Special Issue: Single Subject Causal Mediation Analysis

Evaluation & the Health Professions
2022, Vol. 45(1) 36-53
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/01632787211071136
journals.sagepub.com/home/ehp

®SAGE

Methods for Modeling Autocorrelation and
Handling Missing Data in Mediation Analysis
in Single Case Experimental Designs (SCEDs)

Emma Somer' @, Christian Gische?®, and Milica Mio&evi¢'

Abstract

Single-Case Experimental Designs (SCEDs) are increasingly recognized as a valuable alternative to group designs. Mediation
analysis is useful in SCEDs contexts because it informs researchers about the underlying mechanism through which an
intervention influences the outcome. However, methods for conducting mediation analysis in SCEDs have only recently been
proposed. Furthermore, repeated measures of a target behavior present the challenges of autocorrelation and missing data.
This paper aims to extend methods for estimating indirect effects in piecewise regression analysis in SCEDs by (1) evaluating
three methods for modeling autocorrelation, namely, Newey-West (NW) estimation, feasible generalized least squares
(FGLS) estimation, and explicit modeling of an autoregressive structure of order one (AR(1)) in the error terms and (2)
evaluating multiple imputation in the presence of data that are missing completely at random. FGLS and AR(1) outperformed
NW and OLS estimation in terms of efficiency, Type | error rates, and coverage, while OLS was superior to the methods in
terms of power for larger samples. The performance of all methods is consistent across 0% and 20% missing data conditions.
50% missing data led to unsatisfactory power and biased estimates. In light of these findings, we provide recommendations for

applied researchers.
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Single-Case Experiment Designs (SCEDs) are a valuable
alternative to Randomized Controlled Trials (RCTs) that
enable researchers to evaluate the effectiveness of an inter-
vention at the individual level (Kazdin, 2011; Kratochwill
et al., 2013; Shadish & Sullivan, 2011). The main goal of
SCEDs is to determine whether there is a causal relationship
between a treatment and change in the outcome variable of
interest (Krasny-Pacini & Evans, 2018; Smith, 2012). For this
aim, a small number of participants are repeatedly measured
on variables of interest during baseline and intervention
phases. Since participants serve as their own control, re-
searchers can obtain detailed information related to changes
over time, and intervention effects at the individual level can
be estimated (Barlow et al., 2009).

SCEDs are used across various research fields, including
occupational therapy, special education, and rehabilitation
(Lane et al., 2017; Ritter et al., 2018; Smith, 2012). Given the
heterogeneous nature of behavioral and psychological phe-
nomena, SCEDs provide a valuable alternative to group level
studies in populations with low incidence rates or in which
analyses at a group level may overlook intervention effects
present in certain subgroups (Gaynor & Harris, 2008; Maric
et al., 2012). Further, the methodology is useful for evaluating
a novel intervention prior to a costly and demanding RCT

(Jarrett & Ollendick, 2012; Norell-Clarke et al., 2011). Finally,
SCEDs present the opportunity for collaboration between
clinicians and researchers, unifying research questions that
emerge from clinical practice on one hand and research
methodology to evaluate these questions on an individual
level on the other hand (Geuke et al., 2019).

Examples of SCEDs include the AB design in which a
baseline period A is followed by an intervention period B. In
AB|A,B, designs, also known as a reversal design, the
baseline phase (A ) is followed by the intervention phase (B;),
the withdrawal of treatment (A,), and the re-introduction of
the intervention (B,). This type of SCED is useful when
changes in behavior caused by an intervention are expected to
return to baseline levels once treatment is discontinued.
Another common design includes the multiple-baseline design
in which participants are randomized to different lengths of
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baseline phase A prior to introducing the intervention phase B,
taking into account the effects of maturity and passage of time.
For the interested reader, an extensive overview of SCEDs is
provided by Tate et al. (2016) and Smith (2012).

Given the growing popularity of SCEDs as a rigorous
scientific research approach, there have been efforts to es-
tablish empirical methods for evaluating the effectiveness of
an intervention (Manolov & Moeyaert, 2017). Despite the
prevalence of visual analysis, as described by Kratochwill
et al. (2010), statistical analysis of SCED data is preferred
since it is less prone to bias and subjectivity (Beeson & Robey,
2006). Efforts to empirically validate indices and effect sizes
are of particular interest since it is useful to quantify the size of
the intervention effect. Nevertheless, the index of choice
depends on the aims of the study, and some indices may be better
suited than others (Manolov & Moeyaert, 2017). Non-parametric
non-overlap indices, such as non-overlap of all pairs (NAP;
Parker & Vannest, 2009), improvement rate difference (IRD;
Parker et al., 2009), Tau-U (Parker et al., 2011), and the per-
centage of non-overlapping corrected data (PNCD, Manolov &
Solanas, 2009), are useful for measuring the degree of non-
overlap between the baseline and treatment data. Descriptive
indices, such as the percentage change index (PCI; Hershberger
etal., 1999; or percentage reduction data, as referred to by Wendt,
2009), slope and level change (SLC; Solanas et al., 2010), and
mean phase difference (MPD; Manolov & Solanas, 2013),
quantify the change in level and slope. Parametric approaches are
useful for quantifying the treatment effect size and estimating the
standard error. Examples of parametric approaches are stan-
dardized mean differences (e.g., Cohen’s d, Hedge’s g; Shadish
et al., 2014), regression-based effect sizes (Center et al., 1985;
Swaminathan et al., 2014), multilevel modeling (Ferron et al.,
2010; Moeyaert et al., 2014), and between-case standardized
difference (Hedges et al., 2012, 2013).

The approach examined in this paper relies on regression-
based methods, first proposed by Center et al. (1985).
Piecewise regression procedures involve fitting separate
models for each phase, baseline and intervention, using or-
dinary least squares regression (OLS). Given that the as-
sumptions of OLS regression hold, such as the assumption that
the outcome is continuous, the residuals are homoscedastic
and uncorrelated, and the residuals are normally distributed
with means of zero in the population, we can obtain unbiased
estimates of at least two regression-based effect sizes: an
immediate intervention effect (i.e., immediate change in level)
and the intervention effect on the time trend. Using an AB
design to illustrate the technique (Equation (1)), the inter-
cept, by of the piecewise regression model provides an esti-
mate of the level of the first measurement of the outcome
variable in phase A. The regression coefficients provide an
estimate for the trend in phase A (i.e., the regression coeffi-
cient for the linear time variable, b;), the change in level at the
onset of phase B (i.e., the difference between the intercept of
phase B and the predicted score if this were a score in phase A,
b,), and the change in the trend between the phases (i.e., the

difference in linear trends between the A and B phases, b3).
The following equation describes the observed score (Y;) at
time t

Y, = by + b, time, + b, phase;

+ b3 phase_time, + e, M

Despite the advantages of SCEDs mentioned above,
there are several methodological challenges that may
prevent the proliferation of SCED methodology in clinical
intervention research. A common characteristic of SCEDs
is serial dependency among error terms, commonly re-
ferred to as autocorrelation. Autocorrelation among
consecutive error terms can be modeled via autore-
gressive (AR) processes, for example, an AR process of
order one (AR(1). Autocorrelation is quantified by the
parameter rho (p), which ranges from —1 to 1 (see
Equations (7) and (8) in the section on Autocorrelation
Modeling Techniques). Violating the assumption of in-
dependence of errors as required by most parametric and
non-parametric approaches can result in highly inefficient
estimates and inflated Type I error rates (Huitema et al.,
1996). Another common attribute of designs involving
repeated measures is missing data. Failing to properly
account for missing data limits the generalizability of the
results, threatens internal validity, and can lead to biased
and inefficient estimates (Hughes et al., 2019; Little &
Rubin, 2002; Peng & Chen, 2018; Rubin, 1987).

Most statistical methods for SCEDs were developed for
evaluating univariate (e.g., autoregressive integrated moving
averages (ARIMA) models; Box & Jenkins, 1970) and bi-
variate relationships (e.g., simulation modeling analysis;
Borckardt et al., 2008; standardized mean difference;
Borenstein, 2009; percentage of non-overlapping data;
Schlosser et al., 2008). However, the approaches mentioned
thus far do not provide a method for examining the mech-
anism through which the intervention achieves its effects for
a particular client. Recent advances in statistical methods for
SCEDs have focused on adapting methods for mediation
analysis to the SCEDs setting, and at least three methods
have been proposed (Gaynor & Harris, 2008; Geuke et al.,
2019; Miocevi¢ et al., 2020). While Gaynor and Harris
(2008) relied on visual analysis to assess mediation,
Geuke et al. (2019) presented the joint significance test to
evaluate the significance of the indirect effect. MiocCevic et al.
(2020) were the first to introduce a method for obtaining
numerical estimates and credibility intervals for the indirect
effect in SCEDs.

This paper aims to examine parameter estimation in a
piecewise regression model by evaluating the statistical
properties of the indirect effect (1) using three different
methods for handling autocorrelation in repeated measures
data and (2) examining the performance of multiple impu-
tation in the presence of data that are missing completely at
random (MCAR; Rubin, 1976). The following sections
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describe mediation analysis for a single mediator model, and
we provide more details about the methods for estimating
indirect effects in piecewise regression analysis proposed by
Miocevi¢ and coauthors (2020).

Single Mediator Model

Mediation analysis is used to evaluate whether a variable acts
as a mediator (M) transmitting the effect from the independent
variable (X) to a dependent variable (¥). The effects of interest
in the single mediator model can be estimated using three
regression equations.

Y:il —+ C‘X + € (2)
Y: iz +C,X +bM + (55} (3)
M=iy+aX + e 4)

In Equations (2)—(4), ¢ represents the total effect of X on Y,
¢’ is the effect of X on Yadjusted for the effect of the mediator
M (also called the direct effect), b quantifies the relation
between the mediator (M) and the dependent variable (Y)
controlling for the effect of the independent variable (X), and a
captures the relationship between X and M. The terms i;, i,
and i3 represent intercepts, and it is assumed that the three
error terms, e;, e,, and e;3, are uncorrelated and follow normal
distributions with means of zero and variances ag 1> 052, and 033
(respectively).

The indirect effect can be computed as either the product of
coefficients ab or as the difference of coefficients c-¢’, and the
two approaches are equivalent in linear models with no
missing values (Mackinnon et al., 1995). The significance of
the indirect effect is generally evaluated using confidence or
credibility intervals. Due to the asymmetry in the distribution
of the product of two normal variates (i.e., ab; Craig, 1936;
Lomnicki, 1967; Springer & Thompson, 1966), methods that
use critical values from the distribution of the product and
methods that make no distributional assumptions like the
bootstrap lead to confidence intervals with the highest power
(MacKinnon et al., 2007; MacKinnon et al., 2002; Miocevic¢
etal., 2017; Tofighi & MacKinnon, 2011; Yuan & MacKinnon,
2009). Subsequent sections describe methods for estimating
indirect effects using piecewise regression analysis in com-
bination with several techniques to model serially correlated
error terms.

Estimating Indirect Effects in SCEDs using
Piecewise Regression Analysis

In the single mediator model for SCEDs, both the mediator
and outcome variables are repeatedly measured across at least
two phases (i.e., the baseline phase and the intervention
phase). We selected piecewise regression analysis because it
allows for quantifying the change in the mediator as a result of
the change in phase (a in Equation (4)) and change in outcome

as a result of the change in the mediator (b in Equation (3))
controlling for the effect of phase.

Effects of interest for a single mediator model using
piecewise regression analysis can be estimated using two
equations (Miocevi¢ et al., 2020).'

M, = boy + by time, + by phase;

5
+ b3y + phase_time, + ey, ®)

Y, = boy + byy time, + b,y phase;

+ bsy phase_time, + bayM, + ey, ©

As a result of the specific coding of the predictors, re-
gression coefficients from the piecewise regression analysis
provide estimates of the level of the first time point of phase A
for the mediator (by;,) and for the outcome (byy), the trend in
phase A for the mediator (b;,,) and for the outcome (b;y), the
change in level at the start of phase B for the mediator (b,,,)
and for the outcome (b,y), and the change in trend between the
two phases for the mediator (b3,,) and for the outcome (b3y).
We also obtain an estimate for the effect of the mediator on the
outcome at time t (b,y). In their paper, Miocevi¢ and
colleagues (2020) estimated the two equations in the
Bayesian framework using OLS estimates of the regression
coefficients as mean hyperparameters of the normal priors for
intercepts and regression coefficients in Equations (5) and (6).
In this paper, we opt for frequentist estimation instead.

There are two effects of phase on the mediator (a path in
Equation (4)) in this context: the change in level (b,,,) and the
change in trend (b3,,) between the two phases. If we define the a
path as the change in level between the two phases, the indirect
effect (the product ab; see Equations (3) and (4) in the section
on the Single Mediator Model) of the phase change on the
outcome can be quantified through the change in the level of the
mediator. If we define the a path as the change in trend between
the two phases, the indirect effect of the phase change on the
outcome can be quantified through the change in the trend of the
mediator. The effect of the mediator on the outcome (b in
Equation (3)) is represented by b,y in Equation (6), and the
direct effects (¢’ in Equation (3)) of phase on the outcome
controlling for the mediated effect is decomposed into b,y (for
the changes in level) and b3y (for the changes trend).

There are two indirect effects of interest in the piecewise
regression model for SCEDs: (1) the product of coefficients
by byy, representing the change in outcome variable due to
the change in the level of the mediator following a change in
phase, and (2) the product of coefficients b3, b,y, representing
the change in the outcome variable due to the change in the
trend (slope) of the mediator following a change in phase.

Autocorrelation Modeling Techniques

In their review of 809 single-case designs, Shadish and
Sullivan (2011) found that autocorrelation ranged from
—0.931 to 0.736, and they noted that autocorrelation (p) is
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commonly underestimated when the number of observations
is small. Using a procedure to correct for negative bias, the
authors found that the mean value of autocorrelation in SCEDs
was estimated to equal 0.752 in the seven AB designs eval-
uated and 0.320 in the 64 multiple-baseline designs examined
(Shadish & Sullivan, 2011). In subsequent paragraphs, we
describe procedures for modeling serial dependency among
error terms.

In our first approach, we estimate the regression coeffi-
cients via ordinary least squares (OLS) regression. OLS re-
gression is a consistent estimator even in the presence of
serially correlated error terms; however, OLS is no longer the
best linear unbiased estimator and does not yield correct
standard errors in the presence of serially correlated error
terms (Davidson & MacKinnon, 2003). Therefore, we use
heteroskedasticity- and autocorrelation-consistent standard
errors as proposed by Newey and West (Newey & West,
1987). In this approach, the exact form of serial correlation in
the error terms does not need to be specified, and the procedure
also allows for heteroscedasticity. Newey-West standard er-
rors are available in most standard software packages, for
example, in the sandwich package in R (Zeileis, 2004).

In our second approach, we explicitly model the serial
correlation in the error terms. For this purpose, we assume that
the error terms follow an AR(1) process. Thus, we add the
following equations to Equations (5) and (6)

0
®)

The autocorrelation coefficients p,, and p, quantify the
strength of the serial dependency and are assumed to range
between —1 and +1. The error terms vy, and vy, in Equations
(7) and (8) are assumed to be white noise and mutually in-
dependent. This class of models is well understood (Cochrane
& Orcutt, 1949; Prais & Winsten, 1954) and can be estimated
using generalized least squares (GLS) estimation. The GLS
estimator is the best linear unbiased estimator (Davidson &
MacKinnon, 2003). However, in practice, the true population
values p;, and py of the autocorrelation coefficients are un-
known and need to be estimated from the data along with the
regression coefficients. This procedure is known as feasible
GLS (FGLS) and yields a non-linear estimator that is no
longer unbiased. Furthermore, the small sample properties of
FGLS are not known analytically. However, feasible GLS is
asymptotically efficient (Davidson & MacKinnon, 2003).
FGLS is implemented in several software packages, for ex-
ample, in the orcutt package in R (Stefano et al., 2018). Note
that the computation of the FGLS estimator in the above
setting can be implemented using the so-called iterative
Cochrane-Orcutt procedure (Stefano et al., 2018) which tends
to outperform alternative two-step procedures for computing
FGLS in small samples (Verbeek, 2017).

Our third approach is based on the same regression
Equations (5) and (6) combined with the AR(1) Equations (7)

emy = PyeMmai—1 + Vs

ey = pPyer 1+ Vry

and (8) for the error terms. In other words, we make the same
modeling assumptions as in the case of FGLS. However, we
use a different estimation technique, where the exact likeli-
hood is computed via a state-space representation of the AR(1)
process, and estimates are computed by a Kalman filter. This
procedure is implemented in the stats package in R (R Core
Team, 2020). The advantage of this procedure over FGLS lies
in the possibility of including more complex patterns of serial
correlation in the error term equations (e.g., moving average
components, non-stationary integrated error terms).
Throughout this paper, we focus on AR(1) error terms and thus
expect that the results will be similar to those obtained by
FGLS. We refer to the three approaches described above as
NW, FGLS, and AR(1) throughout the remainder of the paper.
We compare these three approaches to a standard OLS pro-
cedure that ignores the presence of autocorrelation.

Missing Data Handling Techniques

Missing data in SCEDs is common due to repeated measures
of participants over time, resulting in noncompliance and
participant attrition (Smith, 2012). There are three ways to
categorize missing data: missing completely at random
(MCAR), missing at random (MAR), and missing not at
random (MNAR). MCAR is characterized by missing data
that does not depend on observed data nor on the missing
data, for example, when a random subset of participants’ self-
report data is lost. MAR, on the other hand, is a function of
the observed data but not a function of the missing data. In a
study evaluating confidence among university-aged men and
women, for example, women may feel uncomfortable when
asked to rate their appearance and choose not to answer
questions related to physical appearance. In this case, the
participant’s gender results in nonresponse. Finally, MNAR
occurs when the missingness is related to the unobserved
data. When individuals with the lowest education are missing
from a study evaluating educational outcomes, the
missing data mechanism is MNAR. Improper handling of
missing data using traditional methods such as listwise de-
letion and mean substitution can lead to loss of information,
biased estimates, inefficiency, and introduce effects that are
not supported by data (Little & Rubin, 2002). Modern ap-
proaches to handling missing data such as the expectation-
maximization (EM) algorithm (developed by Dempster et al.,
1977) and multiple imputation (MI) (Schafer & Graham,
2002) have gained favor over more traditional methods.
Numerous studies have advocated for using maximum
likelihood and EM methods for handling missing data in
group multivariate designs (e.g., Horton & Kleinman, 2007;
Ibrahim et al., 2005; Raghunathan, 2004). Velicer and Colby
(2005a, 2005b) found that maximum likelihood is an ef-
fective strategy for handling missing data compared to
listwise deletion, mean substitution, and mean of adjacent
observations in time series data. In the subsequent paragraph,
we describe MI in greater detail.
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We examine MI proposed by Rubin (1987) for data that are
MCAR in a simulation study. An imputation refers to one set
of plausible values (m) for a missing observation, while MI
represents multiple sets of plausible values (m > 1). When
using MI, the missing value is replaced by a random sample of
plausible values resulting in m complete datasets. The sta-
tistical analysis of interest (e.g., OLS regression) is then
conducted on each m complete dataset separately. Finally, a
single MI estimate and its standard error (SE) are estimated by
combining results obtained from each m analysis using Ru-
bin’s rules (Rubin, 1987). Suppose QO represents the estimate
of a parameter Q (e.g., a regression coefficient) from the j™
imputed data set. The pooled estimate is given by Equation

).
)

ol
i
§\
B

~.
Il

The total variance of O, represented by 7'in Equation (12), is
the weighted sum of the average within-imputation variance U
(Equation (10)) and the between-imputation variance B (Equa-
tion (11)). The overall SE of Q is equal to the square root of 7.

m

U=m'Y"U (10)
=1
—1 LIPS —12
B=(m—1) Z[Q,— Q} (11)
Jj=1
T=U+ (m+1)"'B (12)

There are two methods for conducting multivariate MI in
which values are missing on multiple variables: multivariate
normal imputation (MVNI) and MI by chained equations
(MICE). MVNI assumes that the incomplete variables follow
amultivariate normal distribution (Lee & Carlin, 2010). MICE
generates separate univariate imputation models for each
variable with missing data (White et al., 2011). In the present
study, we evaluate MICE as a missing data handling method in
order to examine how one of the most commonly used R
packages for handling missing data performs when adapted to
piecewise regression analysis for SCEDs (van Buuren &
Groothuis-Oudshoorn, 2011). To our knowledge, this is the
first study that analyzes missing data in SCEDs in the presence
of autocorrelated errors. Therefore, the aim of our simulation
study is to examine what would happen if researchers just
continued with their standard practice in the presence of
autocorrelated errors.

Missing Data Handling in SCEDs

A review of missing data in SCED studies published by
Chen et al. (2020) indicated that approximately 18% of
studies (33 out of 182) contained missing data with arange
of 1%—45% missing values. In general, studies reported a

higher average percentage of missing values in the inter-
vention phase (15%) compared to the baseline phase (6%)
(Chen et al., 2020). Previous studies have investigated the
performance of various missing data handling techniques in
SCEDs (Smith et al., 2012; Peng & Chen, 2018; Chen et al.,
2020; De, Michiel, Tanious, & Onghena, 2020). In a Monte
Carlo simulation study, Smith et al. (2012) evaluated the
performance of the EM procedure in terms of statistical power
for data simulated as MCAR. Effect sizes were quantified using
the standardized mean difference (Glass’s A). They concluded
that EM is effective at handling missing data across various
levels of missingness (10%, 20%, 30%, and 40%) and lag-1
autocorrelation (0, 0.2, 0.4, 0.6), except when autocorrelation is
large (i.e., 0.8). Peng and Chen (2018) applied MI to missing
data from a published single-case ABAB design and examined
effect sizes using Tau-U. They concluded that there are
several advantages to MI over ad hoc methods such as mean
substitution in that it avoids potential bias that can arise from
omitting participants from an analysis, takes into account the
uncertainty surrounding the imputed scores, and retains
the design structure of the study. Chen et al. (2020) extended
the findings from Smith et al. (2012) by examining the
performance of EM in terms of relative bias (RB), root-mean
squared error (RMSE), and relative bias of the estimated
standard error (RBESE). They estimated the baseline slope,
level shift, and slope change from a piecewise regression
model for data simulated under a MAR mechanism for an AB
design. The authors concluded that EM is an effective
strategy for missing data handling in piecewise regression
analysis for SCEDs. De et al. (2020) assessed the perfor-
mance of three missing data handling methods for data
simulated under MCAR: (1) randomized-marker method, (2)
single imputation (SI) using an autoregressive integrated
moving average (ARIMA) model, and (3) MI using multi-
variate imputation by chained equations (MICE). De et al.
(2020) computed the mean difference (MD) and nonoverlap
of all pairs (NAD) as their indicators of an intervention
effect. The authors concluded that the randomized-marker
method is a promising missing data handling technique as it
outperformed the other methods in terms of statistical power
while ensuring a low Type I error rate. Only one study (i.e.,
Chen et al., 2020) examined the performance of missing data
handling methods for piecewise regression analysis in
SCEDs. In this study, we aim to determine how MI performs
for piecewise regression in SCEDs when data is MCAR. We
simulated data under MCAR to reflect one possible scenario
in practice, namely that missing data are due to the partic-
ipant not filling out the questionnaire for a given measure-
ment occasion due to a random event that prevented them
from providing data for that observation. This results in
complete data on the variables time, phase, phase time in
Equations (5) and (6) because those are part of the study
design, whereas if the participant fails to complete the
questionnaire, data are missing on the mediator and outcome
at the same measurement occasion.
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Table 1. Results from the Single Mediator Model Empirical Example.

Autocorrelation Handling Method
Parameter Estimate OoLS NwW FGLS AR(I)
bom by —311.78 —311.78 56.57 56.96
bsm bay —11.73 —11.73 1.82 1.83
95% Cl for bym by [—1320.40, 676.90] [—901.03, 269.01] [—40.21, 212.22] [—38.72, 214.61]
95% CI for bzm bsy [—32.75, 8.74] [—24.63, 0.89] [-0.51, 5.63] [-0.59, 5.74]
SE of bom bgy 507.50 297.79 64.37 64.86
SE of b3y byy 10.54 6.49 1.60 |.64

Note. Point and interval estimates of the indirect effect through the change in level and change in trend are displayed for OLS estimation and three methods for
handling autocorrelation. bym byy represents the indirect effect through the change in level. byy by represents the indirect effect through the change in trend.

Cl = confidence interval. SE = standard error.

Methods
Empirical Example

To illustrate the three approaches to modeling autocorrelation
described above and compare them to OLS estimation, we
apply the methods to an example data set from an AB SCEDs
study. The study evaluated the effectiveness of a walking in-
tervention for osteoarthritis in four individuals (O’Brien et al.,
2016). Over 12 weeks, diary measures were taken twice daily
on symptoms related to impairment (i.e., pain, pain on
movement, and joint stiffness), cognitions (i.e., intentions, self-
efficacy, and perceived controllability), and walking behavior
(i.e., number of steps). The goal of the study was to evaluate the
role of cognition in predicting outcomes in individually-tailored
walking interventions for osteoarthritis. Cognitions, such as
intention and self-efficacy, were hypothesized to transmit the
effect of impairment on physical activity. The baseline phase
was designed to obtain baseline measures and identify the
cognitions that impacted walking activity in the participants.
During the intervention phase, participants received an inter-
vention that targeted the cognitions that were shown to strongly
correlate with walking behavior.

We illustrate the proposed methods using data from a single
participant, participant A. The number of observations was
relatively even across phases, with 81 measurement occasions
in the baseline phase and 89 measurement occasions in the
intervention phase. For the single mediator model, the me-
diated effect of phase (X) on walking (Y), measured as the step
count, through the intention to walk (M) was considered. The
percentage of missing data in the study was equal to 2.37%
and 3.55% for M and Y, respectively. Missing values on M and
Y were imputed using the R package MICE (van Buuren &
Groothuis-Oudshoorn, 2011). Next, an AR(1) model was fit to
the residuals to inspect the autocorrelation. Estimates for the
serial correlation among the residuals were —0.54 and —0.81
for M and Y, respectively. Parameter estimates were obtained
using piecewise regression analysis, and autocorrelation was
modeled according to the three proposed approaches which
were compared to OLS. The analyses were conducted in R
(R Core Team, 2020) using the package RMediation to

compute the Monte Carlo confidence intervals (CI) for the
mediated effect (Tofighi & MacKinnon, 2011).> The
annotated R syntax for the analyses is provided in the
Supplemental Materials available at https://osf.io/ahpkm/?
view_only=d9144ffbc4bc4af28df31b03164ed6b2.

Point and interval estimates are displayed in Table 1. The
interval estimates for the indirect effect through the change in
level for the single mediator model were consistent across
methods with the significance test indicating that the 95% Cls
contained zero. The interval estimates for the indirect effect
through the change in trend for the four approaches to han-
dling autocorrelation also led to the same conclusion about the
significance test in that the 95% Cls contained zero. Never-
theless, there were noticeable differences in the point and
interval estimates across methods. The point estimate for the
indirect effect through changes in level and trend were closer
to zero for FGLS and AR(1) than OLS and NW. The interval
widths for both the indirect effect through changes in level and
trend were substantially smaller for FGLS and AR(1) than for
OLS and NW, indicating more precision in the estimates. The
standard error of the point estimate for the indirect effect for
changes in level and trend was largest for OLS, followed by
NW. AR(1) and FGLS had smaller standard errors than both
OLS and NW.

Simulation Studies

Simulation studies were performed to investigate the number
of time points required to attain acceptable statistical prop-
erties for point and interval estimates of the indirect effect in a
single mediator model. We assessed the bias, relative bias,
efficiency (the standard deviation of the point estimate across
replications), power, Type I error rate, coverage, and interval
width. Bias and relative bias were used to assess the accuracy
of the point estimate of the indirect effect. Since bias is af-
fected by the size of the indirect effect, relative bias is the
preferred measure of accuracy. Relative bias is computed as
the difference between the value of the indirect effect in the
population and the estimate of the indirect effect divided by
the value of the indirect effect in the population. When the true
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indirect effect is zero, relative bias is undefined. Values of
relative bias between —0.10 and 0.10 were considered ac-
ceptable (Kaplan, 1988). The standard deviation of the esti-
mate of the indirect effect over replications was a measure of
efficiency, where higher standard deviation values indicated
lower efficiency. Power was defined as the proportion of
confidence intervals for the indirect effect that excluded zero
when the indirect effect is nonzero. Values of 0.8 and higher
were considered desirable. Type I error rate was computed as
the proportion of confidence intervals that excluded zero when
the true value of the indirect effect was zero. A Type I error rate
of 0.05 was deemed desirable, and values between 0.025 and
0.075 were acceptable (Bradley, 1978). Coverage was defined
as the percentage of confidence intervals that contained the
true value of the indirect effect, and values of coverage be-
tween 0.925 and 0.975 were considered close to the nominal
level of 0.95 according to Bradley’s robustness criterion
(1978). Interval width was defined as the difference between
the upper confidence limit and the lower confidence limit.
Lower interval widths represent higher precision. The R code
for the simulation studies is available in the Supplemental
Materials.

Single Mediator Model: No Missing Data

A total of 1000 replications were simulated from piecewise
regression models using Equations (5) and (6). M and Y were
simulated as continuous variables from an AB design. Ferron
et al. (2010) reported that the median number of observations
in SCEDs was 24 with a range of seven to 58. To simulate
realistic conditions, we evaluated sample sizes (N) of 20 and
30. We also chose to consider sample sizes larger (N = 60 and
100) than those typically observed in SCEDs. Although the
baseline phase is typically shorter than the treatment phase in
SCEDs (Shadish & Sullivan, 2011), we opted for an equal
number of observations in the baseline and treatment phases to
isolate the effect of autocorrelation on the performance of our
methods. When N = 60, for example, we assigned 30 ob-
servations to the baseline phase and 30 observations to the
intervention phase. Values of 0 and 2 were simulated for the a
path defined as the change in level (b, a_level), and values
of 0 and 0.2 were simulated for the a path defined as the
change in trend between the two phases (b3,s; a_trend). The
nonzero effect sizes for the a paths come from the conventions
in the simulation literature on SCEDs (the a_level of 2 and
a_trend of 0.2 were used in, e.g., Moeyaert et al., (2013a) and
Moeyaert et al., (2013b)). Values of 0 and 0.59 were chosen
for the b path (b,y). The nonzero b path value stems from the
conventions in the simulation literature on mediation models
(the value of 0.59 is considered as a large value for the b path
in the single mediator model in, e.g., Fritz & MacKinnon
(2007); MacKinnon et al,. (2004), and Wang and Preacher
(2015)). We included effect sizes of 0 for the @ and b paths to
evaluate the Type I error rates of the methods.® Four different
values of p (0, 0.1, 0.5, and 0.9) were simulated, and we

analyzed the simulated data using four methods: OLS, NW,
FGLS, and AR(1). Statistical properties were evaluated for
128 (4 x 2 x 2 x 2 x 4) combinations of parameters.

The simulation study was carried out in R (R Core Team,
2020). To generate data for M and Y, first, a deterministic
portion of M and Y was simulated based on parameter values
for a given condition. Four levels of autocorrelation (p) were
simulated (no AR, AR.small, AR.medium, AR large). In the
no AR(1) condition, normal residuals with means of 0 and
standard deviations of 1 were added to the deterministic
portion using the morm command. In the conditions where
low, medium, and large autoregressive effects were evaluated,
residuals were added to the deterministic function using the
arima.sim() function based on the specified value of p (0.1,
0.5, or 0.9). For OLS estimation, estimates of the parameters in
Equations (5) and (6) were obtained using the Im() function.
Using NW standard errors, regression coefficients were
identical to those obtained from OLS estimation. The vcov-
HAC() function in the R package sandwich (Zeileis, 2004)
was used to estimate a HAC covariance matrix, and coeftest()
in the R package Imtest (Zeileis & Hothorn, 2002) was used to
obtain the estimates for the HAC standard errors. The coef-
ficients and standard errors for FGLS estimation were ob-
tained using the cochrane.orcutt() function in the orcutt
package in R (Stefano et al., 2018). Finally, in order to fit an
AR(1) model, the data were transformed into a time series
object using ts(). The arima() function was used to fit a model
to the time series data with an autoregressive structure of order
one. Point estimates of the indirect effect ab using OLS and
our three autocorrelation handling methods were computed
through the change in level and the change in trend. The
RMediation package (Tofighi & MacKinnon, 2011) was used
to compute 95% confidence intervals using the Monte Carlo
method with the medci() function (Mackinnon et al., 2004).
Finally, statistical properties of the point and interval estimates
were computed as described in the previous paragraph for
each iteration of the simulation study.

Single Mediator Model: Missing Data

The simulation for the single mediator model with missing
data on M and Y was performed in a similar fashion to the
simulation for the single mediator model without missing data.
We considered the same parameter values for by, b3y, and
b,y sample sizes, autoregressive values, and autoregressive
handling methods as in the single mediator model without
missing data. Two proportions of missing data (20% and 50%)
were simulated under an MCAR condition. Statistical prop-
erties were evaluated for 256 (4 x 2 x 2 x 2 x 4 x 2) com-
binations of parameters.

The simulation study was carried out in R (R Core Team,
2020). The first step in data generation for M and Y was the
same as in the complete case scenario. Following the simu-
lation of N values of M and Y with a specific value of p (0, 0.1,
0.5, or 0.9), we used the ampute() function from the R package
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MICE (van Buuren & Groothuis-Oudshoorn, 2011) to remove
a specified proportion of observations (20% or 50%) in both M
and Y under MCAR. The mice() function was then used to
impute missing values on M and Y. Following the recom-
mendation of White et al. (2011), who proposed that the
number of imputations should be at least equal to the pro-
portion of missing data (e.g., 30% missing data requires at
least 30 imputations), we requested 100 imputations, and we
chose five iterations according to the recommendation of van
Buuren and Groothuis-Oudshoorn (2011). OLS regression
was conducted on the 100 complete data sets using the with()
function, and the estimates for the regression coefficients were
combined into one estimate using the pool() function. Esti-
mates for the NW standard errors, as well as the FGLS and
AR(1) estimates, were obtained using the same procedures as
in the simulation study with complete cases for each imputed
data set, followed by the pooling together of the estimates
using the pool() function. Point and interval estimates of the
indirect effect ab were computed following the same proce-
dures as in the simulation study with complete cases. Finally,
statistical properties of the point and interval estimates were
computed for each iteration of the simulation study.

Results

Single Mediator Model: No Missing Data

Bias and Efficiency. Through the change in level, the point
estimates for the indirect effect were unbiased (Figure Sl
found in Supplemental Materials). The range of relative bias
generally increased as the autoregressive effect increased for all
autocorrelation handling methods. When N = 60, the four methods
performed comparably in terms of relative bias across all levels of
autocorrelation and parameter combinations. When N =20, 30, and
100 and p = 0.9, the mean relative bias over 1000 replications was
greater for OLS and NW than FGLS and AR(1). FGLS followed
by AR(1) resulted in the lowest mean relative bias when the amount
of simulated autocorrelation was high. In terms of efficiency, at all
values of N, the methods performed similarly for p =0, 0.1, and 0.5.
When p = 0.9, the standard deviation across replications was greater
for OLS and NW than FGLS and AR(1) which performed sim-
ilarly. As the sample size increased, the standard deviation over
replications generally decreased for p = 0, 0.1, and 0.5, and this
effect was most noticeable for nonzero b paths (Figure S2A). The
mean standard deviation increased as the sample size increased
when p = 0.9 for OLS and NW.

The estimates of the indirect effect through changes in
trend were unbiased in the majority of conditions. However,
when N =20 and p = 0.9, the relative bias across replications
was greater than 0.10 for all autocorrelation handling methods,
where OLS and NW had a higher mean relative bias than
AR(1) and FGLS (Figure S1). The range of relative bias
generally increased as the autocorrelation increased for all
methods. As the sample size increased, the standard deviation
of the point estimate decreased across all autocorrelation

handling techniques, and this effect was most noticeable at p =
0.9 for nonzero b paths (Figure S2). The methods performed
similarly for p = 0, 0.1, and 0.5 in terms of efficiency. At p =
0.9, AR(1) methods had lower standard deviation values than
FGLS, NW, and OLS in most conditions, although the dif-
ferences between methods were less pronounced than through
changes in level. Lower values of standard deviation for
AR(1) were most noticeable when b = 0.

Power

Through the change in level, power increased as the sample
size increased for most parameter combinations (Figure 1).
When N = 20 and 30, power was below 0.8 for all autocor-
relation handling methods and at all levels of simulated au-
tocorrelation. When N = 60 and N = 100 and p = 0 and 0.1,
power exceeded the nominal value of 0.8. When N =60 and p
= 0.5, power was equal to 0.8 for OLS and below 0.8 for NW,
FGLS, and AR(1). Power was unacceptable for all methods
when p = 0.9 and N = 60 and 100. OLS had the highest values
of power when p = 0.9 at large sample sizes, followed by
FGLS and AR(1) which performed comparably. NW yielded
the lowest power.

Through the change in trend, power increased as the sample
size increased. Power was below 0.8 for small sample sizes
(i.e., N=20 and 30) (Figure 1). When N =60 and 100 and p =
0,0.1,and 0.5, power was above 0.8. When p =0.9 and N =60
and 100, power was below 0.8 for NW, FGLS, and AR(1).
OLS vyielded acceptable power at N = 100. FGLS had the
lowest power of all the methods at p = 0.9.

Type | Error Rate

Through the change in level, Type I error rates generally
increased as the sample size increased for OLS and NW, while
Type I error rates decreased or remained stable for FGLS and
AR(1) at large autoregressive effects (Figure 2(a)). Type I
error rates equal to or below 0.075 were observed for FGLS
and AR(1) in the majority of parameter combinations when b
=0. When b =0 and p = 0.9, OLS and NW interval estimates
had Type I error rates above 0.075. When b = 0.59 and p = 0.5
and 0.9, Type I error rates above 0.075 were observed for all
methods. OLS and NW had considerably higher Type I error
rates than FGLS and AR(1) at N = 60 and 100 and when the
autoregressive effect was medium or large.

Through the change in trend, Type I error rates generally
increased for NW and OLS and increased or remained at the
same level for FGLS and AR(1) as the sample size increased at
large autoregressive effects (Figure 2(b)). Type I error rates
equal to or below 0.075 were observed for FGLS and AR(1)
for all parameter combinations when b =0. Whenb=0and p =
0.9, OLS and NW interval estimates had Type I error rates
above 0.075. When b =0.59 and p = 0.5 and 0.9, all methods
had excessive Type I error rates, whereas FGLS and AR(1)
had lower Type I error rates than OLS and NW.
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Figure 1. Power of the Interval Estimate of the Indirect Effect through the Change in Level and Trend

Note. Power of the interval estimate of the indirect effect defined through the change in level and trend over 1000 replications. The dotted line represents
power of 0.8. Different values for the a path defined as the change in trend did not impact the power for the change in level, and different values for the a path
defined as the change in level did not impact the power for the change in trend. a_level = a path as the change in level. a_trend = a path as the change in trend.

b_path = b path. N = sample size.

Coverage

Through the change in level, coverage was consistent across
sample sizes for FGLS and AR(1), while coverage decreased for
NW and OLS as the sample size increased in the majority of
conditions (Figure S3A). FGLS and AR(1) generally had cov-
erage above 0.925 when b = 0. Coverage was below 0.925 for
NW and OLS when p=0.9, 5= 0, and N=60 and 100. When p =
0.9 and b = 0.59, coverage increased as the sample size increased
for FGLS and AR(1), while coverage decreased for OLS and
NW. For nonzero b paths and large autoregressive effects,
coverage approached 0.925 for FGLS and AR(1), while coverage
was well below 0.925 for OLS and NW at larger sample sizes.

Through the change in trend, coverage decreased as sample
size increased for OLS and NW at high levels of simulated
autocorrelation in the majority of conditions (Figure S3B).
Coverage above 0.925 was obtained for FGLS and AR(1)
when b = 0 at all values of autocorrelation and sample sizes.
NW and OLS had coverage below 0.925 when p =0.9, b= 0,
and N =30, 60, and 100. When b = 0.59 and p = 0.9, coverage
was below 0.925 for all methods, whereas FGLS and AR(1)
had higher coverage than NW and OLS.

Interval Width

Through the change in level, interval width was larger at N =
20 and 30 than at N =60 and 100, and the performance across
methods was consistent for smaller sample sizes (Figure S4A).
There were discrepancies in the performance of methods at
larger sample sizes and autoregressive effects. When b=0, p =
0.9, and N=60 and 100, FGLS and AR(1) had smaller interval
widths than OLS and NW. When b= 0.59, p=0.9, and N= 60
and 100, the interval estimates were more precise for OLS than
the other methods.

Through the change in trend, interval width decreased as
the sample size increased (Figure S4B). The methods per-
formed similarly when p =0, 0.1, and 0.5. When 5 =10.59, p =
0.9, and N = 20 and 30, FGLS had larger interval widths than
the other methods.

Single Mediator Model: Missing Data

Bias and Efficiency. Through the change in level, the point
estimates of the indirect effect were unbiased when the pro-
portion of missingness was 0.2 in most conditions (Figure
S5A). When the proportion of missingness was large (0.5), the
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Figure 2. Type | Error of the Estimate of the Indirect Effect through the Change in Level and Trend.

Note. Type | error rates of the interval estimate of the indirect effect defined as the change in level and trend over 1000 replications. The shaded area
represents the acceptable range of Type | error rates between 0.025 and 0.075. Different values for the a path defined as the change in trend did not impact the
Type | error rates for the change in level, and different values for the a path defined as the change in level did not impact the Type | error rates for the change in
trend. a_level = a path as the change in level. a_trend = a path as the change in trend. b_path = b path. N = sample size.

point estimates were biased for most combinations of pa-
rameter values. Relative bias generally decreased as the au-
toregressive effect increased at N = 60 and 100. The results
were consistent across autocorrelation handling methods. The
standard deviation of the point estimate generally increased as
the autoregressive effect and sample size increased (Figure
S6). There were no major differences across missingness
proportions of 0.2 and 0.5. NW and OLS were less efficient

estimators than FGLS and AR(1) in most conditions when the
autoregressive effect was large, and this effect was most
evident at N = 60 and 100.

Through the change in trend, the relative bias generally
decreased as the sample size increased (Figure S5B). Relative
bias was unacceptable when missing = 0.5 and N =20 and 30
for all methods. When N = 60, the point estimates were
unbiased regardless of the proportion of missing data. When
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N = 100, the estimates were biased at several levels of au-
tocorrelation. Relative bias was generally higher for larger
proportions of missingness. The results were consistent across
autocorrelation handling techniques. The standard deviation
of the point estimate generally increased as the autoregressive
effect increased and decreased as the sample size increased
(Figure S7). The results were generally consistent across
proportions of missingness and autocorrelation handling
method. However, when missing = 0.2, » path=0, and p =0.9,
FGLS and AR(1) had lower values of standard deviation than
OLS and NW.

Power

Through the change in level, power decreased as the pro-
portion of missing data increased, and power increased as the
sample size increased (Figure S8A). Power was inadequate for
all autocorrelation handling methods when N = 20 and 30 at
both levels of missingness. When N = 60, missing = 0.2, and p
=0.5 and 0.9, power was below 0.8. When N = 60 and missing
= 0.5, power was unacceptable at all levels of autocorrelation.
When N = 100, missing = 0.2, p = 0.9, values of power were
below 0.8. At N =100 and a_trend = 0.2, power was below
0.8. When N =100 and p = 0 and 0.1, power was above 0.8.
Power was consistently higher for OLS in most conditions
when p = 0.9 and N = 60 and 100.

Through the change in trend, power generally decreased as
the proportion of missingness increased, and power increased
as the sample size increased (Figure S8B). Power was inad-
equate for all methods when N = 20 and 30. Power was
generally above 0.8 when missing = 0.2 and N = 60 and 100.
When N = 60, missing = 0.2, and p = 0.9, power was below
0.8. When N = 100, missing = 0.2, and p = 0.9, power was
above 0.8 for OLS and slightly below 0.8 for the other au-
tocorrelation handling techniques. When missing = 0.5, power
was below 0.8 in most conditions. However, when N = 100,
missing = 0.5, and the a_level = 0, power was above 0.8 when
p = 0.5 for all methods, and near 0.8 for p = 0, 0.1, and 0.9.
Power was slightly higher for OLS than NW, FGLS, and
AR(1) when p = 0.9 and N = 60 and 100 for all parameter
combinations.

Type | Error Rate

Through the change in level, Type I error rates were within the
acceptable range or below 0.025 when p = 0 and 0.1 across
both levels of missingness and for all autocorrelation handling
methods (Figure S9). As the sample size increased, the Type I
error rates increased when p = 0.5 and 0.9 in several condi-
tions. When p = 0.5, b path =0.59, and missing = 0.2, the Type
I error rates were above 0.075 when N = 30, 60, and 100.
When p = 0.9 and N = 60 and 100, the Type I error rates were
unacceptable in most conditions for OLS and NW and in
several conditions for FGLS and AR(1).

Through the change in trend, Type I error rates were ac-
ceptable or below 0.025 when p = 0 and 0.1 at both levels of
missingness (Figure S10). As the sample size increased, the
Type I error rates increased when p = 0.5 and 0.9 in several
conditions across both proportions of missingness. All
methods had instances of Type I error rates above 0.075 when
p=0.5and 0.9, N= 60 and 100, b path = 0.59, and missing =
0.2 and 0.5. OLS and NW performed worse than FGLS and
AR(1) at large autoregressive effects for N =30, 60, and 100 in
several conditions, and this effect was most noticeable for
nonzero b paths.

Coverage

Through the change in level, all autocorrelation handling
techniques had values of coverage within or above the ac-
ceptable range when p =0 and 0.1 (Figure S11). As the sample
size increased, values of coverage generally decreased when
p = 0.5 and 0.9. Coverage below 0.925 was observed in
several parameter combinations when p = 0.5 and 0.9 and N =
30, 60, and 100, whereas OLS and NW had lower coverage
than FGLS and AR(1) across both levels of missingness. A
larger proportion of missingness resulted in higher coverage
for OLS and NW when p = 0.9.

Through the change in trend, the methods had coverage
within or above the robustness criterion for all parameter
combinations when p = 0 and 0.1 (Figure S12). As the sample
size increased, values of coverage generally decreased when
p=0.5and 0.9. When missing =0.2, b path=0.59, p =0.5 and
0.9, and N =30, 60, and 100, coverage was below 0.925. OLS
and NW performed worse than FGLS and AR(1).

Interval Width

Through the change in level, interval width generally in-
creased as the autoregressive effect and proportion of miss-
ingness increased (Figure S13). As the sample size increased,
the interval width decreased. OLS had slightly smaller interval
widths than NW, FGLS, and AR(1) when the autoregressive
effect was large at N = 60 and 100.

Through the change in trend, interval width generally in-
creased as the autoregressive effect and the percentage of
missing data increased (Figure S14). As the sample size in-
creased, the interval width decreased. When p = 0.9 and N=60
and 100, OLS had consistently smaller interval widths than
NW, FGLS, and AR(1).

Discussion

In the present study, we evaluated various techniques for
modeling serially correlated error terms and examined the
performance of MI as a missing data handling technique for a
MCAR mechanism for piecewise regression analysis in
SCED:s. Specifically, we investigated the performance of the
autocorrelation handling methods and MI in terms of the
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statistical properties of the point and interval estimates of the
indirect effect for a single mediator model. After data were
simulated with different values of autocorrelation (p = 0, 0.1,
0.5, and 0.9) and missing data (0% in the first simulation study
and 20% and 50% in the second simulation study), the per-
formance of the methods was assessed in terms of bias, ef-
ficiency, power, Type I error rate, coverage, and interval width.

Results from the single mediator model simulation without
missing data revealed that OLS, NW, FGLS, and AR(1)
generally have unbiased point estimates. The results were
consistent across methods for small and medium autore-
gressive effects. At large autoregressive effects (i.e., p = 0.9),
OLS and NW performed worse than FGLS and AR(1) in terms
of relative bias for some parameter combinations. The four
methods were less efficient at larger simulated autoregressive
effects and smaller sample sizes. AR(1) and FGLS were more
efficient estimators of the indirect effect at large autoregressive
effects. Type 1 error rates were desirable or below 0.025 in
most parameter combinations and sample sizes for AR(1) and
FGLS. As sample size increased, however, Type I error rates
increased for OLS and NW, particularly for large autore-
gressive effects. A similar pattern was observed in terms of
coverage, where the performance of our methods was hin-
dered by large autoregressive effects and sample sizes for OLS
and NW. Coverage was acceptable or above 0.975 in most
conditions for AR(1) and FGLS. The performance of NW and
OLS in terms of Type I error rate and coverage were noticeably
worse compared to AR(1) and FGLS at p = 0.9, and the
discrepancy between performance increased as the sample size
increased. When the sample size was small (i.e., N =20 and
30), low power was achieved for all methods. At larger
sample sizes (i.e., N = 60 and 100), satisfactory power was
achieved in the majority of conditions except for when the
simulated autocorrelation was substantial (p = 0.9). OLS had
higher power than FGLS, AR(1), and NW in all conditions
when p = 0.9 and N = 60 and 100.

Results from the simulation with missing data revealed that
in general point estimates were unbiased when the proportion
of missingness was 20%. However, the performance of the
methods was unacceptable in terms of relative bias at several
parameter combinations and sample sizes when a large pro-
portion of missingness (50%) was introduced in the data. This
finding is supported by Chen et al. (2020) who found a high
missing rate negatively impacted the performance of EM in
terms of relative bias. However, it is worth noting that the
highest missing rate evaluated was 30%, and they simulated a
lower missing rate for the A phase than the B phase (Chen
et al., 2020). Our results indicate that the missing rate on its
own affected the relative bias of the point estimate. At N = 60
and 100 and when the rate of missing data was equal to 20%
and 50%, the relative bias generally decreased as the autor-
egressive effect increased. This finding is consistent with the
literature demonstrating that the inclusion of auxiliary vari-
ables when the correlation among variables is high may be
beneficial for the performance of multiple imputation models

(Hardt et al., 2012). Thus, the inclusion of M and Yas auxiliary
variables in our simulations may have improved the perfor-
mance of our methods at large autoregressive effects. Chen
et al. (2020) also found that relative bias was reduced for larger
autoregressive effects in several conditions when the pro-
portion of missingness in the intervention phase was equal to
20%. Consistent with the results from the simulation without
missing data, the methods were less efficient at larger au-
toregressive effects, and the results were not negatively im-
pacted by larger proportions of missingness. The results of
Chen et al. (2020) are consistent with this finding, where the
effect of the missing rate on the precision of the estimates was
minimal compared to the impact of the autocorrelation. FGLS
and AR(1) were more efficient estimators of the indirect effect
when p =0.9. Values of power below 0.8 were observed for all
parameter combinations at N = 20 and 30. Power was ac-
ceptable at larger sample sizes excluding conditions when the
percentage of missing data was equal to 50%. Type I error
rates were acceptable for all methods when the level of
simulated autocorrelation was small. However, when p = 0.5
and 0.9, Type I error rates were above 0.075 for larger sample
sizes. Interestingly, Type I error rates tended to increase for
medium and large autoregressive effects as the sample size
increased. OLS had consistently higher Type I error rates at
large autoregressive effects. Higher proportions of missing-
ness did not negatively impact the Type I error rates. Coverage
was within the acceptable range or above the upper limit of the
nominal interval for small autoregressive effects. Consistent
with the results of Type I error rates, coverage decreased as
sample size increased for large autoregressive effects. Cov-
erage was below 0.925 in several conditions when at p = 0.9.
OLS and NW performed worse than FGLS and AR(1), and
this effect was most noticeable through changes in level and at
larger sample sizes. Coverage, like Type I error rates, de-
creased as the simulated autocorrelation increased. Interest-
ingly, the performance of our methods improved in terms of
the Type I error rate and coverage when a higher proportion of
missingness was simulated. Finally, interval width increased
as the percentage of missing data and autoregressive effect
increased and decreased as the sample size increased.

The findings from our study revealed that (1) FGLS and
AR(1) are promising methods for modeling autocorrelation,
and (2) MI is a valuable missing data handling technique in
piecewise regression analysis in SCEDs. The first major
finding is supported by the low Type I error rates, high
coverage, and high efficiency observed when low missing data
rates (0% and 20%) were simulated. The second major finding
is supported by the similar performance of the methods across
missing data rates of 0% and 20% in terms of relative bias,
efficiency, and power, and the superior performance of the
methods in terms of Type I error and coverage for larger
proportions of missingness when a large autoregressive effect
was simulated. In light of these findings, we provide rec-
ommendations for applied researchers in subsequent
paragraphs.
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When acceptable Type I error rates, coverage, and high
efficiency are sought out, AR(1) and FGLS would be rec-
ommended at all sample sizes, autoregressive effects, and
proportion of missingness. However, the estimates were bi-
ased, and power was below 0.8 when a large proportion of
missing data was simulated for all methods. When higher
values of power are desired, the choice of method depends on
the amount of autocorrelation in the data. OLS would be
suggested when the amount of autocorrelation is medium or
large. However, one should note that this choice of parameter
estimation comes at the cost of an increased Type I error rate.
When the autoregressive effect in the data is minimal, FGLS
and AR(1) would be recommended. Procedures for estimating
autocorrelation for the methods evaluated in the paper are
provided in the Supplemental Materials. All autocorrelation
handling methods resulted in values of power below 0.8 when
the sample size was small. In order to achieve adequate power
to detect indirect effects using the methods in this study, larger
sample sizes (i.e., N = 60 and 100) are recommended. When
N = 60 and 100, the power was near the acceptable value of
0.8 for all methods when p ranged from 0 to 0.5, and the
percentage of missing data was equal to 0% and 20%.

Limitations and Suggestions for Future Research

There are several limitations to the current study. First, it may
be unrealistic to expect researchers to collect the 60 to 100 data
points per participant necessary to attain adequate power to
detect indirect effects. As Shadish and Sullivan (2011) noted,
90.6% of single-case design studies had less than 50 obser-
vations. Fortunately, the development of smartphones, tablets,
and handheld computers has revolutionized our ability to
collect data. Advancements in real-time monitoring technol-
ogy have facilitated the use of ecological momentary as-
sessment (EMA) in which researchers acquire repeated data of
participants’ behaviors and experiences (Shiffman et al.,
2008). EMA can readily document the behavior of an indi-
vidual across time, revealing the effects of an intervention or
treatment. New technologies have also promoted the use of
passive real-time monitoring (Kleiman & Nock, 2017). Pas-
sive monitoring involves collecting data without requiring
active participation and data entry from the individual. This
enables researchers to collect data passively using features on
smartphones such as screen time and social media activity
(Vilardaga et al., 2014). The advantages of real-time moni-
toring technology in SCEDs are detailed thoroughly in
Bentley et al. (2019).

Despite the finding that power increased as sample size
increased when the proportion of missing data was large,
power was below the nominal level, and relative bias exceeded
0.10 when 50% missing data was simulated. More method-
ological work is needed to develop optimal missing data
handling methods to reduce bias and increase power for
piecewise regression analysis in SCEDs. Several methods for
multivariate data imputation have been proposed, including

imputation based on maximum likelihood (MLMI; von Hippel
& Bartlett, 2021) and predictive mean matching (PMM,;
Morris et al., 2014). Various R packages for performing
imputation in time series data have been developed (Moritz
et al., 2015), including the R package imputeTS (Moritz &
Bartz-Beielstein, 2017) for univariate time series imputation
and the R package Amelia II (Honaker et al., 2011), a
bootstrap-based EM algorithm implemented for imputing
missing values in multivariate time series data.

Another limitation of our study lies in the choice to con-
sider only positive autocorrelations, yet negative autocorre-
lations have been reported in SCEDs (Harrington & Velicer,
2015; Parker et al., 2005). Studies have revealed differences in
the performance of missing data handling methods under
negative autocorrelations with time series data (Velicer &
Colby, 2005a, 2005b). Future simulations should examine
the performance of MI under both positive and negative
autocorrelation values. The negative relationship between
relative bias and autoregressive effect also warrants further
investigation. Our simulation study and empirical example
evaluated AB designs, and researchers may be interested in
other types of SCEDs, such as multiple-baseline designs or
alternating treatment designs. Shadish and Sullivan (2011)
found that the multiple-baseline design is most commonly
used in SCED research. However, methods for obtaining
numerical estimates of indirect effects for multiple-baseline
and intervention designs have yet to be described. Further-
more, we assessed a single mediator model, and often re-
searchers are interested in evaluating more than one mediator.
Future research is needed to identify optimal techniques for
modeling autocorrelation and handling missing data for two
mediator models. Additionally, we evaluated data that fol-
lowed an MCAR mechanism, although data that is MAR,
where a missing observation depends on the observed data,
may be more realistic in empirical SCEDs.

Future research is needed to examine the effects of lagged
and cross-lagged variables in piecewise regression models for
SCEDs. The proposed method does not allow for lagged
effects, for example, of the mediator M, at a measurement
occasion f to the outcome Y, at the subsequent measurement
occasion. Furthermore, we assume equidistant time intervals
between measurement occasions. Mediation analysis with
lagged effects can be done, for example, using multivariate
time-series models (Lutkepohl, 2005), cross-lagged panel
models (Usami et al., 2019; Zyphur et al., 2020), or non- and
semi-parametric models for causal mediation analysis
(Shpitser, 2013; Zheng & van der Laan, 2017). The as-
sumption of equidistant time intervals can be relaxed by using
continuous time models (Albert et al., 2019; Deboeck &
Preacher, 2016).

In the present study, we did not distinguish between the
number of time points in the baseline and intervention phase.
However, it is common in SCEDs that the length of the
treatment phase exceeds that of the baseline phase (Ferron
et al., 2010; Shadish & Sullivan, 2011). Given that this is the
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first simulation study to examine methods for handling
missing data and autocorrelation in piecewise regression
analysis for mediation analysis SCEDs, we opted to simplify
the design. Future research might examine the impact of
autocorrelation, missing data, and varying the lengths of the
baseline and intervention phases on the performance of MI.

Conclusion

Using mediation analysis to test intervention effects in SCEDs
can provide insight into the mechanisms through which inter-
ventions achieve their effects for individual participants. This
paper evaluated piecewise regression analysis for a single me-
diator model comparing OLS to three methods for handling
autocorrelation, NW, AR(1), and FGLS, and MI under various
proportions (20% and 50%) of missing data. The methods were
illustrated using data from a walking intervention for osteoar-
thritis. The simulations indicate that AR(1) and FGLS are
promising techniques for modeling autocorrelation, and MI is a
promising method for handling missing data in SCEDs for single
mediator models. Our results suggest that sample sizes larger
than those typically found in SCEDs are recommended to attain
acceptable power using the methods evaluated in this study. As
the number of tools facilitating data collection continues to rise,
larger sample sizes necessary to detect indirect effects in SCEDs
using piecewise regression analysis may become more feasible.
We hope the results of our simulation studies will contribute to
the current scholarship on mediation analysis in SCEDs and
promote further research on autocorrelation handling and missing
data handling methods in single-case studies.
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Notes

1. The time index t refers to the measurement occasion, and we
assume equidistant time intervals between measurement occa-
sions (e.g., days, weeks). Thus, X, M;, and Y, are measured at the
same occasion (e.g., during the same day). However, we assume
that within a measurement occasion (e.g., during a day), the cause
variables are measured prior to the effect variables (e.g., X, is
measured before M, during the same day).

2. RMediation implicitly assumes that the standard errors are con-
sistent, which may not be the case in OLS with nonzero
autocorrelation.

3. Note that the proportion of variation accounted for by a trend,
a level, and the mediator no longer correspond to the intended
values of R that led to labeling these effects as large; therefore, the
selected effect sizes should no longer be considered as large effects.
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