tested again. Additional safety tests might also be required,
entering successive cycles of adaptation and improvements. Although HSC isolation procedures and
used vectors are rather standardized in the field, it is important to keep basic research in parallel to
their clinical use, allowing continuous optimization in GMP compliant manufacturing and automated
procedures as well as improving vector safety. A key parameter in the generation of the gene therapy
product during clinical implementation is the ex-vivo manipulation procedure, which is currently
lacking standardized assays—this lack of standardization results in variability between assays and
inconsistency between research groups and developing therapies. Standardization of viral titer and
VCN determination will help to overcome the variability in one of the most important release criteria
of the gene therapy product. Data from in vivo and safety studies are crucial to initiate the way into the
clinic. Approved and reliable in vitro safety tests are used regularly. However, a significant amount of
the toxicology and safety results are obtained from experiments performed in animal models, revealing
the importance of choosing suitable models for the diseases. Once favorable pre-clinical data following
the FDA and EMA guidelines is collected, it is time to step out of the pre-clinical development cycle and
step towards the pharmaceutical and clinical development phases, with still an extended journey ahead
until starting a clinical trial. As gene therapy remains an emerging treatment, GMP manufacturing
and regulations have been developed in parallel to the clinical implementation progress made in gene
therapy. Communication between researchers, industrial representatives, and regulators is key to learn
and grow together in this new field, adapting as the therapy evolves to design solid guidelines for the
standard implementation of gene therapy as a medicinal treatment. Although the focus of this review
has been on autologous HSC-based gene therapy for immune deficiencies, similar approaches are
being used successfully for red blood cell disorders (such as thalassemia) and a wide range of metabolic
disorders affecting brain, liver, and muscle (reviewed by Staal, Aiuti and Cavazzana [186]). In all these
diseases, a long path of development (Figure 2), starting with suitable vectors and disease-specific
mouse models, was required to reach clinical implementation.
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Figure 2. Development of autologous stem cell-based gene therapy for RAG1 severe combined immuodeficiency (SCID): A journey from mouse house to bed side.
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Therapy (GT)).
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BM Bone Marrow
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CGD Chronic Granulomatous Disease
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IB Investigator Brochure
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iPSCS Induced Pluripotent Stem Cell
IVIM In Vitro Immortalization Assay
LAM-PCR Linear Amplification Mediated PCR
LSK Lin−Sca+cKit+ cells
LTR Long Terminal Repeat
LUMC Leiden University Medical Center
LV Lentiviral vector
MA Marketing Authorization
mPB Mobilized Peripheral Blood
NSG NOD Scid Gamma
nrLAM-PCR Non-restrictive LAM-PCR
PCR Polymerase Chain Reaction
PRIME Priority Medicines
RAG1/2 Recombinase-Activating Gene 1/2
RV Retroviral Vector
SAGA Surrogate Assay for Genotoxicity Assessment
SCID Severe Combined Immunodeficiency
SIN Self-Inactivating
TE Transduction enhancer
USA United States of America
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WAS Wiskott–Aldrich Syndrome
WPRE Woodchuck hepatitis virus Post-transcriptional Regulatory Element
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