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ABSTRACT

The large amount of non-coding DNA present in
mammalian genomes suggests that some of it may
play a structural or functional role. We provide
evidence that it is possible to predict computa-
tionally, from the DNA sequence, loci in mouse liver
nuclei that possess distinctive nucleosome arrays.
We tested the hypothesis that a 100 kb region of
DNA possessing a strong, in-phase, dinucleosome
period oscillation in the motif period-10 non-T, A/T,
G, should generate a nucleosome array with a nucleo-
some repeat that is one-half of the dinucleosome
oscillation period value, as computed by Fourier anal-
ysis of the sequence. Ten loci with short repeats, that
would be readily distinguishable from the pervasive
bulk repeat, were predicted computationally and
then tested experimentally. We estimated experi-
mentally that less than 20% of the chromatin in
mouse liver nuclei has a nucleosome repeat length
that is 15 bp, or more, shorter than the bulk repeat
value of 195 ± bp. All 10 computational predictions
were confirmed experimentally with high statistical
significance. Nucleosome repeats as short as 172 ±
5 bp were observed for the first time in mouse liver
chromatin. These findings may be useful for identify-
ing distinctive chromatin structures computationally
from the DNA sequence.

INTRODUCTION

One well-studied aspect of chromatin structure is nucleosome
positioning. Nucleosome positioning is of interest because it is
widespread in yeast (1), and it could, in principle, serve to
control the accessibility of regulatory protein binding sites in
all eukaryotes. However, the extent of nucleosome positioning

in vivo that occurs as a direct consequence of histone-DNA
interactions and the mechanisms involved in positioning are
not clear. Some regions of DNA can exclude nucleosomes
either because they bind to other proteins (2) or because
they contain sequences that discourage nucleosome formation
(3–5). In either case, the excluded region could then provide
a boundary that serves to position adjacent nucleosomes (6).
Additionally, both natural and synthetic sequences have been
found that possess the ability to position nucleosomes directly
through histone-DNA interactions; a variety of DNA sequence
motifs have been implicated in nucleosome positioning (7,8).

In addition to the ability of a DNA sequence to control
the access of a binding site in its immediate vicinity for a
regulatory protein through nucleosome positioning, sequence
motifs in genomic DNA, particularly in metazoans, might be
involved in other aspects of chromatin structure. For example,
a periodic motif in DNA that persists over a large distance
might influence nucleosome array formation. For this role,
nucleosome positioning need not be precise. It is likely that
nucleosome arrays that possess differences in the regularity of
nucleosome spacing or differences in the nucleosome repeat
length also possess differences in chromatin higher-order
structure (9,10), or at least in chromatin fiber flexibility
(11). Moreover, these physical chemical differences could
be functionally important. With the sequences of human,
mouse and other higher organism genomes now available,
one can analyze large amounts of sequence computationally
and possibly obtain useful information about chromatin struc-
ture if one knows what to look for. A goal for the future of
genome research is to identify the structural and functional
components encoded, perhaps in unexpected ways, in the large
amounts of non-coding DNA that is present (12). Little is
known about information in DNA that could affect large-scale
chromatin structures.

We have previously found that regular oscillations of
period-10 non-T, A/T, G (VWG), a periodic motif that is
very abundant in vertebrate genomes (13), occurred specific-
ally in regions of DNA that ordered nucleosomes into regular
arrays in vitro (14). The period of these oscillations, assessed
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by Fourier analysis, corresponded almost exactly to a value
that was equal to twice the measured nucleosome repeat in
all cases studied. Moreover, DNA regions that did not possess
a single strong Fourier peak did not order nucleosomes into
regular arrays in vitro. These observations suggested the
hypothesis that nucleosome ordering by linker histones
might be facilitated by a dinucleosome period signal consist-
ing of regular period-10 VWG oscillations. It is not necessary
for each nucleosome in an array to have its own positioning
signal (8). Linker histone addition to nucleosomes can readily
align one nucleosome with respect to another in the absence
of signals in the DNA (15). We obtained further support for
this hypothesis by making small alterations in the chicken
ovalbumin gene sequence which affected nucleosome array
formation in vitro in a computationally predictable way (16).
We also showed that this oscillating signal appears to work
because nucleosomes tend to avoid the DNA regions that have
low counts of period-10 VWG; presumably they are less flexi-
ble than regions of DNA with high counts. Recently, we have
suggested that it might be possible to extend our computational
approach to the chromatin in animal tissues if the period-10
VWG oscillations are assessed over a 70–100 kb range (17).
Here, we provide evidence for the first time that it is possible
to predict computationally, from the DNA sequence, loci that
possess distinctive nucleosome arrays in mouse liver nuclei.

MATERIALS AND METHODS

Computational analysis

Sequences were analyzed for long-range periodic oscillations
in period-10 VWG content as described previously (14).
Briefly, the occurrences of the motif VWG/CWB (comple-
ment) with a periodicity from 10.00 to 10.33 were counted
in a sliding 102 bp window, ±51 bp from each VWG position.
These histogram data were then averaged in a sliding 60 bp
window (5 bp increments) to generate a continuous oscillat-
ing curve of the average period-10 VWG count versus
GenBank nucleotide number. The total number of VWG/
CWB occurrences in a sliding 600 bp window was also com-
puted, and used to apply a small correction for the presence of
VWG-poor or VWG-rich regions, as described previously.
The extent of regularity and the period of the long-range
period-10 VWG oscillations were assessed by Fourier analysis
using a 100 kb window, unless otherwise stated. Approxi-
mately 60 Mb of mouse genomic DNA (NCBI Build 35)
from all chromosomes except Y was analyzed to obtain
ten 100 kb regions predicted to have strong signals for form-
ing a nucleosome array with a short repeat. These sequences
are obtainable by ‘BLASTing’ the reported probe sequences
(Supplementary Data), on which they are centered, against the
mouse genome. This method, rather than reporting accession
numbers, is independent of the NCBI build, which keeps
changing over time. A short repeat is operationally defined
here as one having a value between 168 and 180 bp, at least
15 bp shorter than the bulk repeat in mouse liver (195 ± 5 bp).
The very short yeast-like repeat value of 168 bp is theoretically
possible, but may not exist in mouse liver chromatin, whereas
the repeat value of 180 bp is closer to the ubiquitous bulk
chromatin repeat value, but still readily distinguishable
experimentally. The Fourier transform (FT) of the oscillating

curve of period-10 VWG counts versus nucleotide number
was decomposed into Gaussian peaks within and around the
physiological dinucleosome region using the NORMDIST
probability mass function of Excel. The mean, peak height
and standard deviation of each peak was adjusted by trial and
error until the sum of the peaks closely fit the FT curve defined
by the computed points, rather than the Excel spline curve
through the points. A strong signal is operationally defined
as one possessing a nearly symmetrical (Gaussian) Fourier
Amplitude peak in the physiological dinucleosome period
range (taken to be from 2 · 165 bp to 2 · 200 bp) with a
standard deviation between 7.0 and 17 bp, a height (estimated
±5%) that is at least 800 VWG counts for the �100 kb window
used, and a peak area that is at least 2.0 times the area of the
next largest peak in the physiological dinucleosome region.
For peaks possessing mean period values that are outside of the
physiological dinucleosome region, only the area extending
into the physiological region is considered. We also required
that the signal was stable with respect to small variations in
window size (±10 kb). The above-stated criteria for a strong
signal are consistent with what we initially found for the
mouse adenosine deaminase gene (17), and it eliminates pos-
sible Fourier peaks that are sharp spikes, peaks that have low
amplitudes or are very broad, and peaks that are unstable with
respect to varying the window size. It does not imply that
peaks that do not possess all of the characteristics defined
above cannot still be influential. We hypothesize, based on
our previous study (17), that the presence of a strong signal in
a particular DNA region should result in the formation of an
extended nucleosome array in this region with a repeat value
that is one-half the value of the dinucleosome period of the
signal peak. In the much more common case where no appre-
ciable signal in the DNA sequence exists, we hypothesize
that the nucleosome arrays in these regions should possess
the bulk chromatin repeat.

Preparation of nuclei, micrococcal nuclease digestion
and electrophoresis

Nucleosome arrays in native chromatin were assessed by
partial micrococcal nuclease (MNase) digestion of the DNA
in the chromatin of mouse liver nuclei. Nuclei were prepared
from mouse (strain C57BL/6J, the NCBI reference sequence)
liver as described previously (17). Nuclei containing about
1 mg of DNA were gently pelleted and re-suspended in
1 ml of 0.1 M NaCl, 10 mM Tris–HCl (pH 8.0), 1 mM
EDTA. After equilibration for 5 min at 37�C, 0.1 M CaCl2
was added to a final concentration of 2 mM, then 30 U of
MNase were added, and the sample was digested for 1.5 or
2 min. After deproteinization, the nucleic acid was treated with
RNase A, and prepared for electrophoresis. The same DNA
digests were repeatedly run on a 1.5% agarose bridge gel
apparatus of dimensions 13.5 by 13.5 cm in TBE buffer for
about 4 h, blotted, and the different DNA regions of interest
were detected by Southern hybridization. Lambda DNA cut
with AflIII (ascending band values in bp: 170, 277, 458, 493,
739, 956, 1268, 1399, 1520, 1712, 1913, 2360, 2691, 4091,
4920, 5733, 6236, 6631) and, in a separate lane, a 100 bp
ladder (BioRad), each labeled with [a-32P]dATP, were used
as size markers. Matthiola incana petals (two flower stalks)
were minced in a Virtis S 45 homogenizer in 50 ml chilled
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400 mM sucrose, 10 mM MgCl2, 50 mM Tris–HCl (pH 8.0),
10 mM NaCl isolation buffer (IB) to a fine pulp, filtered
through four layers of cheesecloth, two layers of miracloth.
Triton X-100 to 0.1% final concentration was added drop-wise
while stirring on ice. The filtrate was centrifuged in a Sorvall
SS34 rotor at 3000 r.p.m. for 5 min at 4�C. The pellet was
re-suspend and washed twice with 40 ml chilled IB. Finally,
the cream-colored nuclear pellet was re-suspended in 2 ml
of chilled IB. MNase digestion was as above.

Southern blots and hybridizations

Probes with sizes ranging from 336 to 820 bp located in the
center of each 100 kb region were PCR-amplified from
mouse liver genomic DNA. Each probe used is described
by the chromosome number, followed by the probe size in
base pairs (see Supplementary Data for the DNA sequence of
each probe). To purify the PCR-amplified DNA fragments
to be used as probes, the DNA was run on an agarose gel,
the gel was stained with ethidium bromide to visualize the
band of interest, and the DNA fragment was excised from
the gel. The DNA was purified from the gel slice using the
Qiaex II gel purification kit (Qiagen). The pure denatured
DNA probe fragment (25–50 ng) was labeled with
[a-32P]dATP as described previously (17). After stopping
the reaction, the labeled DNA was supplemented with
about 2 mg of salmon sperm DNA, denatured and chilled
on ice. The pre-hybridization and the hybridization solution
contained 100 mg/ml denatured salmon sperm DNA. Final
probe concentrations in the hybridization buffer were 5 ng/
ml. All pre-hybridizations, hybridizations and washes were
performed in a Hyb-Aid oven at 65�C using the membrane
manufacturer’s recommendations, except for the high strin-
gency washes. The high stringency washes were generally
done in 0.1· SSC, 0.1% SDS at 63�C, with a room temperature
wash in 0.1· SSC. The blots were exposed to Biomax MR
film (Kodak) from 1–3 days at �80�C using a Kodak Biomax
MS intensifying screen. To assess the specificity of hybrid-
ization, purified mouse genomic DNA digested with appropri-
ate restriction enzymes (usually PstI plus HindIII) were
included in lanes labeled D. Nearly half of the probes initially
prepared failed to hybridize specifically and could not be used;
some of these could be rescued by cleaving with a restriction
enzyme and re-purifying a sub-fragment of the initial PCR
product (see Supplementary Data for restriction sites).

Nucleosome repeat analysis

The midpoint of each of the nucleosome oligomer bands from
the 2 min digest was sized based upon the 100 bp ladder,
always present in an adjacent lane. The slope of the best-fit
straight line in the plot of nucleosome oligomer size versus
nucleosome oligomer number gives the nucleosome repeat
length (18). Y-intercepts and the standard deviation of the
fit, calculated as the square root of the variance of the residu-
als, are reported for each fit (Supplementary Data, summarized
in Table 1). Negative y-intercepts are expected for most
genomic DNA regions at the extent of digestion used because
of the exonuclease activity associated with MNase, whereas
regions that are resistant to digestion and regions with shorter
repeats should have y-intercepts that are near zero. A large

positive y-intercept would not be consistent with a regular
nucleosome array that contained multiples of a unit repeat.

RESULTS

Specific loci can possess short nucleosome repeats in
mouse liver nuclei

The bulk chromatin nucleosome repeat in mouse liver nuclei is
195 ± 5 bp, as assessed by total DNA staining using ethidium
bromide (17,19). Early on it was shown that in mouse liver
chromatin transcribed regions, rDNA regions and satellite
DNA all have the same nucleosome repeat as the bulk chro-
matin (19). Thus, the 195 ± 5 bp repeat is representative of
most of the chromatin. However, there could be some regions
of the genome, possibly having distinctive chromatin struc-
tures, which possess nucleosome repeats that differ from
the bulk chromatin. A few such regions have been observed
in other animal tissues (20–22). In mouse liver nuclei it was
recently shown that the ubiquitously expressed adenosine
deaminase gene possesses an unusually regular nucleosome
array with a repeat length that is about 12 bp shorter than the
bulk chromatin value, consistent with the idea that some
genomic DNA regions differ from the bulk chromatin (17).
To assess whether there are additional genomic DNA regions
with perhaps even shorter nucleosome repeats, we attempted
to use our computational methods to search �60 Mb of DNA
to identify �100 kb regions predicted to have short nucleo-
some repeats. After identifying each candidate region com-
putationally, we then prepared a hybridization probe (400–
800 bp) by PCR from the center of the 100 kb window,
and performed an experiment to test our computational
prediction. One such result is shown in Figure 1.

Figure 1A (left) shows the FT of the period-10 VWG oscil-
lations in a 90 kb window from a region of chromosome 9. For
this DNA region, there is no predominant Fourier peak in the
physiological dinucleosome region, and therefore no signal for
the formation of a nucleosome array. The prediction in this
case is that this region of chromatin should possess the bulk
chromatin repeat. In contrast, Figure 1A (right) shows the
FT (black points/ black spline curve) of the period-10
VWG oscillations in a 100 kb window from a region of chro-
mosome 4, which has a large peak in the physiological dinu-
cleosome region. The curve was decomposed into Gaussian
peaks (blue curves) in and around the physiological dinucleo-
some region (from 330 to 400 bp) such that the black points
of the Fourier were well-represented by the curve consisting
of the sum of the Gaussian peaks (orange circles). The broad
apparent Fourier peak at around 385 bp, possessing a shoulder
at �370 bp, required two Gaussian peaks to adequately fit it.
The predominant Fourier peak at 337 bp has a height of 1174
VWG counts, a standard deviation of 9.0 bp, and is slightly
more than twice as large (by area) as the next largest peak area
in the physiological dinucleosome region (Table 1). This peak
meets all of the criteria that we set (Materials and Methods)
for a strong signal for this 100 kb region of DNA, and predicts
that the chromatin in this region of the genome should tend
to form a nucleosome array with an extremely short repeat
(in mouse liver nuclei) of 337 bp/2 ¼ 169 bp.

These predictions were tested experimentally. Hybridiza-
tion probes were prepared from the center of each �100 kb
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window, and the DNA from a single MNase digest of mouse
liver nuclei (with 1.5 or 2 min time points) was examined
separately using each probe (Figure 1B). The nucleosome
ladder (lane 1) detected by the 9–403 probe closely resembled
that of bulk chromatin, whereas a portion of the same sample
detected by the 4–419 probe revealed a ladder with a consid-
erably shorter repeat. For example, it can be seen directly from
the autoradiograms that for the 9–403 probe the nucleosome
4 and 5mer fragments run close to the 800 and 1000 bp

fragments, respectively, of the adjacent 100 bp ladder marker,
whereas for the 4–419 probe the nucleosome 4 and 5mer
fragments run close to the 700 and 900 bp marker fragments,
respectively, of the adjacent 100 bp ladder. A detailed analysis
of the ladders is presented in Figure 1C. For each ladder the
plot of the nucleosome oligomer size (bp) against nucleosome
oligomer number is a straight line with a slightly negative
y-intercept and a standard deviation of the fit value of
11–12 bp, indicating that the nucleosome oligomers are

Figure 1. Predicted and experimentally determined nucleosome arrangements for two loci. (A) FTs of the curves of the oscillations of period-10 VWG
with nucleotide number for 100 kb windows. Probe 9–403 (left) was from the center of a locus on chromosome 9 that does not possess a predominant in-phase
period-10 VWG oscillation, thus predicting that nucleosome arrays in this locus should have the properties of the bulk chromatin. Probe 4–419 (right) was from
the center of a locus on chromosome 4 that exhibits a predominant in-phase period-10 VWG oscillation at a period of 337 bp (arrow), thus predicting a nucleosome
array with a very short nucleosome repeat value of 337 bp/2¼ 169 bp. The Fourier curve (black points and spline curve) was represented by five Gaussian peaks (blue
curves) that summed (orange circles) to fit the computed Fourier points in the physiological dinucleosome region. (B) Southern blots of agarose gel electrophoresis
of the DNA fragments obtained from MNase digests of nuclei. Portions of the same digests were probed with probe 9–403 (left) or probe 4–419 (right), and the
resultant nucleosome ladders were compared. Lanes 1 were from a 1.5 min digest and lanes 2 were from a 2 min digest. Lanes D were from a HindIII + PstI digestion
of purified mouse liver genomic DNA to assess the specificity of the probes, lanes M1 were labeled 100 bp ladders (sizes of selected fragments are indicated on the
right) for nucleosome oligomer sizing, and lanes M2 were labeled size markers (see Materials and Methods) for restriction fragment sizing. The nucleosome 2, 4 and
6mers detected by each probe are identified. (C) Analysis of the nucleosome repeat length from the ladders of the 2 min digest detected with each probe. Plots
of nucleosome oligomer size (Base pairs) versus nucleosome oligomer number are shown. Probe 9–403, squares; probe 4–419, circles. The equations of the best
straight line fits and the R2 values are shown. The nucleosome repeat lengths are the slopes of the lines.
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close to being multiples of a unit repeat, and therefore that
the arrays are periodic. However, the repeat values differ
substantially. The nucleosome repeat for the 9–403 region
is 192 ± 5 bp, whereas the repeat for the 4–419 region is
172 ± 5 bp, 20 bp shorter. These repeat values are consistent
with our computational predictions.

The 172 ± 5 bp nucleosome repeat length is, to our knowl-
edge, the shortest repeat ever observed in mouse liver chro-
matin. Thus, nucleosome arrays possessing very short repeats
exist in mouse liver nuclei. Moreover, our results suggest that
it may be possible to predict these regions computationally
from the genomic DNA sequence.

Testing our ability to predict regions of the mouse
genome that have short nucleosome repeats

Table 1 shows the results of nine additional experiments simi-
lar to the one reported in Figure 1 (probe 4–419) which test
the validity of our computational predictions of short repeats.
The table entries are arranged in order of increasing predicted
repeats. In every case the experiment confirmed the compu-
tational prediction for the short nucleosome repeat value
within the experimental uncertainty of ±5 bp. The character-
istics of each signal are also listed, along with the predicted
range of the signal. The range (in kb) over which the signal
was strong according to the criteria stated in the Materials
and Methods was tested by varying the Fourier window. It
was usually fairly narrow and roughly centered on 100 kb. An
example is shown in Figure 2 where the window size was
varied from 7 to 120 kb for probe 4–419. All of the windows
were centered on the 419 bp probe. It can be seen that for the
7 and 15 kb windows, the Amplitude at the Period value of

337 bp (¼ 2 · 169 bp) is barely above the noise level. For a
window of 30 kb, a small peak appears at the Period value
of 337 bp, and this peak is only slightly larger than the next
largest peak just below 400 bp. The Amplitude at the Period
value of 337 bp becomes progressively larger as the window
size increases to 60, 75 and 100 kb, respectively. The
predominant peak (at 337 bp) meets our criterion of a strong
signal by having at least twice the area of any other (Gaussian)

Table 1. Computational predictions of nucleosome repeats base upon the DNA sequence and the results of the experimental tests of these predictions in

mouse liver nuclei

Locus number Chromosome
number-probe
size (bp)

Nucleosome repeat Experiment fit param. Fourier signal characteristics (Gaussian)
Theoretical
predictiona (bp)

Experimental
valueb (±5 bp)

Y-intercept SD of fit (bp) Peak SD (bp) Peak height
(VWG count)

Ratioc Window (kb) Predicted
ranged (kb)

1 4–419 337/2 ¼ (169)e 172 �0.6 11 9.0 1174 2.2 100 90–110
2 7–500 348/2 ¼ 171 172 �1.4 5.8 8.0 773 2.1 100 90–110
3 3–413 347/2 ¼ 174 174 0.7 8.5 7.0 1653 4.5 120 40–500
4 7–474 348/2 ¼ 174 178 �4.6 7.2 15 918 6.6 100 90–200
5 10–336 358/2 ¼ 179 176 �5.4 6.5 9.0 975 3.1 100 70–120
6 2–375 358/2 ¼ 179 180 �0.6 13 17 811 9.3 90 80–100
7 2–450f 357/2 ¼ 179 183 �1.3 12 16 960 7.0 100 90–170
8 12–573 359/2 ¼ 180 179 �14 2.8 7.0 1368 3.4 100 70–130
9 15–407 360/2 ¼ 180 180 �23 11 14 788 5.0 100 90–110
10 3–552 360/2 ¼ 180 181 �2.1 4.9 7.5 931 3.7 90 70–110
Madaf 2–820 370/2 ¼ 185 183 �3.8 9.2 7.5 1011 2.2 110 70–130

3–342 381/2 ¼ 191 190 �17 9.2 10.5 855 3.8 120 100–130
19–395 420/2 ¼ (210) 187 �11 5.7 14 1052 2.6 100 90–110
1–678 bulkg 191 �12 9.2
9–403 bulkg 192 �7.8 12

18–735 bulkh 194 �42 8.1
Et brf bulk 194 �33 10

aDinucleosome period mean value (of predominant Gaussian)/2 ¼ predicted nucleosome repeat.
bAll probes exactly centered on the computation window of best ratio.
cRatio of the signal peak area to the next largest peak area in the physiological region.
dRange over which peak area of interest is at least two times greater than the next highest Gaussian in the physiological range.
eParentheses denote extreme values that might not be physiological for mouse liver chromatin.
fSee reference (17).
gNo signal.
hnon-specific probe.

Figure 2. Effect of varying the window size on the FT of the period-10 VWG
oscillations for locus 1. All windows were centered on the midpoint of probe
4–419. The superimposed curves for windows ranging from 7 to 120 kb can be
distinguished from each other by their colors.
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peak in the physiological dinucleosome region only between
90 and 110 kb. At 120 kb the Amplitude at the Period value of
337 bp diminishes slightly, and the peaks at 380 and 415 bp
increase relative to those in the 100 kb window. Thus, the
regular, in-phase oscillations in period-10 VWG are present in
large-scale chromatin structures. The Fourier Amplitude
reaches maximum strength at 70 kb or greater and remains
strong until about 100 kb for most of the loci studied. In two
cases the signal reached maximum intensity at 90 kb and
remained strong until �200 kb. In one case a strong signal
was detectable at 40 kb and it persisted until 500 kb.

In addition to the ten tested predictions, we have included
several other entries in Table 1. The fit parameters and signal
characteristics are listed for the previously studied mada gene
locus (17), a locus predicting a 191 bp repeat, and a locus
predicting a 210 bp repeat. The 191 bp prediction was con-
firmed, but the very high 210 bp prediction was not. Addi-
tionally, we included two probes from loci that did not contain
a signal; these are representative of most of the genome. These
probes detected the bulk repeat, as predicted. We also included
the analysis of a ladder that resulted from a probe that did not
hybridize specifically, but detected a very large number of
loci (detecting a continuum of restriction fragment sizes,
instead of the single intended fragment). This probe provided
a way of measuring the bulk repeat by Southern blotting, as
used in these experiments, instead of by traditional gel stain-
ing. The fit parameters obtained by either method were very
similar.

Statistical significance of the results confirming our
computational predictions

The percentage of mouse liver chromatin possessing nucleo-
some repeats shorter than 180 bp can not be large because, if it
were, the effect of having such repeats present in appreciable
amounts should be readily detectable. This point is illustrated
in Figure 3 which shows a simulated 195 bp ladder (195) next
to a simulated 180 bp ladder (180) and the superposition of
these two ladders (merged). It can be seen that the oligomer
bands greater than the 5mers become out of phase with each
other. This ‘vernier effect’ causes the superimposed ‘ladder’ to
lose resolution at about the 6mer where the bands of each
individual ladder become maximally out of phase with each

other. For short repeat values that are less than 180 bp, the loss
of resolution is even more severe (data not shown). Because
the bulk chromatin ladder from mouse liver does not lose
resolution until beyond the 10mer (17), it can be immediately
concluded that the percentage of mouse liver chromatin
having repeats shorter than about 180 bp is considerably
less than 50% (the percentage in the simulated superimposed
ladders of Figure 3).

The statistical significance of our predictions (Table 1) can
be assessed if the percentage of the chromatin in mouse liver
nuclei that possesses short nucleosome repeats is known. To
estimate this percentage experimentally, we made use of the
vernier effect illustrated above. We made mixtures of DNA
from MNase-digested mouse liver chromatin (195 ± 5 bp bulk
repeat) and M.incana petal chromatin (bulk 183 ± 5 bp repeat)
with Matthiola petal: mouse liver weight ratios of: 50:50,
40:60, 30:70, 20:80 and 10:90. We ran these ladder mixtures
on an agarose gel along with pure mouse liver chromatin and
pure Matthiola petal chromatin nucleosome ladders
(Figure 4A). It can be seen that the pure mouse liver (ML)
and pure Matthiola petal (MP) nucleosome ladders each
extend to the 10mer or beyond, and the ladders begin to go
out of phase with each other after the 5mers. As expected, the
50:50-mixture gives a vernier effect similar to the simulation
shown in Figure 3. It can also be seen that the vernier effect
is detectable at least down to the 20:80 mixture. In Figure 4B
the upper regions of the ladders for the 20:80 mixture and
for mouse liver chromatin are shown expanded and next to
each other. Lane scans are shown in Figure 4C which confirm
the visual impression that the peaks for the nucleosome oli-
gomer bands greater than the 5mer are better resolved for the
pure mouse liver chromatin than for the 20:80 mixture. Thus,
a conservative estimate for the maximum percentage of
short repeat chromatin in mouse liver nuclei is about 20%,
and therefore the probability of selecting a hybridization probe
by chance that detects a short repeat is 0.2. We think that this
number is representative of both the repetitive and non-
repetitive portions of the genome because �20% of the non-
specific probes, which hybridized to repetitive DNA, detected
repeats that were shorter than the bulk value. The probability
of selecting 10 out of 10 probes that detect short repeats (as in
Table 1) by chance alone is then about (0.2)10 ¼ 0.0000001, or
one in ten million. Hence, it is highly unlikely that 10 out of
10 probes detecting short nucleosome repeats were selected
simply by chance, rather than by following our computational
predictions, and the results reported in Table 1 are therefore
statistically significant.

DISCUSSION

Our results demonstrate that loci exist in mouse liver chro-
matin with nucleosome repeats that are well below the bulk
chromatin value. Moreover, our results strongly suggest that
these loci can be identified from a computational analysis of
the DNA sequence. This is the first time that non-repetitive
DNA sequence has been used to predict an aspect of
large-scale chromatin structure. Experimentally, we have
estimated that less than 20% of the chromatin in mouse
liver nuclei possesses nucleosome repeats that are <180 bp,
values at least 15 bp shorter than the bulk chromatin repeat.
This estimate is roughly consistent with our computational

Figure 3. Simulated nucleosome ladders having two different repeats illustrat-
ing the vernier effect. A ladder having 195 bp spacing is shown adjacent to a
ladder having 180 bp spacing. At least 10 bands can be resolved for each. The
superposition of these two ladders (merged) leads to a loss of resolution after the
5mer due to a vernier effect.
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estimates based upon analysis of �60 Mb of DNA sequence.
We observed strong unambiguous signals (defined in Materi-
als and Methods), as reported in Table 1, in fewer than 2% of
the loci that we analyzed. However, it is likely that signals less
strong than those selected here can still be influential. Our
computational analysis further suggests that nucleosome
repeats with values as short as 175 bp occur very infrequently
in mouse liver; signals for such short repeats were observed
in less than 1% of the loci analyzed.

In addition to predicting short nucleosome repeats from the
DNA sequence, we attempted to define the upper and lower
limits for nucleosome repeats that exist in mouse liver chro-
matin. We have never observed a repeat value longer than the
bulk chromatin repeat of 195 ± 5 bp. This was true even when
the computational prediction was 210 bp (probe 19–395,
Table 1). Thus, nucleosome repeat values longer than the
bulk value may not exist in mouse liver chromatin. It is inter-
esting that probe 19–395 detected an 187 ± 5 bp repeat, a value
that is slightly shorter than the bulk repeat. For the 100 kb
window centered on this probe, a Fourier peak is present at 370
bp ¼ 2 · 185 bp that meets our stated criterion for a strong

signal, despite the presence of the larger peak at 420 bp ¼
2 · 210 bp. Thus, this 370 bp peak could explain the experi-
mentally observed 187 ± 5 bp repeat. The shortest nucleosome
repeat that we observed was 172 ± 5 bp (Table 1). This
occurred when the computational prediction was 169 bp
(Table 1). The observed value of 172 bp in this case was
within our experimental uncertainty of ±5 bp of the 169 bp
prediction. However, repeats shorter than about 172 bp may
not exist in mouse liver chromatin.

From our computational analysis of only 60 Mb of mouse
DNA we do not yet know whether there is anything in common
among the loci possessing short nucleosome repeats. The num-
ber of annotated genes in the ten short-repeat loci identified
varied between zero and five for the �100 kb windows. This
variation is not significantly different from what would be
expected from ten randomly selected 100 kb windows. It
would be feasible to analyze the whole mouse genome,
after the still significant numbers of gaps present are elimi-
nated, and to compare the results with those obtained from the
human genome analyzed in the same way. It is interesting that
the range over which the signal for the formation of a particu-
lar nucleosome repeat extends is close to 100 kb in most cases.
It is clear from Figure 2 and Table 1 that DNA windows for
analysis with sizes less than about 70 kb would not have good
predictive power. Moreover, we have found only one example
thus far of a phased period-10 VWG signal that was not evi-
dent until a window larger than 100 kb was examined. The
DNA length of �100 kb could conceivably correspond to
some element of large-scale chromatin structure, such as a
loop emanating from a scaffold (23–25).

It is plausible that 100 kb regions of DNA with distinctive
nucleosome repeats also possess distinctive chromatin struc-
tures. Recent work has supported non-solenoid-like models for
chromatin structure containing straight internucleosomal (lin-
ker) DNA segments (10). Computer modeling studies (9) have
suggested that such structures are highly sensitive to linker
DNA lengths and their degree of uniformity. Therefore, even if
chromatin higher-order structures are dynamic in vivo, differ-
ent nucleosome arrangements could cause the structures to
bend and flex in different ways. Moreover, a genome-wide
study of (human) chromatin structure suggested that there is
not a simple structural division between heterochromatin and
euchromatin, and that there is not a simple correlation between
gene expression and chromatin compaction (26). These obser-
vations are consistent with the existence of a variety of dif-
ferent higher-order chromatin structures, rather than just open
or closed chromatin. The DNA sequence could play a role in
the formation of these structures.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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